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Abstract In the present paper, particle swarm optimization,
a relatively new population based optimization technique, is
applied to optimize the multidisciplinary design of a solid
propellant launch vehicle. Propulsion, structure, aerody-
namic (geometry) and three-degree of freedom trajectory
simulation disciplines are used in an appropriate combina-
tion and minimum launch weight is considered as an objec-
tive function. In order to reduce the high computational cost
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and improve the performance of particle swarm optimiza-
tion, an enhancement technique called fitness inheritance is
proposed. Firstly, the conducted experiments over a set of
benchmark functions demonstrate that the proposed method
can preserve the quality of solutions while decreasing the
computational cost considerably. Then, a comparison of
the proposed algorithm against the original version of parti-
cle swarm optimization, sequential quadratic programming,
and method of centers carried out over multidisciplinary
design optimization of the design problem. The obtained
results show a very good performance of the enhancement
technique to find the global optimum with considerable
decrease in number of function evaluations.

Keywords Multidisciplinary design optimization · Particle
swarm optimization · Fitness inheritance · Small solid
propellant extendable launch vehicle

1 Introduction

Evolutionary Algorithms (EAs) have been shown to be pow-
erful global optimizers. These algorithms aim to utilize the
attractive ability of nature to solve real world problems.
According to No-Free-Lunch (NFL) theorem (Wolpert and
Macreadyt 1996), there cannot exist any algorithm for solv-
ing all optimization problems that is generally superior to
any competitor. The NFL theorem can be confirmed in
the case of EAs versus many classical optimization meth-
ods. However, classical optimization algorithms are more
efficient dealing with linear, quadratic, strongly convex,
and many other special problems, EAs do not surrender so
early in solving discontinuous, nondifferentiable, and noisy
problems that present a real challenge to classical methods.
Therefore, EAs such as Genetic Algorithm (GA) (Holland



774 M. Ebrahimi et al.

1992), Simulated Annealing (SA) (Kirkpatrick et al. 1983),
Particle Swarm Optimization (PSO) (Kennedy and Eberhart
2001), and etc have received increasing interests recently.
Though, these methods also have their own drawbacks such
as high computational cost, parameter setting, constraint
handling, and dealing with high dimensionality.

In recent years, some researchers have done success-
ful works using PSO algorithm within Multidisciplinary
Design Optimization (MDO) frameworks to solve opti-
mum design problems. Venter and Sobieszczanski-Sobieski
(2004) applied a PSO algorithm within a MDO frame-
work to design a transport aircraft wing. The numerical
results obviously demonstrate the PSO algorithm advan-
tages to find optimum points dealing with the noisy and
discrete variables compared with gradient based optimiza-
tion algorithms. Hart and Vlahopoulos (2009) utilized a
PSO algorithm at the top and discipline levels of a multi-
level MDO framework. They considered a conceptual ship
design problem within their integrated MDO/PSO algorithm
and discussed advantages and disadvantages of their pro-
posed methods. Peri et al. (2008) discussed some global
and free-derivative optimization algorithms to solve MDO
problems. A test case including a vertical fin and two
numerical tools is used to demonstrate the capability of PSO
for finding optimal shapes.

In the present paper, A MDO framework of a Small Solid
Propellant Extendable Launch Vehicle (SSPELV), which
was developed at the MDO research laboratory of K. N.
Toosi University of Technology (Roshanian et al. 2010;
Jodei et al. 2006, 2008), is used to minimize launch vehicle
weight. Since, many engineering disciplines such as aero-
dynamics, propulsion, structure and trajectory are involved
in the MDO of SSPELV, the design space is very complex,
nonlinear, and nonconvex which may cause the gradient
based methods not to work well and fall in local optimums.
Therefore, we investigated the performance of a modified
PSO for finding the global optimum in such a bumpy space.

However, given the high computational cost of objective
function evaluations, PSO tends to become expensive. In
order to improve the performance of the optimizer a new
enhancement technique called Fitness Inheritance (FI) is
introduced which estimates the objective function of a pre-
defined portion of particles by constructing an approximate
model. The proposed algorithm is compared with the orig-
inal PSO, Sequential Quadratic Programming (SQP) and
another gradient based optimization method called Method
of Centers (MOC) (Vanderplaats 2001). This paper attempts
to examine the claim that the modified PSO has the same
effectiveness (finding the true global optimal solution) as
the original PSO with significantly better computational
efficiency (less function evaluations) dealing with the con-
ceptual design problem of a SSPELV within a MDO
structure.

2 Particle swarm optimization

Particle Swarm Optimization is inspired from the social and
cognitive behavior of birds in a flock or fish in a school
adapting to their environments to find a source of food. PSO
leads the population of particles (swarm) towards the best
area of the search space to find the global optimal solution.
In PSO, a velocity vector is used to update the current posi-
tion of each particle in the swarm. The velocity vector is
updated based on the memory gained by each particle as
well as the knowledge gained by the swarm as a whole.

