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Abstract Computer models are widely used to simulate
dynamic systems in automobile industry. It is imperative
to have high quality CAE models with good predictive
capability. This requires CAE engineers to conduct model
calibration with physical tests. The challenges in the occu-
pant restraint system model calibration are: (1) the dynamic
system usually consists of multiple responses, (2) most of
the responses are functional data or time histories, and (3)
the traditional trial-and-error calibration approach is time
consuming and highly depends on analyst’s expertise. These
call for the development of an automatic and effective model
calibration method. This paper presents a newly developed
automatic model calibration method, based on the Error
Assessment of Response Time Histories (EARTH) metric.
The EARTH metric is used to perform model assessment
on various important features of the functional responses. A
new multi-objective optimization problem is formulated and
solved by a Non-dominated Sorting Genetic Algorithm to
automatically update CAE model parameters. A real-world
example is used to demonstrate the use of the proposed
method.
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Nomenclature

CAE Computer Aided Engineering
DTW Dynamic Time Warping
EARTH Error Assessment of Response Time Histories
MADYMO MAthematical DYnamic MOdel
NCAP USA New Car Assessment Program
NHTSA National Highway Traffic Safety Administra-

tion
NSGA Non-dominated Sorting Genetic Algorithm
nε EARTH phase error
p number of responses
SME Subjective Matter Expert
εm EARTH magnitude error
εs EARTH slope error.
μb

nε
Mean phase error for baseline model

μo
nε

Mean phase error for optimal model
μb

εm
Mean magnitude error for baseline model

μo
εm

Mean magnitude error for optimal model
μb

εs
Mean slope error for baseline model

μo
εs

Mean slope error for optimal model
σ b

nε
Standard deviation of phase error for baseline
model

σ o
nε

Standard deviation of phase error for optimal
model

σ b
εm

Standard deviation of magnitude error for
baseline model

σ o
εm

Standard deviation of magnitude error for
optimal model

σ b
εs

Standard deviation of slope error for baseline
model

σ o
εs

Standard deviation of slope error for optimal
model
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1 Introduction

With ever shortening time to market in automobile indus-
try, Computer-Aided Engineering (CAE) is widely used to
simulate vehicle interior, restraint system, and occupants
in various impact modes. In occupant simulation, multiple
dummy injury numbers with functional data, such as head
injury criteria, chest acceleration, femur loads, and neck
moment, are monitored simultaneously (Fu and Abramoski
2005). To ensure CAE as an effective tool, there is strong
need to have high quality CAE models with good predictive
capability. This requires CAE engineers to conduct model
calibration with physical tests. Model calibration uses the
results from CAE models and physical tests to find the
best model parameters. The key challenges in the occu-
pant restraint system model calibration are: (1) the dynamic
system usually consists of multiple responses, (2) most of
the responses are functional data or time histories, there-
fore both the global and local differences between CAE and
test data, such as phase shift, magnitude, and shape, need
to be considered, and (3) the traditional trial-and-error cal-
ibration approach is time consuming and highly depends
on analyst’s expertise. These call for the development of
an automatic and effective model calibration method. Sev-
eral auto-correlation methods are proposed to automatically
select the best values of the model parameters according to
different criteria (Liu et al. 2005; Fu et al. 2009). However, a
comprehensive approach to achieve an optimal compromise
between multiple functional data and various major features
within each response, such as phase, magnitude, and shape,
was seldom found.

