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Abstract In this work an approach to building a high accu-
racy approximation valid in a larger range of design vari-
ables is investigated. The approach is based on an assembly
of multiple surrogates into a single surrogate using lin-
ear regression. The coefficients of the model assembly are
not weights of the individual models but tuning parameters
determined by the least squares method. The approach was
utilized in the Multipoint Approximation Method (MAM)
method within the mid-range approximation framework.
The developed technique has been tested on several bench-
mark problems with up to 1000 design variables and con-
straints. The obtained results show a high degree of accuracy
of the built approximations and the efficiency of the tech-
nique when applied to large-scale optimization problems.

Keywords Multipoint Approximations Method ·
Metamodel · Linear regression · Assembly

1 Introduction

This paper is focused on the building of mid-range approxi-
mations that has been originated in the work of Haftka et al.
(1987) and later developed by Fadel et al. (1990), Wang
and Grandhi (1995) as “two-point” approximation meth-
ods. This was generalized to multi-point approximations by
Toropov (1989), Toropov et al. (1993) and reported by Wang
and Grandhi (1996), and Canfield (2004).
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The approach undergoes continuous development (van
Keulen and Toropov 1997; Polynkin et al. 2008; Shahpar
et al. 2008). The objective is to produce better quality
approximations that are applicable to large-scale optimiza-
tion problems.

The present approach is based on the assembly of mul-
tiple metamodels. Such an approach was recently studied,
for example, by Viana and Haftka (2008) and Acar and
Rais-Rohani (2009) where metamodel assembly was based
on a weighted sum formulation. In the present work meta-
model assembly is built using a linear regression. The
regression coefficients of the assembly model are not scaled
weights but tuning parameters determined by the least
squares method. As a result, the tuning parameters of the
assembly model are not restricted to a positive range but
may have negative values as well. However, as it will be
shown in the paper, for particular cases these parameters
may have the meaning of scaled positive weight factors of
individual metamodels in the assembly.

The approach was implemented within Multipoint
Approximation Method (MAM) based on the mid-range
approximation framework. In this paper, the approach was
tested on a set of benchmark problems (Svanberg 1987;
Fleury 1989; Vanderplaats 1999). The obtained results have
shown a high degree of accuracy of the built approxima-
tions and the efficiency of the technique when applied to
large-scale optimization problems.

2 Outline of Multipoint Approximation
Method (MAM)

This technique (Toropov 1989; Toropov et al. 1993) replaces
the original optimization problem by a succession of sim-
pler mathematical programming problems. The functions in
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each iteration are mid-range approximations to the corre-
sponding original functions. The solution of an individual
sub-problem becomes the starting point for the next step, the
trust region is modified and the optimization is repeated iter-
atively until the optimum is reached. Each approximation
function is defined as a function of design variables as well
as a number of tuning parameters. The latter are determined
by the weighted least squares surface fitting using the origi-
nal function values (and their derivatives, when available) at
several sampling points of the design variable space. Some
of the sampling points are generated in the trust region, and
the rest is taken from the extended trust region (as described
below).

A general optimization problem can be formulated as

min F0 (x) , Fj (x) ≤ 1 ( j = 1, ..., M) ,

Ai ≤ xi ≤ Bi (i = 1, ..., N ) . (1)

where x refers to the vector of design variables. The
MAM replaces the optimization problem by a sequence of
approximate optimization problems:

min F̃k
0 (x) , F̃k

j (x) ≤ 1 ( j = 1, ..., M) ,

Ak
i ≤ xi ≤ Bk

i , Ak
i ≥ Ai , Bk

i ≤ Bi (i = 1, ..., N ) . (2)

where k is the iteration number.
The selection of the approximations F̃k

j (x) ( j =0, ..., M)

is such that their evaluation is inexpensive as compared to
the evaluation of the original response functions Fj . For
example, intrinsically linear functions were successfully
used for a variety of design optimization problems in the
works of Toropov et al. (1993), van Keulen and Toropov
(1997).

The approximations are determined by means of the
weighted least squares:

min
P∑

p=1

wpj

[
Fj

(
xp

) − F̃k
j

(
xp, a j

)] 2. (3)

In (3) minimization is carried out with respect to the tuning
parameters a j ; wpj are the weight coefficients, and P is the
number of sampling points in Design of Experiments (DoE)
which must not be less than the number of parameters in the
vector a j .