The position x of a particle i at iteration k+ 1 is updated
by following equation:

xk+1
i = xk

i + vk+1
i �t (1)

where vk+1
i is corresponding velocity vector, and �t is the

time step value that is set as 1 in the present work (Shi
and Eberhart 1998). The velocity vector of each particle is
calculated as shown in (2):

vk+1
i = wvk

i + c1r1

(
pk

i − xk
i

)

�t
+ c2r2

(
pk

g − xk
i

)

�t
(2)

where vk
i shows the velocity of particle i at iteration k, r1

and r2 are random numbers between 0 and 1 used to main-
tain the diversity of the swarm, pk

i and pk
g are the best

position of particle i which is obtained so far (personal
best), and the global best position in the swarm at itera-
tion k (global best). Parameter c1 represents the cognitive
factor that pulls the particle to its own historical best posi-
tion. Parameter c2 represents the social factor that pushes
the swarm to converge to the current globally best region.
Parameter w is the inertia weight factor. This parameter is
employed to control the impact of the previous history of
velocities on the current one and has a critical effect on
PSO’s convergence behavior.

2.1 Fitness inheritance

Smith et al. (Smith et al. 1995) originally proposed a method
to improve the performance of Genetic Algorithm (GA)
with the aim of Fitness Inheritance (FI). The proposed
method takes the average and weighted average fitness of
the two parents to calculate the fitness function value of the
corresponding offspring. The applied method to a simple
test problem resulted in a lower computational cost without
decreasing the quality of result seriously (Smith et al. 1995).

One of the proposed FI formulations in (Reyes-Sierra and
Coello Coello 2005) is modified here to compute the objec-
tive function value for a new particle. This new position
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in the objective space is a linear combination of objective
function values for pk

i , pk
g , and xk

i . Given a particle xk
i ,

its personal best pk
i , its global best pk

g and the new parti-

cle xk+1
i , the euclidean distances from xk+1

i to those three
positions in the search space can be presented as:

d1 = d
(

xk+1
i , xk

i

)
(3)

d2 = d
(

xk+1
i , pk

i

)
(4)

d3 = d
(

xk+1
i , pk

g

)
(5)

Following formulas calculate the objective function value
for particle xk+1

i :

r j =
1
d j

1
d1

+ 1
d2

+ 1
d3

(6)

f
(

xk+1
i

)
= r1 f

(
xk

i

)
+ r2 f

(
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i

)
+ r3 f

(
pk

g

)
(7)

where j = 1, 2, 3 and f is the objective function value.
Generally speaking, the last position of the particle and

two attractors (personal and global bests) in the objective
space are considered as parents to inherit the objective func-
tion value for the new particle. Equations (6) and (7) show
that the estimated fitness is a weighted average of those of
the tree parents, while it coincides with that of any one
parent if the positions coincide. For instance, if the new
position xk+1

i approximately coincides with the global best
pk

g (d3 ≈ 0), then r3 ≈ 1, and r1 ≈ r2 ≈ 0; and therefore

f
(

xk+1
i + 1

)
≈ f

(
pk

g

)
.

In order to control the quality of inheritance, a selection
technique is applied here which selects the best particles
in the swarm to be inherited. Zhan et al. (2007) proposed
a tuning method that adaptively adjusts the value of cog-
nitive and social factors of PSO. The method suggests an
adaptive system which uses K -means algorithm (Tou and
Gonzalez 1974) to distribute the population in the search
space to three clusters at each iteration. This system, then,
considers the relative size of the clusters containing the best
and the worst particles to adjust the value of c1 and c2.

In the present work, we incorporate K -means algorithm
and selection rules into FI for making the inheritance more
adaptive and intelligent.

K -means clustering is a partitioning method which par-
titions data, here position of particles in the search space,
into K mutually exclusive clusters. Indeed, this algorithm
finds partition in which the particles within each cluster are
as close to each other as possible, and as far from particles

in other clusters as possible. By adopting the notation used
in (Zhan et al. 2007), the clustering process described in the
four following steps:

Step 1 Create random K cluster centers, CP1, CP2, . . . ,
CPK for the K clusters.

Step 2 Assign particle xi to cluster C j , where i ∈{1, 2,
. . . , N} and j ∈{1, 2, . . . , K }, if and only if

d
(

xi , C P j
)

< d
(
xi , C Pm)

, 1 ≤ m ≤ K ,

and j �= m (8)

where N is the number of particles in the swarm
and d(xi ,CP j ) is the euclidian distance between xi

and CP j .
Step 3 Evaluate new cluster centers CP1,∗, CP2,∗, CPK ,∗

as follows:

C P j,∗ = 1

M j

∑

xi ∈C j

xi , 1 ≤ j ≤ K (9)

where M j is the number of particles belonging to
cluster C j .