Model validation is the process of comparing CAE model
outputs with test data in order to assess the validity or pre-
dictive capabilities of the CAE model for its intended usage.
The validation metric is one of the critical elements in model
validation. A proper model validation metric, which can
also be used for calibration, can greatly enhance the effi-
ciency and effectiveness of model calibration. Oberkampf
and Barone (2006) and other researchers presented some
critical and ideal characteristics when selecting a model val-
idation metric (Fu et al. 2010). In past few years, quantita-
tive model validation methods were reported in the literature
(Mahadevan and Rebba 2005; Rebba and Mahadevan 2006;
Jiang and Mahadevan 2007). However, few of them are
dealing with functional data (Jiang and Mahadevan 2008;
Jiang et al. 2009; Fu et al. 2010; Zhan et al. 2011a). These
methods mainly emphasize on the whole distribution of the
difference between test and CAE data. The local features
such as phase, magnitude, and slope are seldom addressed.
Recently, an objective rating metric named Error Assess-
ment of Response Time Histories (EARTH; Sarin et al.
2008, 2010) was developed and showed good potential for
dynamic system applications. However, the drawbacks of

this metric are: (1) this metric produces three error measures
which only give quantitative directions. It requires Subjec-
tive Matter Experts (SMEs) to combine them to an overall
single rating for assessing the model quality, and (2) the
uncertainties related to CAE and test data are not considered
(Kokkolaras et al. 2011). One solution on the first challenge
can be found in (Zhan et al. 2011b).

Traditionally, model calibration is conducted by CAE
engineers, using trial-and-error approach and by visual and
graphical comparison to optimize the CAE model param-
eters. This process is time-consuming and subjective. In
this study, an objective metric combines with optimiza-
tion method is employed for automatic model calibration.
Despite its aforementioned issues, the EARTH metric is
selected to quantify the differences between two functional
data. In the following sections, the selection considera-
tions or criteria in validation metric is first described. It
is followed by a brief introduction of the EARTH metric.
Next, an automatic model calibration method is proposed.
In this method, a new multi-objective optimization prob-
lem is formulated and a Non-dominated Sorting Genetic
Algorithm is used to optimize the model parameters. A
frontal impact CAE model built by MAthematical DYnamic
MOdel (MADYMO; TNO Automotive 2010) is used to
demonstrate the effectiveness and efficiency of the proposed
method. Finally, the summary is given in the end.

2 Metric selection

Development and selection of an appropriate objective met-
ric is one of the most important factors to achieve successful
applications of model validation and calibration. A valida-
tion metric is regarded as an ideal one if it has the follow-
ing characteristics (Oberkampf and Barone 2006; Fu et al.
2010): (1) objectiveness: given the test and CAE results, a
validation metric should produce the same assessment result
no matter which analyst conducts it. This property ensures
that the validation result is reproducible, independent of the
attitudes or predilections of the analysts. (2) generalization:
the validation metric should be suitable for various types of
data comparisons, e.g., two random variables, two sets of
scalar values, and two vectors considering uncertainty. The
metric should be able to reflect the differences in both the
full distribution of the test and CAE results and major fea-
tures, such as phase shift, mean shift, and size or magnitude
difference. (3) physical meaning and engineering knowl-
edge: a metric should provide quantitative assessment of
model quality with clear physical meaning, and be able to
incorporate subject matter expert (SME)’s opinion. In addi-
tion, there are some other desired characteristics such as
symmetry, simplicity, and incorporation of uncertainty. It is
noted that a usable metric may not possess all the properties.
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Fig. 1 EARTH metric rating structure

The selection of an effective metric should be based on the
application requirements. For the occupant restraint system
applications, the first three characteristics are the primary
consideration in this study.

3 Error assessment of response time histories metric

In order to minimize the interactions among features like
phase, magnitude, and shape, an objective metric named
Error Assessment of Response Time Histories (EARTH)
was developed (Sarin et al. 2008). The rating structure of the
EARTH metric is shown in Fig. 1. The EARTH metric are
divided into global response error and target point response
error. The global response error is defined as the error asso-
ciated with the complete functional data with equal weight
on each discretized point of the time histories. There are
three main components of global response error and they
are phase error nε, magnitude error εm , and slope error εs .
Target point error is defined as the error associated with
certain localized phenomena of interest. They are gener-
ally application dependent, and thus are beyond the scope of
this work. A unique feature of the EARTH metric is that it
employs dynamic time warping (DTW; Rabiner and Huang
1993) to separate the interaction of phase, magnitude, and
slope errors. DTW is an algorithm for measuring discrep-
ancy between time histories. It aligns peaks and valleys as

much as possible by expanding and compressing the time
axis according to a given cost (distance) function (Lei and
Govindaraju 2003).