The weight coefficients wpj strongly influence the
difference in the quality of the approximations in different
regions of the design variable space. Since in realistic con-
strained optimization problems the optimum point usually
belongs to the boundary of the feasible region, the approx-
imation functions should be more accurate in such domain.
Thus, the information at the points located near the bound-
ary of the feasible region is to be treated with greater

Fig. 1 Current trust region (smaller box) and its extension (larger
box): points outside the larger box are not used for building the
approximate functions

weights. In a similar manner a larger weight can be allocated
to a design with a better objective function, see Toropov
et al. (1993), van Keulen and Toropov (1997).

The approximate functions F̃k
j (x) ( j = 0, ..., M) are

intended to be adequate in a current trust region. This
is achieved by the appropriate planning of a DoE and
definition of a trust region by the side constraints Ak

i
and Bk

i . After having solved the approximate optimization
problem (2), a new trust region is defined, i.e. its new size
and its location are specified. This is done on the basis of
a set of parameters that estimate the quality of the approxi-
mations (“bad”, “reasonable” or “good”) and the location of
the sub-optimum point in the current trust region. Once the
parameters have been determined, the trust region is moved
and resized; see van Keulen and Toropov (1997).

As optimization steps are carried out, a database with
response function values becomes available. In order to
achieve good quality approximations in the current trust
region, an appropriate selection of DoE points must be
made. Generally, points located far from the current trust
region would not contribute to the improvement of the qual-
ity of the resulting approximations in the trust region. For
this reason only points located in the neighborhood of the
current trust region are taken into account, as depicted in
Fig. 1. A box in the space of design variables, which is
approximately 1.5 to 1.8 times larger than the box repre-
senting the current trust region, was found by numerical
experimentation to be a reasonable choice for the size of
the neighborhood.

3 Design of experiments

In this work, a design of experiments in each trust region
is generated randomly. In order to improve the quality of
a random DoE, a uniformity constraint (i.e. a constraint on
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the minimal distance between sampling points) is imposed
using the following expression:

dist p

Diag
≥ r, (4)

where

Diag =
√√√√

N∑

i=1

(
Bk

i − Ak
i

)2
,

diste =
√√√√

N∑

i=1

(
xe

i − x p
i

)2; e, p = 1, ..., P; e �= p;

In (4) Diag is a characteristic size of a kth trust region
(i.e. L2 distance), xe is a new sampling point to be gener-
ated, xp is a previously generated point, and P is the number
of sampling points in a kth trust region.

The parameter r is initially set to 0.95. However if the
condition (4) is not satisfied after a prescribed number
of randomly generated new points, a value of the thresh-
old ratio r is iteratively reduced, for example, using the
following relationship

r = r ∗ coef f, 0.9 ≤ coef f < 1

until the constraint (4) is satisfied. It should be noted that
the condition (4) is also checked for all sampling points that
were generated in the previous trust regions (1,..., k−1) and
belong to the current trust region.

4 Approximation building

In this work an approach is studied that is based on the
assembly of different approximate models {ϕl} into one
metamodel using the following form (note that the indices j
and k are suppressed to simplify notation):

F̃ (x) =
N F∑

l=1

blϕl (x) (5)

where NF is the number of regressors in the model pool {ϕl}
and bl are corresponding regression coefficients.

The use of multiple metamodels has recently been stud-
ied, for example, by Viana and Haftka (2008), Viana et al.
(2009) and Acar and Rais-Rohani (2009) where coefficients
bl in (5) were treated as weights that reflect the accuracy of
the individual surrogates on a set of validation points. Thus,
more accurate assembly components ϕl have larger values
of the multipliers and vice versa provided that

N F∑

l=1

bl = 1. (6)

Individual surrogates such as Polynomial Response Sur-
face (PRS), Kriging (KRG), Radial Basis Functions (RBF),
Gaussian Process (GP) and Support Vector Regression
(SVR) were considered in the above studies.

This work considers an alternative approach to building
the expression (5). The idea to use the regression analysis
for combining different metamodels instead of calculating
the weights for each component was motivated by the early
work (Toropov 1989) where the regressors were intended
to describe the behavior of separate mechanical (struc-
tural) sub-systems. In the present work, as sub-systems we
consider individual metamodels.

The proposed procedure consists of two subsequent
steps. In the first step, the parameters al of individual func-
tions (regressors) ϕl in (5) are determined by solving a
weighted least squares problem using a specified a DoE of
P points:

min
P∑

p=1

wp
[
F

(
xp

) − ϕl
(
xp, al

)] 2 (7)

where minimization is carried out with respect to the tuning
parameters al .