Step 4 If CP j,∗ = CP j , 1 ≤ j ≤ K , then CP1, CP2, . . . ,
CPK are chosen as the cluster centers and the clus-
tering process will be stopped. Otherwise, assign
CP j = CP j,∗ and the process will be repeated from
Step 2.

In this paper, the above process partitions swarm into three
clusters (K = 3). At each iteration, G B and GW are
assigned to the crowds of clusters containing the best par-
ticle and the worst particle, and, at the same time, Gmax and
Gmin are set as the number of particles in the largest and
smallest clusters. The selection states are proposed based on
considering the relative size of G B , GW , Gmax , and Gmin .
These states are detailed as follows:

State 1 The smallest cluster contains the best particle
(Gmin = G B) and the largest cluster contains the
worst particle (Gmax = GW ). It is named the Ini-
tial state in which the diversity of the swarm should
be protected for thorough exploration of the search
space. In this state, tk proportion of all particles
called inheritance proportion will be selected from
the best particles of the largest cluster to be inher-
ited. If the population of the largest cluster is lower
than tk proportion of the swarm, the best particles
of the next more populous cluster will be selected.

State 2 G B and GW are equal to each other and are the
smallest cluster at the same time (G B = GW =
Gmin). It is named the Sub-mature state. In this
state, as both the best and the worst particles
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are in the smallest cluster, the swarm situation in
the search space is not comprehensible easily. In
such situation, it is wised to allow the swarm still
explore freely. So, we choose the best particles of
two other largest clusters to be inherited with an
equal tk /2 proportion of all particles.

State 3 G B and GW are equal to each other and are the
largest cluster at the same time (G B = GW =
Gmax ). It is named the Maturing state in which
the best particle is finding the position of global
optimum in the search space; however, trapping
in a local optimum (prematurity) is still probable.
Hence, 3tk /4 and tk /4 proportions of all particles
will be selected from the best particles of the
largest and the second largest clusters respectively
to be inherited.

State 4 The largest cluster contains the best particle
(Gmax = G B) and the smallest cluster contains
the worst particle (Gmin = GW ). It is named
the Matured state in which most of the particles
swarmed around the best particle that is possibly
the solution of the problem. Again, in this state,
similar to State 1, tk proportion of all particles will
be selected from the best particles of the largest
cluster to be inherited.

The four mentioned states are general forms for all other
possible conditions. For example, consider this state: the
largest cluster contains the best particle (Gmax = G B) and
the two other clusters are equal to each other which one
of them must contain the worst particle. This state can be
considered a specific condition of State 1 and undergone its
rule. Other possible states have the same conditions. Since
the proposed inheritance method adds only one parameter
(tk) to PSO, it does not introduce an additional design or
implementation complexity. Besides, the clustering analysis
is much lighter when is compared with the fitness evaluation
of the being solved problem. In fact, due to the small popu-
lation size of PSO, for example, 50 particles in the swarm,
the clustering analysis can terminate in no more than 5 loops
at each iteration.

2.2 Constraint handling

In order to use the algorithm for constrained optimization,
the exterior penalty function method is applied. In this
method, a penalty value is added to the objective function
for each constraint violation:

gq = max
{
0, constraintq

}

φ = f + s
Q∑

q=1

gq (10)

where Q is the number of constraints. s is called penalty
parameter and the values of constraint are normalized.
When using nonnormalized constraints, the following for-
mula should be used:

gq = max
{
0, constraintq

}

φ = f +
Q∑

q=1

sq gq (11)

sq values depend on the relative importance and order of
magnitude of the constraints.

2.3 Fundamental steps

The following steps construct the main parts of applied
PSO:

Initialization A random distribution of initial swarm is
generated inside the search space and an initial set of
random velocities is assigned.

Analysis The objective function is evaluated for each par-
ticle of the swarm and the values of personal best, pk

i , and
global best, pk

g , are determined.

Updating the velocity vector The new velocity vector for
each particle is calculated using (2). In this work, the inertia
weight factor, wk , is adjusted dynamically throughout the
optimization process (Hart and Vlahopoulos 2009):

wk = wmax −
(

wmax − wmin

kmax

)
k (12)

Equation (12) contains four parameters which are defined
to control the magnitude of the velocity vector during the
optimization. When a bound constraint is violated, the algo-
rithm sets the value of wk to 0. In this way, the particle
only uses its cognitive and social experiences to update its
position and comes back into the feasible space.

Updating the particles’ positions The positions of parti-
cles in the swarm are updated using (1).

Fitness inheritance The technique introduced in the for-
mer part is applied in this step to inherit the objective
function values of tk portion of the swarm. For the remain-
der particles in the swarm, true objective function values are
evaluated.

Constraint handling The violation amount of each parti-
cle is evaluated and the penalty function value added to its
objective function value using (10) or (11).