The phase error deals with the overall error in timing
between two functional responses when considering all the
points of the response and it is depicted in Fig. 2(a). Mag-
nitude error is defined as the difference in amplitude of the
two functional responses when there is no time lag between
the two and it is depicted in Fig. 2(b). Slope error deals with
error associated with the shape of the functional responses,
such as the number of peaks, valleys, and slope etc., and it
is depicted in Fig. 2(c). When calculate the magnitude and
slope errors, dynamic time warping method are employed
to minimize the effect of local or target point errors. Details
of EARTH metric should be referred to (Sarin et al. 2010).

4 Automatic model calibration process

The goal of this research is to develop an optimization
process that can automatically optimize CAE model param-
eters, and find the feasible parameter configurations that
can match multiple injury responses between CAE and test
results. Based on the desired characteristics of validation
metric described in section 2, the EARTH metric is selected
for model calibration. The EARTH metric measures the
quality of CAE model through three error measures includ-
ing phase error nε, magnitude error εm , and slope error εs .
Smaller errors indicate CAE results are better matched with
the test. Let p represents the number of responses of inter-
est. A multi-objective optimization problem is formulated
to find the most appropriate MADYMO model parameter
values that can reduce the mean values and standard devi-
ations of the three errors for all p responses. Because the
three error values have different ranges, the baseline model
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Fig. 2 Examples to illustrate the three types of global response errors: a phase, b magnitude, c slope
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errors are used to normalize the data. The mean values
and standard deviations of the baseline model errors can be
expressed as:

Phase error : μb
nε

=
p∑

i=1

nb
ε i/p ,

σ b
nε

=
√√√√ 1

p

p∑

i=1

(
nb

εi − μb
nε

)2
(1)

Magnitude error : μb
εm

=
p∑

i=1

εb
m i/p,

σ b
εm
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p
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(
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)2 (2)

Slope error : μb
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Fig. 3 Automatic model calibration process for occupant restraint
system

Fig. 4 A driver side occupant restraint system model

where the superscript b indicates baseline model. The same
quantities of the optimal model are denoted as μo

nε
, σ o

nε
,

μo
εm

, σ o
εm

, μo
εs

, and σ o
εs

. Hence, a new multi-objective opti-
mization problem is formulated to minimize the ratios of the
mean EARTH errors over those of the baseline model. They
are written as:

Minimize

z1 = μo
nε

/μb
nε

z2 = μo
εm

/μb
εm

z3 = μo
εs

/μb
εs

(4)

Subject to

g1 = σ o
nε

/σ b
nε

≤ 1

g2 = σ o
εm

/σ b
εm

≤ 1

g3 = σ o
εs

/σ b
εs

≤ 1

(5)

The standard deviation constraints in (5) are imposed to
handle or smoothen out the “poor performed” responses

Table 1 Sixteen model parameters

No. Description

x1 Inflator temperature scale factor

x2 Seat belt friction coefficient at D-ring

x3 Seat belt webbing stiffness scale factor

x4 Friction coefficient shoulder belt—dummy

x5 Fiction coefficient lap belt—dummy

x6 Shoulder belt slack

x7 Lap belt slack

x8 Retractor load scale factor

x9 Jet angle

x10 Jet efficiency

x11 Seat stiffness scale factor

x12 Airbag leakage parameter #1

x13 Airbag leakage parameter #2

x14 Friction coefficient airbag—dummy

x15 Left knee bolster stiffness factor

x16 Right knee bolster stiffness factor
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Table 2 Eleven occupant responses