In the second step, based on the same DoE and keep-
ing the obtained parameters al fixed, a vector b in (5) is
estimated using the following formulation

min
P∑

p=1

wp

[
F

(
xp

) − F̃
(
xp, b

)] 2 (8)

that leads to solving a linear system of NF equations with
NF unknowns bl where NF is the number of regressors in
the model pool {ϕl}. From (8) it follows that the parameters
bl (l = 1, NF) in (5) are not conventional weight factors
because they are defined as regression coefficients which
may get either positive or negative values. The parame-
ters wp refer to the weights that reflect the inequality of
data obtained at different sampling points, p = 1, P (see
Section 2).

In order to apply the above two-step regression procedure
correctly, it is necessary to satisfy some relations between
the number of parameters in vectors al and b, and the num-
ber of sampling points P in DoE. The first requirement is
that P must not be smaller than the maximum number of
tuning parameters contained in either al or b. (It is worth
noting here that in practice we always add a few extra points
above the required limit).

Another essential condition that should be taken into
account is the size of the domain (a trust region) where the
DoE is built. Too small a size may cause a very similar
behavior of the regressors {ϕl} in the domain (i.e. regres-
sors become almost collinear, Belsley 1991). This may lead
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to ill-conditioning of the matrix to be inverted in order to
obtain a solution of the problem (8). In order to prevent
this, in the numerical implementation of the technique a
limitation on the smallest size of the trust region is imposed.

The selection of the regressors ϕl is based on the number
of sampling points currently located in the trust region. In
the mid-range approximation framework that aims at solv-
ing large-scale optimization problems, inexpensive (in the
sense of the number of sampling points required) approxi-
mate models for the objective and constraint functions are
built. The simplest case is a linear function of the tuning
parameters a:

ϕ (x) = a0 +
N∑

i=1

ai xi . (9)

This structure can be extended to an intrinsically linear
function (Box and Draper 1987). Such functions are non-
linear, but they can be led to linear ones by a simple
transformation. The most useful function among them is the
multiplicative function

ϕ (x) = a0

N∏

i=1

xai
i . (10)

The advantage of such approximation functions is that a
relatively small number (N+1, where N is the number of
design variables) of tuning parameters ai is to be deter-
mined, this can be done using a relatively small number
of DOE points This is the most important feature of such
approximations as it allows applying them to large-scale
optimization problems.

Other intrinsically linear functions may be considered in
the model pool, e.g.

ϕ (x) = a0 +
N∑

i=1

ai/xi , (11)

ϕ (x) = a0 +
N∑

i=1

ai x2
i , (12)

ϕ (x) = a0 +
N∑

i=1

ai x3
i , (12a)

ϕ (x) = a0 +
N∑

i=1

ai/x2
i . (13)

ϕ (x) = a0 +
N∑

i=1

ai/x3
i . (13a)

As more points are added to the database the approxima-
tions may be switched to higher quality models, e.g. a
rational model

ϕ (x) = a1 + a2x1 + a3x2 + ... + an+1xn

1 + an+2x1 + an+3x2 + ... + a2n+1xn
(14)

This type of approximations was studied before by, e.g.
Burgee et al. (1994) and Salazar et al. (2007). Due to the
rapidly growing number of coefficients for a large N (that
is one of the targets of this work), the function structure has
to be limited to low degree polynomials, typically linear.

The coefficients in (14) are determined using a least
squares approach which reduces to a nonlinear optimization
problem with a constraint on the sign of the denominator
(positive or negative). The latter is necessary in order to pre-
vent the denominator from crossing the zero axis within a
specified trust region. One may note that this formulation
may yield the objective function with many local min-
ima. Currently this problem is resolved using optimization
restarts from a specified number of initial guesses randomly
generated in a trust region.

5 Optimization examples and discussions

The proposed method has been demonstrated on several
structural optimization problems. The results obtained for
four test cases are presented in order to give an insight into
the approach.

5.1 Vanderplaats unconstrained minimization problem

This classic two-dimensional optimization problem,
Vanderplaats (1999), with one response function has been
chosen mostly for graphical illustration of how the meta-
model assembly works.

The objective is to find an equilibrium position of the
springs by minimizing the total potential energy of the
system

PE = 0.5∗K1

[√
x2

1 + (l1 − x2)
2 − l1

]2

+ 0.5∗K2

[√
x2

1 + (l2 + x2)
2 − l2

]2

− P1x1 − P2x2.