Convergence criterion To compare the computational
cost and solution quality of the original version of PSO with
the enhanced PSO, a simple convergence criterion which
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Table 1 PSO parameters
Parameter Value

�t 1

c1 1.4

c2 1.4

r1 [0,1]

r2 [0,1]

wmax 0.9

wmin 0.1

kmax 200

N Varies

tk Varies

is a predefined maximum iteration number, kmax , is used.
Table 1 contains the PSO parameters used in this work.

3 Design problem

Design of complex systems such as LVs requires mak-
ing appropriate compromises to achieve the optimal design
among many coupled disciplines such as aerodynamics,
propulsion, weight and trajectory analysis (Roshanian et al.
2010; Blair et al. 2001; Hammond 2001; Wertz 2000;
Isakowitz 1995). A complex interrelation exists among mis-
sion requirements, constraints, trajectory profile, propulsion
parameters, weights and loads which have to be matched
by an appropriate optimization strategy. MDO involves the
coordination of Multidisciplinary Design Analysis (MDA)
to realize more effective solutions during the design and
optimization of complex systems. It will allow system engi-
neers to systematically explore the vast trade space in an
intelligent manner and consider many more architecture
during the conceptual design phase before converging on
the baseline design.

In the present paper, the problem is minimizing the
weight of a Small Solid Propellant Extendable Launch Vehi-
cle (SSPELV) to launch a satellite with a known mass and
inject it into a given Low Earth Orbit (LEO). There are
also technological constraints such as rocket motor length,
diameter, case strength and material specifications, propel-
lant characteristics, and propellant loading density which
are limited due to the availability of technologies.

3.1 Problem formulation

Several architectures can be found in the literature to
solve MDO problems. Cramer et al. (1994) classify MDO
methods into All-At-Once (AAO), also known as Simul-
taneous ANalysis and Design (SAND) (Sobieszczanski-
Sobieski and Haftka 1997), Individual Discipline Feasible

(IDF) and Multiple Disciplines Feasible (MDF). Balling
and Sobieszczanski-Sobieski (1996) distinguish between
single-level and multilevel approaches. Single-level refers
to an approach where only the system optimization problem
determines the design variable values. In the multilevel case
disciplinary optimizations are introduced to determine the
independent discipline design variables, while the system
optimizer determines the shared design variables.

MDF method (Cramer et al. 1994) can be seen as a cycle
of full MDA followed by design updates, which is the most
common way of solving MDO problems. The basic idea
behind this method is to insert a multiple discipline ana-
lyzer between the optimizer and the disciplines. MDF has
been used since nonlinear programming techniques were
first applied to engineering design optimization problems
and hence, it is a well established method for solving MDO
problems.

In the present work, MDF architecture is applied to solve
MDO problem of SSPELV. The coupling among disciplines
in the conceptual design of SSPELV is shown in Fig. 1.
A set of values is inserted into the variables and the dis-
ciplines are analyzed sequentially. Any analysis module,
not only calculates the intermediate variable and passes
them to other disciplines, but also computes function val-
ues of the equality and inequality constraints which should
be satisfied.

The general layout of interdisciplinary data flow of the
MDO problem is defined in Table 2. An integrated uniform
design environment increases computational efficiency. All
disciplinary codes have a design-oriented (batch run) ver-
sion and a data dictionary allowing communication of all
input and output variables without human interaction.

Selected design variables are classified into three types
(Table 3). The variables represent geometric shapes of the
vehicles (diameter of each stages, D1, D2), propulsion per-
formance (thrust and burning time of solid rocket motors
(T1, T2, tb1, tb2) and parameters of optimized flight trajec-
tory (maximum angle of attack during first stage maneuver
aoa1,max , final pitch angle α f and course time tc).

Many constraints should be satisfied in the design of
LVs. This study considers several constraints as shown in
Table 4; include mission (C1 to C3), structure (C4 to C6,
C9, C12), technology (C7, C8), reliability (C10), and safety
(C11). Some of these constraints satisfy in discipline level
and other must be satisfy in system level.

3.2 Mission requirements

Mission requirements consist of payload mass to be inserted
into a given main mission orbit, injection accuracy, limi-
tation on loads encountered by satellite, operational con-
straints such as range safety and launch azimuth. The
SSPELV design reference mission for this study was to
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Fig. 1 MDO conceptual design
process for the SSPELV
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ST  

AT  

TA 

PT 
 &  
ST 

Aerodynamics

Trajectory  

reach a 250 km circular orbit and 34◦ inclination with
500 kg Orbital Maneuvering Vehicle (OMV). The launch
site latitude was 34◦ and had eastward launch azimuth.
Stage separation height should be controlled between 30–
50 km. Launch site border limit causes second stage impact
point to be less than 800 km. SSPELV length over diameter
was limited from 8 to 13.