Response Description

R1 Chest Deflection

R2 Chest Acceleration in x-direction

R3 Belt Load at Anchor

R4 Belt Load at Retractor

R5 Belt Load at Shoulder

R6 Femur Load Left in z-direction

R7 Femur Load Right in z-direction

R8 Head Acceleration in x-direction

R9 Upper Neck Load in z-direction

R10 Upper Neck Moment

R11 Pelvis Acceleration in x-direction

with large EARTH errors. The main advantage of this for-
mulation is that it is capable of minimizing the errors and
improving the robustness as well. However, it is noted that

Table 3 Model parameters of
baseline and optimal models No. Baseline Optimal

x1 0.925 0.992

x2 0.15 0.192

x3 1 0.865

x4 0.2 0.24

x5 0.6 0.37

x6 0 −0.02

x7 0 0.16

x8 1 0.91

x9 0 −0.7

x10 0.55 0.86

x11 1 0.55

x12 1 0.61

x13 1.65 1.4

x14 0.35 0.26

x15 1.15 1.22

x16 1.15 0.85

(a) (b) (c) (d)

(e) (f) (g)

(i) (j) (k)

(h)

Test data

Baseline model

Fig. 5 Time history plots for the test and baseline CAE results: a r1
chest deflection, b r2 chest acceleration in x-direction, c r3 belt load
at anchor, d r4 belt load at retractor, e r5 belt load at shoulder, f r6

left femur load in z-direction, g r7 right femur load in z-direction, h r8
head acceleration in x-direction, i r9 upper neck load, j r10 upper neck
moment, k r11 pelvis acceleration in x-direction
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Table 4 EARTH metric results
for each response of baseline
and optimal CAE models

Response Baseline model Optimal model

Phase Magnitude Slope Phase Magnitude Slope

(time step) error error (time step) error error

r1 3 0.56 0.52 2 0.32 0.53

r2 6 0.11 0.65 6 0.13 0.69

r3 2 0.13 0.60 2 0.15 0.64

r4 6 0.13 0.63 5 0.23 0.66

r5 5 0.10 0.65 4 0.09 0.77

r6 13 0.12 0.71 4 0.16 0.55

r7 13 0.15 0.80 4 0.22 0.68

r8 9 0.11 0.76 3 0.10 0.58

r9 5 0.14 0.93 8 0.08 0.39

r10 8 0.56 1.04 12 0.39 0.94

r11 1 0.19 1.05 1 0.19 0.91

mean 6.5 0.21 0.76 4.6 0.19 0.67

Std 4.0 0.17 0.18 3.1 0.10 0.16

the multi-objective optimization formulation in (4) and (5)
is just one of formulations that can achieve the goal of model
calibration. It may not be the best.

Because of the competing objectives, a Non-dominated
Sorting Genetic Algorithm (NSGA-II; Deb et al. 2000) is
employed to obtain the Pareto optimal set for different
model parameter configurations.

Figure 3 shows the flowchart of the automatic model cali-
bration process for an occupant restraint system, which inte-
grates the optimization solver NSGA-II, MADYMO model
simulation, and a MATLAB program of EARTH metric to
determine the optimal model parameters. The process starts
from formulating the model calibration problem, obtain-
ing test data, preparing the MADYMO model, and defining

Fig. 6 EARTH error
histograms of baseline and
optimal CAE models a phase
error, b magnitude error,
and c slope error
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(a) (b) (c) (d)

(e) (f) (g)
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(h)

Test data

Optimal model

Fig. 7 Time history plots for the test and optimal CAE results a r1
chest deflection, b r2 chest acceleration in x-direction, c r3 belt load
at anchor, d r4 belt load at retractor, e r5 belt load at shoulder, f r6

left femur load in z-direction, g r7 right femur load in z-direction, h r8
head acceleration in x-direction, i r9 upper neck load, j r10 upper neck
moment, k r11 pelvis acceleration in x-direction

model parameters and ranges. Next, it conducts MADYMO
simulations to predict multiple injury responses. It then exe-
cutes a MATLAB program to calculate the three EARTH
errors, followed by calculating the multi-objective func-
tions. Finally, it employs NSGA-II to find the optimal val-
ues for the MADYMO model parameters. The optimization
loop continues until a satisfying result is obtained.