The constants Ki are spring stiffnesses, Pi are loads, li
are the original spring lengths, and xi are displacements
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Fig. 2 Two-variable function design space for the spring-force system

where K1 = 8 N/cm, K2 = 1 N/cm, P1 = P2 = 5 N,
l1 = l2 = 10 cm. The two-variable function space is shown
in Fig. 2. In order to consider a positive range of variations
for the function and design variables, the following scaling
has been applied: P E = P E +100; xi = xi +6. The exact
minimum of the scaled problem is {14.63; 10.45} cm with
PE = 58.19 N cm.

Depending on the number of sampling points generated
in a trust region, several solutions were obtained. As the
initial design, a point {6; 6} cm was used. The initial size
of the trust region was 0.25 (i.e. 25% of the search domain).
The results are summarised in Table 1. The optima were
identified as internal points of trust regions built in a final
MAM iteration.

Following the proposed procedure (5)–(8) for building
the approximate models, the following five intrinsically lin-
ear functions were included in the model pool to solve the
optimization problem (Table 2):

Table 1 Optimization results depending on the number of sampling
points in the trust region

Sampling xopt
1 xopt

2 PE Iterations Calls for

points per function

trust region

6 15.0 11.06 58.44 8 49

15 14.77 10.72 58.22 8 121

20 14.65 10.47 58.20 8 161

Table 2 Model pool of five regressors

Regressors order Regressor type Equation

in the pool number

1 Linear 9

2 Linear in squared 12

variables x2
i

3 Multiplicative 10

4 Linear in reciprocal 11

variables 1/xi

5 Linear in reciprocal squared 13

variables 1/x2
i

For illustration, the regression coefficients for the assem-
bly model built in the first and final 8th iteration using 20
sampling points are shown below:

b1 = −5.86 b2 = 3.87 b3 = 5.67

b4 = −3.40 b5 = 0.73 (1st MAM iteration),

b1 = −49603.9 b2 = 24828.1 b3 = 63.74

b4 = −24755.0 b5 = 49468.1 (8th MAM iteration).

As can be checked, the normalization condition
5∑

l=1
bl = 1

(6) is implicitly satisfied for the obtained coefficients.
The meaning of the negative coefficients can now be

illustrated. Figures 3 and 4 show how the technique defines
different (positive and negative) slopes for monotonic func-
tions φl from the model pool, that are monotonic in the trust
region, in order to assemble an adequate approximation with
non-monotonic behaviour.

In order to compare the accuracy of different compo-
nents ϕl with the performance of the assembled model F̃ ,
RMSE (root mean squared error) of scaled response values
was calculated

RM SE =
√√√√ 1

Ktest

Ktest∑

i=1

(
F̃i − Fi

Fi

)2

(15)

where Ktest is number of validation points randomly gen-
erated in the trust region; F̃i and Fi are model and actual
function values at validation points. For this case 500
validation points were generated.

Values of scaled RMSE depending on the number of
sampling points are given in Tables 3 and 4.

As can be observed, the accuracy of the assembled
model is always higher than the accuracy of its individual
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Fig. 3 Actual function and metamodel assembly built of five regressors in the first MAM iteration

components. This trend was found in all iterations using
different numbers of sampling points generated in a trust
region.

It should be reminded that the size of the trust regions
generated during the MAM optimization search is gradu-
ally decreased. This explains why RMSE obtained in the 8th
(last) iteration is much smaller than RMSE corresponding to
the 1st (initial) iteration.

5.2 Two-bar truss

The problem is illustrated in Fig. 5. A two-bar truss
(Svanberg 1987) is loaded by a force with corresponding
components Fx = 24.8 kN and Fy = 198.4 kN. There
are two design variables: the cross-section area of both bars
x1 cm2 and half of the distance between the supports x2

m. The objective function is the weight of the structure and
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Fig. 4 Actual function and metamodel assembly built of five regressors in the 8th MAM iteration

constraints are stresses (in both bars) which must not exceed
100 N/mm2. The functions have analytical expressions:

F0 (x) = c1x1

√(
1 + x2

2

)
,

F1 (x) = c2

√(
1 + x2

2

) (
8

x1
+ 1

x1x2

)
≤ 1,

F2 (x) = c2

√(
1 + x2

2

) (
8

x1
− 1

x1x2

)
≤ 1,

where c1 = 1.0, c2 = 0.124.
The side constrains are defined by A1 = 0.2; A2 = 0.1;