3.3 Analysis modules

3.3.1 Propulsion

The propulsion analysis consists of rapid solid rocket motor
design code called RapSRMD. It is used for the cyclic
design of solid propellant rocket motor and predicts its
performance. The code consists of six design modules,
three analysis modules and one simulation module. The six
design modules are motor configuration design, optimum
nozzle profile design, grain geometry design, case design,

Table 2 Interdisciplinary variables

Notation Data definition Parameters

PT Propulsion Propellant weight of each stage,

to Trajectory Nozzle exit pressure and area

PA Propulsion Rocket motors length

to Aerodynamics and diameter

ST Structure Weights of rocket motors case,

to Trajectory nozzle, inter-stage, etc.

AT Aerodynamics Aerodynamic Coefficients

to Trajectory

TA Trajectory Mach number, Angle of attack,

to Aerodynamics Reynolds number, Stage number

insulation and igniter design. One dimensional internal
ballistic simulates the motor behavior and presents thrust
profile. Input parameters include motor diameter, Propel-
lant properties, combustion thermo-chemical characteristic,
thrust and burning time. Motor design algorithm scans
chamber pressure and reference design height for minimum
rocket motor weight. The code computes propellant weight,
specific impulse, nozzle exhaust velocity, port and throat
area, propellant burning area and motor dimensions.

3.3.2 Weight structure

The vehicle weight is broken down into following major
subsystems: Propellant, Motor case, Nozzle, Inter-stage
structure, Payload adapter, OMV, fairing, Guidance set, and
Payload. Propulsion module calculates propellant weight.
Other weights are estimated by statistical curve fitted Mass

Table 3 Design variables and their boundaries

Design variable Description Minimum Maximum

(dimension) value value

D1 (m) First stage diameter 1.3 2.5

D2 (m) Second stage diameter 1.3 2.5

T1 (kN) First stage thrust 1500 1700

T2 (kN) Second stage thrust 150 300

tb1(sec) First stage burning time 60 90

tb2(sec) Second stage burning time 100 170

aoa1,max (deg) Maximum angle of attack 0 8

during first stage maneuver

α f (deg) Final pitch angle –30 15

tc(sec) Course time 0 30
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Table 4 Constraints of SSPELV problem

Constraint Description

C1 Tolerance of the terminal velocity

C2 Tolerance of the terminal height

C3 Tolerance of terminal injection angle

C4 Maximum dynamic pressure

C5 1st stage diameter limit

(bigger than or equal to the 2nd stage diameter)

C6 Launch vehicle length-to-diameter ratio limits

C7 Maximum motor specific impulse

C8 Maximum loading of motors density

C9 Minimum structural fraction

C10 Separation height

C11 Range safety criteria

C12 1st stage maximum allowable angular velocity

Estimate Relationships (MES). Weight of motor case was
calculated using special pressure vessels codes.

3.3.3 Aerodynamics

The external vehicle mold lines are not allowed to change.
Semi empirical equations were used for aerodynamic
coefficients computation. These methods developed from
databases of analyses, flight tests and wind tunnel data for
vehicle that were either flying or existing.

The modeling program generates tabulated aerodynamics
coefficients. These tables present coefficient values relative
to Mach number, Reynolds number and angle of attack. The
trajectory module interpolates these data. The effect of aero-
dynamics shape and coefficients in system level variables
has been considered.

3.3.4 Trajectory analysis

To analyze the ascent flight-path, a three degree-of-freedom
trajectory analysis is performed with a program called TRA-
JECT. The three degree of freedom equations of motion

are numerically integrated from an initial to a terminal set
of state conditions. Within the present investigation, the
vehicle is treated as a point-mass. Earth rotation and oblate-
ness are modeled, and the 1976 standard atmosphere (no
winds) is used. Terminal constraints on altitude, velocity,
and flight-path angle, as well as maximum flight dynamic
pressure, range safety and stages separation height limits are
enforced. Direct injection approach is selected, and orbital
maneuver and trim are performed by OMV.

4 Comparison of results

4.1 Numerical benchmark functions

In order to compare computational cost and quality of solu-
tions of the enhanced PSO algorithm (named PSO/FI) with
PSO, a test set with four numerical benchmark functions
is employed. All selected functions are well-known in the
global optimization literature (Yao et al. 1999). The test set
includes unimodal as well as multimodal optimization prob-
lems. f1 and f2 are Schwefel’s and Rosenbrock functions.
They are unimodal functions and f3 and f4 are multimodal
functions known as Rastrigin and Ackley functions. All
these test functions are complex optimization problems with
many local optima.

The dimensionality of the numerical functions is set to 10
to show the efficient of the enhanced method within search
spaces similar to the design space of SSPELV problem that
contains nine design variables. The definition, the range of
search space, and also the global minimum of each function
are given in Table 5.