5 A vehicle dynamic system case study

A driver side occupant restraint system MADYMO model
(Fu et al. 2009) shown in Fig. 4 is used to demonstrate
the proposed method. The model simulates a full frontal
rigid barrier impact scenario at the speed of 35 mph with a
50th percentile belted Hybrid III dummy (NHTSA 2011)
in a vehicle. This represents one of the USA New Car
Assessment Program (NCAP) test modes.

There are sixteen model parameters (shown in Table 1)
identified and they are to be optimized. The reasons that

they are selected as the MADYMO model parameters are
as follows: (1) component tests have a significant range of
variation, e.g. stiffness; (2) representative component test
data are unavailable, e.g. friction; and (3) some are not con-
trollable, e.g. impact load magnitude and location. Their
lower and upper bounds are chosen based upon the com-
ponent tests and engineering experience. There are eleven
occupant responses (summarized in Table 2) that are moni-
tored and compared with the test data to evaluate the quality
of the MADYMO model.

Figure 5 shows the time history plots of the test and the
baseline CAE model results with the eleven responses. It
is noted that some CAE responses match well with the test
(e.g. belt load at shoulder shown in Fig. 5e), but some do
not, (e.g. right femur load shown in Fig. 5g and upper neck
moment shown in Fig. 5j). This indicates that the predicative
capability and accuracy of this CAE model can be further
improved.

The NSGA-II is then applied to identify the sixteen opti-
mal model parameter values that can minimize the EARTH
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errors. The optimization process has 500 runs, among which
105 runs are feasible solutions, and 6 runs form the Pareto
set. By further filtering, the 288th run is selected as the
optimal design because it reaches good compromise of all
objectives and constraints. The model parameter values of
baseline and optimal models are listed in Table 3. The
detailed optimization results are listed in Table 4, and the
histograms of the errors are shown in Fig. 6. After the opti-
mization process, the three objectives z1, z2, and z3 are 0.72,
0.90, and 0.88, respectively. The three constraints g1, g2,
and g3 are all satisfied with the values of 0.78, 0.56, and
0.91, respectively. It is observed that, first, comparing with
the baseline model, the optimal model has smaller aver-
age values of three EARTH errors. Secondly, because of
the reduced error standard deviations, the “poor-performed”
responses with relative large errors are less likely to be in
the optimal model. Thirdly, the model parameters may be
further improved, as only 500 runs are performed and all
constraints are less than 1. Despite that, it is concluded that
the optimal model has better predictive capability than the
baseline model, based on the EARTH metric.

Figure 7 shows the time history plots of the test and
the optimal CAE model results with the eleven responses.
It is verified that the relative bad responses in the base-
line model, such as left femur load in z-direction (Fig. 7f),
right femur load in z-direction (Fig. 7g), head acceleration
in x-direction (Fig. 7h), and upper neck moment (Fig. 7j),
have been improved significantly after the model calibra-
tion. However, some other responses are compromised to
achieve this overall model improvement.

6 Summary

This paper presents an automatic CAE model calibration
methodology based on the EARTH metric and the Non-
dominated Sorting Genetic Algorithm. The EARTH metric
is selected to quantify the response differences for dynamic
systems between CAE and test data. It computes three
independent error measures which associated with the key
features of the functional responses. A multi-objective opti-
mization problem is formulated to systematically and
automatically update the occupant restraint system model
parameters to improve the quality of the CAE model. The
optimization formulation not only minimize the errors, but
also maximize the robustness. The method has been suc-
cessfully implemented and demonstrated. Significant model
improvement was achieved through a frontal impact case
study. The automatic process can also save considerable
engineers’ time, compared to trial-and-error method.
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