B1 = 4.0; B2 = 1.6. The starting guess is {2.5; 1.0}.
The problem has been tested by several authors using

different approximation techniques (see Svanberg 1987).
In our earlier work (Toropov et al. 1993), this test has
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Table 3 RMSE for metamodel assembly and individual regressors in
the 1st MAM iteration

Sampling F̃ φ1 φ2 φ3 φ4 φ5

(building)

points per

trust region

6 0.18 0.21 0.22 0.19 0.27 0.19

15 0.12 0.21 0.23 0.18 0.19 0.17

20 0.11 0.22 0.23 0.18 0.19 0.17

30 0.12 0.21 0.22 0.18 0.19 0.17

40 0.11 0.21 0.23 0.18 0.19 0.17

been successfully solved using MAM based on one type of
approximations, namely the multiplicative function (10).

The purpose of this simple test in the present work is to
show the validity of the proposed assembly approach when
several types of regressors including non-linear regressor
(14) are involved.

For building the approximations, the following set of
seven functions in the model pool was used (Table 5):

One may notice that the above functions individually
may describe the global behavior rather poorly. However
such approximations can be efficient in the mid-range
approximation framework of MAM.

The problem has been solved in 4 MAM iterations using
7 sampling points generated in each trust region yielding
29 numerical experiments in total. The obtained solution
is given by the vector {1.4132; 0.3736} with the objec-
tive F0 = 1.50860 and the constraint F1 = 1.00006. For
comparison, the optimum obtained by SQP with a specified
tolerance 10−10 (after 15 calls for a procedure that cal-
culates functions and its derivatives values) is {1.4119;
0.3766} with the objective F0 = 1.50865 and the constraint
F1 = 1.00000.

The way the regression coefficients ai (i = 1, 7) and b of
the active constraint F1 have been evolving during the trust
regions move and reduction towards the optimum is shown

Table 4 RMSE for metamodel assembly and individual regressors in
the 8th MAM iteration

Sampling F̃ φ1 φ2 φ3 φ4 φ5

(building)

points per

trust region

6 3.00e–3 6.28e–3 6.23e–3 6.23e–3 6.32e–3 6.38e–3

15 3.41e–3 3.88e–3 3.86e–3 3.88e–3 3.92e–3 3.90e–3

20 3.25e–3 4.57e–3 4.58e–3 4.54e–3 4.54e–3 4.56e–3

30 3.24e–3 3.56e–3 3.58e–3 3.53e–3 3.53e–3 3.54e–3

40 1.02e–3 1.97e–3 1.96e–3 1.97e–3 1.99e–3 1.99e–3

Fig. 5 Two-bar truss

in the Tables 6, 7, 8 and 9. Each table corresponds to a sub-
sequent MAM iteration. It is worth mentioning here that the
optimum has actually been found in the third iteration (as
an internal point of the trust region). In the forth iteration,
a trust region just shrank around the obtained point leaving
the solution essentially the same.

Again, the normalization condition
7∑

l=1
bl = 1 is satisfied

for the obtained coefficients in all iterations.
Note that a non-linear regressor (rational function) has

been involved in this example for the illustration purpose

Table 5 Model pool of seven regressors

Regressors order Regressor type Equation

in the pool number

1 Linear 9

2 Linear in squared variables x2
i 12

3 Linear in cubed variables x3
i 12a

4 Linear in reciprocal 11

variables 1/xi

5 Linear in reciprocal squared 13

variables 1/x2
i

6 Linear in reciprocal cubed 13a

variables 1/x3
i

7 Rational 14
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Table 6 Parameters of vectors
ai and b in the first MAM
iteration