The efficient of PSO and PSO/FI are compared by mea-
suring the number of function calls which is one of the most
commonly used metrics in the literature (Andre et al. 2001).
As mentioned before, the termination criterion is meeting
maximum number of iterations. In order to minimize the
effect of stochastic nature of the algorithms, the results are
reported over 30 runs for each test function. We also per-
formed experiments with different inheritance proportion

Table 5 Numerical benchmark
functions Test fubctions Search space fmin

Schwefel : f1 (x) =
n∑

i=1
|xi | +

n∏

i=1
|xi | [–10,10]n=10 0

Rosenbrock : f2 (x) =
n−1∑

i=1

[
100

(
xi+1 − x2

i

)2 + (1 − xi )
2
]

[–2,2]n=10 0

Rastring : f3 (x) = 10n +
n∑

i=1

(
x2

i − 10 cos (2πxi )
)

[–5.12,5.12]n=10 0

Ackley : f4 (x) = −20 exp

(

−0.2

√
1

n

n∑

i=1
x2

i

)

[–32,32]n=10 0

− exp

(
1

n

n∑

i=1
cos (2πxi )

)
+ 20 + e
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Table 6 Results of PSO and FI/PSO on benchmark problems of dimensionality 10

PSO PSO PSO/FI PSO/FI PSO/FI PSO/FI PSO/FI

N 50 40 30 50 50 50 50

tk – – – 0.1 0.2 0.3 0.4

f1 Mean 1.82514e-07 2.19824e-05 1.15384e-03 3.50824e-07 1.28738e-06 1.11658e-05 3.40156e-05

StDev 3.10849e-07 9.22063e-05 3.54571e-03 5.32506e-07 7.25902e-06 1.62103e-04 5.17801e-04

f2 Mean 2.42572 5.74227 9.64410 2.75960 2.98741 3.57604 4.67841

StDev 1.54861e 2.75067 4.72236 1.70125 3.63512e-01 3.03146 1.13648

f3 Mean 7.69669 13.53181 19.01292 8.05925 8.95645 10.64828 11.146827

StDev 3.18997 5.37865 8.65019 3.78124 4.315278 5.32610 5.67841

f4 Mean 4.45856e-08 9.16001e-07 3.33935e-05 4.87415e-08 1.32141e-08 5.61274e-07 6.74121e-06

StDev 4.59579e-08 9.87559e-07 5.33748e-06 7.89541e-08 1.95426e-08 5.68741e-06 1.33456e-06

NFE 10,000 8,000 6,000 9,100 8,100 7,100 6,100

Mean, standard deviation (StDev), and number of function evaluations (NFE) of 30 runs

values (tk = 0.1, 0.2, 0.3, and 0.4). These proportions of
individuals indicate also the percentage by which the Num-
ber of Function Evaluations (NFE) is reduced. For example,
whentk is set to 0.5, NFE is approximately half of the origi-
nal PSO ones. It is important to note that, in PSO/FI, at the
first and last iterations the true values of objective functions
must be evaluated for all particles. The parameters given in
Table 1 are adopted for both PSO and PSO/FI algorithms.

The results for the benchmark f1– f4 are shown in
Table 6. Moreover, Figure 2 shows the convergence graphs

of Rastrigin function ( f3) as an example for performance
comparison. For all test functions there is almost a consis-
tent performance pattern across two algorithms: PSO/FI is
better than PSO.

As it is shown in Table 6, PSO/FI approach using tk =
0.1 and 0.2 is outperformed by the original PSO with 50
number of particles for all test functions. However, the
differences between obtained solutions are not considerable.
In other words, the optimal values found by PSO/FI indicate
that our method obtained as good approximation of the true

(a) PSO (N = 50) vs PSO/FI (N = 50; tk = 0.1) (b) PSO (N = 40) vs PSO/FI (N = 50; tk = 0.2)

(c)   PSO (N = 40) vs PSO/FI (N = 50; tk = 0.3) (d)   PSO (N = 30) vs PSO/FI (N = 50; tk = 0.4)

Fig. 2 Examples for performance comparison between PSO and
PSO/FI for minimization problem f3(x) = 0. Experiments have been
repeated 30 times to plot the average values. a PSO (N = 50) vs

PSO/FI (N = 50; tk = 0.1). b PSO (N = 40) vs PSO/FI (N = 50;
tk = 0.2). c PSO (N = 40) vs PSO/FI (N = 50; tk = 0.3). d PSO
(N = 30) vs PSO/FI (N = 50; tk = 0.4)
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Table 7 Penalty function
parameters Constraint g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12

Penalty parameter 1000 1000 10000 10000 50 50 10000 10000 10000 50 50 1000

optimal solution with lower NFE. For example, setting tk
to 0.2, PSO/FI reduced NFE by about 2,000 in comparison
with PSO (N = 50) without having considerable effect on
the quality of optimal solutions. Figure 2a and b presents
the convergence history of both algorithms using above
number of particles and inheritance parameters for test
function f3.

On the other hand, setting tk to 0.3 and 0.4, PSO/FI
is clearly the best with respect to both function eval-
uations (efficiency) and quality of the found solutions
(effectiveness). Consider the solutions obtained by PSO
setting N as 40 and 30 (Table 6). It is obvious that
PSO/FI had considerably better performance rather than
PSO with approximately equal NFE. Figure 2b and d show
the effectiveness of PSO/FI comparing with PSO for tk =
0.3 and 0.4 and N = 30 and 40. Moreover, it is presented in
Fig. 2c that PSO/FI (tk = 0.3) has outperformed PSO (N =
40) with about less 1000 function evaluations for f3.

4.2 Multidisciplinary design optimization of SSPELV

In order to demonstrate proper implementation of the pro-
posed enhancement technique within MDO structure, con-
ceptual design of the small satellite launch vehicle is solved
and results are compared to results of original version
of PSO, Sequential Quadratic Programming (SQP) and
Method of Centers (MOC).

We again performed experiments with the applied inher-
itance proportion values proposed before (tk = 0.1, 0.2,
0.3, and 0.4) and the parameters presented in Table 1 for
both PSO and PSO/FI. The parameter settings for the afore-

Fig. 3 Weight value variations as a function of final pitch angle (α f )

and course time (tc)

mentioned constraint handling method (10) are summarized
in Table 7. In order to embody the approximate shape of
SSPELV design space, three graphs are depicted in this
part. Since the design problem contains nine variables, each
graph is presented by varying only two variables while other
seven variables considered constant (Figs. 3, 4, and 5).
Hence, the true design space must be more complex than
presented here. Figures 3, 4, and 5 show the weight values
as a function of final pitch angle (α f ) - course time (tc),
second stage burning time (tb2) - second stage thrust (T2),
and second stage diameter (D2) - second stage thrust (T2),
respectively. These figures demonstrate that even in these
simplified conditions, involving many engineering disci-
plines in the MDO structure, the design space of SSPELV
problem is very complex with many local optima.

Table 8 shows PSO and PSO/FI results which are
representative of 30 independent trials for design of
SSPELV. We also summarized the results of SQP and MOC
(Vanderplaats 2001) at the two last columns of Table 8
which are found by running each method from 30 different
random starting points. MOC is not a widely used optimiza-
tion algorithm, but as discussed in (Vanderplaats 2001) this
method is a modified version of Sequential Linear Program-
ming (SLP) for escaping from local minima in complex
optimization problems which is a serious issue for most
conventional methods such as SQP. Consequently, in the
present work, we applied both SQP and MOC to show their
behavior dealing with our complex design problem.

MOC, also known as the method of inscribed hyper-
spheres (Baldur 1972), approaches the optimum point from
inside the feasible region of design variables and produces a
sequence of improving solutions which follow a path down
the center of design variables. The basic concept of this

Fig. 4 Weight value variations as a function of second stage burning
time (tb2) and second stage thrust (T2)
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Fig. 5 Weight value variations as a function of second stage diameter
(D2) and second stage thrust (T2)

method is to find the largest circle (hypersphere in n dimen-
sional when n is number of design variables) which fits in a
linear space of design variables and then moves to the cen-
ter of that circle. This process repeats until the algorithm
converges to a specified tolerance.

As we can see in Table 8, both PSO and PSO/FI provide
significantly better results than SQP and MOC at a consider-
able higher computational cost. The optimal solutions found
by all algorithms meet all constraints (presented in Table 4);
however, some bound constraints including first and sec-
ond stage diameter, first stage burning time, and maximum
angle of attack during first stage maneuver are active in
approximately all cases. It is worth to note that the bound

constraints in this work are considered regarding the base-
line design variables and could be changed by designers’
demands. Therefore, the obtained values of design variables
which are placed on bounds are not very critical.

Based on the data presented in Table 8, MOC outper-
formed SQP with approximately equal NFE. By this way,
the results confirm that MOC could escape from some local
optimums while SQP has been trapped in them. On the
other hand, the minimum weight values gained by PSO and
PSO/FI prove that both MOC and SQP failed to find the
global optimum.

PSO with 50 particles obtains the minimum value of
weight; however, PSO/FI using tk = 0.1 could preserve the
quality of optimum solution perfectly well with about less
than 1,000 function evaluations (Fig. 6a). In addition, it is
shown that PSO/FI with tk = 0.2 reduced NFE by about
2,000 (19%) in comparison with PSO (N = 50) with only
0.417% decrease in the quality of optimum solution.

Figure 6b and c shows the convergence history of PSO
(N = 40) and PSO/FI (tk = 0.2 and 0.3). These figures and
their corresponding results in Table 8 confirm that PSO/FI
shows considerably better efficiency and effectiveness.
PSO/FI (tk = 0.2) and PSO/FI (tk = 0.3) offer 3.63% and
2.59% of decrement in the weight value with approximately
equal and 11.25% lower computational cost in comparison
with PSO (N = 40).