a1 a2 a3 a4 a5 a6 a7 b

2.9734 2.1097 1.6884 0.3509 0.9390 1.0759 28.296 9.2208

−1.1133 −0.3354 −0.1096 1.4769 0.6256 0.3063 −1.898e–2 −9.8751

−8.969e–2 −6.268e–2 9.082e–3 −0.2521 −0.1425 −7.977e–2 10.501 3.7884

24.543 −7.8242

−1.3766 9.1385

−3.4721

2.364e–2

Table 7 Parameters of vectors
ai and b in the 2nd MAM
iteration

a1 a2 a3 a4 a5 a6 a7 b

1.8915 1.4207 1.2646 5.460e–3 0.4771 0.6346 315390.2 457.51

−0.6328 −0.2067 −8.809e–2 1.3873 0.9959 0.9361 −27131.1 −395.28

8.450e–3 9.487e–4 −1.645e–2 7.881e–6 9.916e–4 7.706e–4 88386.2 107.50

200709.3 −398.80

83016.7 299.38

−70.01

0.7040

Table 8 Parameters of vectors
ai and b in the 3rd MAM
iteration

a1 a2 a3 a4 a5 a6 a7 b

2.0917 1.5426 1.3563 −7.685e–2 0.4710 0.6555 44.9334 −333.58

−0.7040 −0.2404 −0.1065 1.4002 0.9539 0.8485 −4.7065 300.57

−0.1860 −0.1963 −0.2648 3.554e–2 7.123e–3 1.805e–3 7.0259 −84.837

24.1301 261.22

14.1623 −180.99

38.349

0.2611

Table 9 Parameters of vectors
ai and b in the final 4th MAM
iteration

a1 a2 a3 a4 a5 a6 a7 b

2.1215 1.5642 1.3782 −0.1059 0.4513 0.6373 5.7237 −5.3693

−0.7128 −0.2538 −0.1203 1.4001 0.9792 0.9119 −1.943e–2 28.332

−0.3023 −0.3982 −0.6969 4.307e–2 8.079e–3 2.011e–3 −3.6111 −13.979

3.0019 −39.241

−2.3976 46.501

−14.068

−1.1757
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only (as this problem can efficiently be solved without it).
In practice, e.g. for large-scale problems, we found it quite
expensive each time to determine coefficients of the rational
function in each iteration as this involves solving a nonlinear
optimization problem with multiple restarts.

On this problem we would like to demonstrate the
difference between our two step regression approach and
the one-shot nonlinear regression that can be considered
as a possible (although inconvenient for the reasons men-
tioned above) alternative. The results below correspond to
the metamodels built for the constraint function F1 on a 40
point DoE in the first MAM iteration.

In the case of a one-shot nonlinear regression, the
approximation model includes 6 intrinsically linear and 1
rational functions (Table 5) that gives 30 coefficients Ai

to be defined by solving an optimization problem with
multiple restarts to allow for the presence of many local
minima:

ϕ1 = A1 + A2x1 + A3x2

ϕ2 = A4 + A5x2
1 + A6x2

2

ϕ3 = A7 + A8x3
1 + A9x3

2

ϕ4 = A10 + A11/x1 + A12/x2

ϕ5 = A13 + A14/x2
1 + A15/x2

2

ϕ6 = A16 + A17/x3
1 + A18/x3

2

ϕ7 = (A19 + A20x1 + A21x2)

/ (1.0 + A22x1 + A23x2)

F̃ = A24ϕ1 + A25ϕ2 + A26ϕ3 + A27ϕ4

+ A28ϕ5 + A29ϕ6 + A30ϕ7 (16)

In the case of the metamodel assembly building, the corre-
sponding vectors ai and b are as follows:

a1 = {A1; A2; A3}
a2 = {A4; A5; A6}
a3 = {A7; A8; A9}
a4 = {A10; A11; A12}
a5 = {A13; A14; A15}
a6 = {A16; A17; A18}
a7 = {A19; A20; A21; A22; A23}
b = {A24; A25; A26; A27; A28; A29; A30}

These two ways of formulating the metamodel building
problem result in two completely different sets of model

Table 10 Coefficients of the non-linear regression (16) estimated in
one “shot” (i.e. obtained by minimization of sum of squares) in com-
parison with the corresponding coefficients obtained by the assembly
approach

Non-linear The assembly

regression

1 2.396457 3.0280750

2 4.449486 −1.3956280

3 −3.382556 0.6016999

4 7.693423 2.3517557

5 0.22267E-02 −0.3902567

6 0.223307 0.2588174

7 3.422376 2.1280342

8 0.902226 −0.1279212

9 0.369356 0.1334303

10 8.080112 0.4558186

11 −17.26829 1.5898862

12 1.148209 −0.4103339

13 2.224118 1.0855063

14 0.987671 0.4156419

15 0.836704 −0.1145523

16 3.297245 1.2604212

17 7.653476 0.1110441

18 0.866966 −4.120782E-002

19 −0.746787 203.88510

20 5.047989 0.8537122

21 −0.224718 108.19648

22 9.903058 195.30600

23 −2.265703 −1.0588928

24 −0.925751 −4.8314931

25 −0.589809 5.9631825

26 1.320733 −2.3860610

27 −0.97340E-01 4.0274174

28 0.71407E-01 −5.0225619

29 −0.74234E-03 2.2107057

30 5.794658 1.039240

coefficients (Table 10). The quality of the metamodels has
been assessed by the RMSE values (15) calculated on the
DOE points, these are 0.00469 for the one-shot of non-linear
regression and 0.0136 for the metamodel assembly. The for-
mer is more accurate whereas the latter is much simpler and
more suitable for large-scale optimization problems.