Finally, applying PSO/FI (tk = 0.4), the quality of opti-
mum solution has decreased about 2.79% in comparison
with (N = 50) with a saving of 39% in function evalua-
tions. PSO/FI (tk = 0.4) also resulted in 3.56% better weight

Table 8 Results of PSO, FI/PSO, SQP, and MOC on SSPELV design problem

PSO PSO PSO PSO/FI PSO/FI PSO/FI PSO/FI SQP MOC

N 50 40 30 50 50 50 50 – –

tk – – – 0.1 0.2 0.3 0.4 – –

D1 (m) 2.50 2.15 2.17 2.02 2.13 2.03 1.99 2.00 2.04

D2 (m) 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30

T1 (kN) 1,500.01 1,500.00 1,500.00 1,500.00 1,500.12 1,500.00 1,500.00 1,501.63 1,500.96

T2 (kN) 165.32 173.19 150.00 241.25 167.75 179.51 186.18 197.63 190.32

tb1 (sec) 60.00 60.00 60.00 60.00 60.00 60.00 60.01 60.00 60.00

tb2 (sec) 144.41 138.41 172.01 114.93 132.41 136.76 139.14 149.27 142.31

aoa1,max (deg) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00

α f (deg) −9.38 −11.04 −14.79 −7.29 −10.05 −11.11 −11.93 −15.01 −13.01

tc (sec) 26.32 28.23 29.15 26.34 27.51 27.92 28.03 29.71 29.00

Weight (kg) Best 44,692.21 45,415.24 45,325.06 44,756.41 44,916.41 44,976.6 45,023.4 52,347.66 49,924.14

Worst 45,761.63 47,962.11 48,536.25 45,912.57 46,023.14 46,810.36 46,991.87 61,292.51 61,329.52

Mean 44,901.90 46,788.77 47,856.76 44,926.84 45,089.04 45,579.16 46,154.49 54,780.91 52,350.1

StDev 3.26 6.62 10.11 4.14 6.01 8.32 9.21 15.88 13.13

NFE 10,000 8,000 6,000 9,100 8,100 7,100 6,100 150 158

Best, worst, mean, standard deviation (StDev), and number of function evaluations (NFE) of 30 runs. Design variables are also reported for the
best weight values
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(a) PSO (N = 50) vs PSO/FI (N = 50; tk = 0.1) (b) PSO (N = 40) vs PSO/FI (N = 50; tk = 0.2) 

(c) PSO (N = 40) vs PSO/FI (N = 50; tk  = 0.3) (d) PSO (N = 30) vs PSO/FI (N = 50; tk = 0.4) 

Fig. 6 Performance comparison between PSO and PSO/FI for SSPLEV design problem. Experiments have been repeated 30 times to plot the
average values. a PSO (N = 50) vs PSO/FI (N = 50; tk = 0.1). b PSO (N = 40) vs PSO/FI (N = 50; tk = 0.2). c PSO (N = 40) vs PSO/FI (N =
50; tk = 0.3). d PSO (N = 30) vs PSO/FI (N = 50; tk = 0.4)

value than PSO (N = 30) with approximately equal NFE
(Fig. 6d).

In general, in spite of the fact that both PSO and PSO/FI
algorithms are more time consuming than SQP and MOC
(due to their stochastic nature and the random behavior
of particles), the minimum weight they generated are 14–
18% lower. It is very important to note that in expensive
aerospace projects such as inserting a payload mass to a
defined mission orbit this amount of decreasing in gross
weight is very effective and can reduce the project cost over
million dollars (Hammond 2001). As a result, it can be
concluded that the proposed PSO/FI technique succeeded
to obtain very good approximation of true optimal solution
while decreasing the computational time considerably. The
found results show that PSO/FI had a very good and promis-
ing performance dealing with conceptual design of the small
satellite launch vehicle within MDO structure.

5 Conclusions

In this paper, a Fitness Inheritance technique is pro-
posed and incorporated into a Particle Swarm Optimization
algorithm to minimize the weight of a solid propellant
launch vehicle within the Multidisciplinary Design Opti-
mization framework. The proposed technique was studied
using different number of particles and Fitness Inheritance

proportions and compared with Particle Swarm Optimiza-
tion, Sequential Quadratic Programming and Method of
Centers algorithms. The obtained results show that the
enhanced Particle Swarm technique has a good performance
and is very promising. In fact, this method can significantly
decrease the number of function evaluations without having
serious bad effects on the quality of solutions. However, it is
important to note that the results gained in this work are only
examined and valid for four numerical test functions and
the introduced design problem containing only nine to 10
decision variables. In other words, the proposed approxima-
tion technique within particle swarm optimization algorithm
makes a heuristic method which is only designed and stud-
ied for solving the introduced problems. This method also
adds a new parameter (inheritance proportion) to Particle
Swarm Optimization that must be tuned based on the com-
plexity of the search space. As a part of our future work
we plan to improve and study the inheritance technique in
order to solve high dimensional optimization problems with
minimum decrease in quality of results.
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