Fig. 6 Scalable beam with rectangular cross sections
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5.3 Vanderplaats scalable beam

The problem is formulated as follows: minimize the volume
of a cantilever beam (Fig. 6)

V =
S∑

i=1

bi hi li

under stress, aspect ratio, and tip deflection constraints

σi/σ̄ ≤ 1; hi/ (20bi ) ≤ 1; yS/ȳ ≤ 1;
with the lower limits on the cross section size

bi ≥ 1; hi ≥ 5; (i = 1, S) .

The properties of the beam are as given by Vanderplaats
(1999): σ̄ = 14,000 N/cm2; ȳ = 0.5 cm; F = 50,000 N;
E = 200 GPa; total length L = 500 cm.

Three cases were considered depending on the number
of elements in the beam: (a) S = 5 resulting in N = 10
design variables and 11 constraints; (b) S = 50 resulting
in N = 100 and 101 constraints; (c) S = 500 resulting in
N = 1000 and 1001 constraints.

For building the approximate models, a set of five
intrinsically linear functions specified in Table 2 has been
used.

It was found that a multiplicative function (10) was given
a preference in the model building for the stress and aspect
ratio constraints. As an example, the coefficients bi (i =
1...5) obtained for the stress constraint in the first MAM
iteration are shown below:

b1 = −0.86E-05 b2 = −0.12E-04 b3 = 1.00003

b4 = 0.32E-04 b5 = −0.61E-04

As can be seen, all the parameters except b3 are almost
zeros. This means that the algorithm implicitly selects the
most suitable model from the pool for a function whose
behaviour is closely described by that model.

In contrast to the stress and aspect ratio constraints, the
models for the objective function and displacement con-
straint have non-zero coefficients bi for all the available
regressors in the model pool. An example of coefficients
determined for the displacement approximation during the
optimization search is given below:

b1 = −0.119 b2 = 0.15E-01 b3 = 0.453

b4 = 0.207 b5 = 0.444

(
5∑

l=1

bl = 1

)

MAM’s optimization result is V = 61914.79 cm3 with
a corresponding vector of design variables {2.992; 2.778;

2.524; 2.205; 1.750; 59.840; 55.551; 50.471; 44.091;
34.995} cm, where the first 5 parameters are element
widths, and the rest of them (from 6 to 10) are element
heights. All stress and aspect ratio constraints are active at
the optimal point except the displacement constraint which
is inactive. For comparison, Vanderplaats’s solution for this
case obtained using the exterior penalty function method is
V = 66169 cm3 with a vector {3.24; 2.90; 2.52; 2.26; 2.24;
56.77; 53.81; 50.30; 44.87; 41.71} cm.

The optimization results obtained for all three cases
(a–c) using the MAM method are summarized in Fig. 7.
The number of DoE points p generated in a trust region is
N + 1 in each case. The total number of calls for analysis
after three MAM iterations is 34, 304, and 3004, respec-
tively (that is p multiplied by the number of iterations plus
a starting point). The optimal values of the objective func-
tion corresponding to N = 100 and N = 1000 cases are
54590.65 cm3 and 53803.01 cm3.

The solutions obtained by SQP method (directly applied)
for this example are quite identical to the above results.
For N = 10, the optimal value of the objective function
61914.7890 cm3 was obtained after 16 calls for the sub-
routine that calculated the functions values and its deriva-
tives (using finite differences). A corresponding vector of
design variables is {2.99204240; 2.77756612; 2.52358629;
2.20455569; 1.74975701; 59.8408480; 55.5513224; 50.

4717259; 44.0911138; 34.99514023} cm. For N = 100, the
optimal value of the objective function 54590.6536 cm3 was
obtained also after 16 calls for the subroutine.

5.4 A cantilever scalable thin-wall beam

In this test, a cantilever beam is built up of S elements
with hollow square cross sections. The objective function
is the weight of the beam that has to be minimized. There
is a constraint imposed on the tip displacement. The design

Fig. 7 Convergence plots for the optimization cases with N = 10,
N = 100, and N = 1000 design parameters
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variables are heights (widths) of the square cross sections,
Fig. 8.

Based on the discretization of five elements the optimiza-
tion problem was formulated by Svanberg (1987) in a closed
form:

minimize F0 (x) = 0.0624
5∑

i=1

xi

subject to

F1 (x) = 61/x3
1 + 37/x3

2 + 19/x3
3 + 7/x3

4 + 1/x3
5 ≤ 1

with a feasible starting point xi = 5 (i = 1...5).
In order to solve the problem, the same set of 5 regressors

(Table 2) was used as in the previous test case.
An example of the regression coefficients obtained in

a MAM iteration for the displacement constraint is typed
below

b1 = 1.828 b2 = −0.746 b3 = 0.15E-02

b4 = 3.419 b5 = −3.515

(
5∑

l=1

bl = 1

)

For the objective function the algorithm always deter-
mined b1 = 1 and bi = 0 (i = 2...5). The solution was
obtained after 5 MAM iterations and 31 function evaluations
(based on a 6 point DoE generated in each iteration). The
optimum point is {6.015; 5.309; 4.493; 3.502; 2.152}. The
corresponding value of the objective function F0 is 1.339.
For the reference, the analytical solution of this problem is
{6.016; 5.309; 4.494; 3.502; 2.153}, F0 = 1.34 (Svanberg
1987).

It is worth noting that this problem seemed to be rather
difficult for solving by approximation techniques. For
instance, Svanberg’s MMA method converged to F0 = 1.34
after four iterations after some preliminary tuning, while
Fleury’s CONLIN optimizer didn’t converge at all. Using
an earlier version of Toropov’s MAM (Toropov et al. 1993)
with a multiplicative approximation (as a default type)
for the constraint function, a solution {6.02; 5.53; 4.75;
3.14; 2.03} with F0 = 1.34 but with a violated constraint
F1 = 1.01 was achieved after 17 iterations (103 function
evaluations) that we consider as an unsatisfactory result.

Fig. 8 Scalable beam with hollow square cross-sections

In order to verify the performance of the algorithm on a
large-scale level, the problem was extended to 100 and 500
beam elements resulting in N = 100 and N = 500 design
variables. The metamodels were built using 105 (N = 100)
and 550 (N = 500) point DoEs generated in each MAM
iteration. The corresponding solutions are shown in Fig. 9.
The optimal values of the objective function are 1.3107
(N = 100) and 1.3101 (N = 500).

Note that including a regressor ϕ (x) = a0 +
N∑

i=1
ai/x3

i

(13a) in the model pool can considerably improve the per-
formance of the algorithm as a solution of the problem may
actually require just one MAM iteration. This is because
the algorithm in this case will build approximations that
are nearly identical to the expressions for the objective and
constraint functions. This however assumes that MAM may
still perform a few further iterations shrinking a trust region
around the solution obtained in the first iteration until a min-
imum size of the trust region is reached (a criterion which
is used to stop MAM optimization run). The lines below
present coefficients of vectors a6 and b of the approxima-
tion of the constraint F1 obtained in the first MAM iteration
for N = 5 and using DoE of 10 points:

a6 = {1.5289E-009; 60.9999; 36.9999;
18.9999; 6.9999; 0.9999} ,

b = {−0.4450E-07; 0.3268E-07; −0.5265E-08;
0.5420E-07; −0.5188E-07; 1.0000} .

In the above lines the last 6th parameter of the vector b
corresponds to the additionally introduced regressor.

Fig. 9 Convergence plots for the optimization cases with N = 5, N =
100, and N = 500 design parameters. The number of analysis for each
case is 31, 841, and 4951, respectively
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6 Conclusions

This paper presented an approach for building the approxi-
mate functions based on a metamodel assembly. The novelty
of the approach is that the construction of the metamodel
assembly is based on a linear regression. The parameters
of the metamodel assembly are not scaled positive weight
factors reflecting the accuracy of the individual components
but regression coefficients obtained by the least squares
method. In this way, the parameters of the metamodel
assembly may get both positive and negative values. As
was illustrated, the different signs of the parameters may
be interpreted as the different slopes of monotonic func-
tions defined to produce non-monotonic behaviour. It has
also been shown that in the particular cases the approach
may yield the regression coefficients with the values of
conventional weight factors (i.e. scaled to the range [0,1]).

The approach was utilized in the Multipoint Approxima-
tion Method (MAM) method within the mid-range approx-
imation framework. The results obtained in the paper show
that the technique is economical in calls for function evalu-
ations and is capable of solving optimization problems with
a large number of design variables.
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