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Abstract In this paper, the superior performance of a novel
space exploration and unimodal region elimination global
optimization algorithm, SEUMRE, is demonstrated through
comparisons with other well known global optimization
techniques, including genetic algorithm (GA), simulated
annealing (SA), and a highly nonlinear design problem—
the optimal design of automotive magnetorheological brake
(MRB). Unlike the conventional brakes, an MRB employs
the interaction between a magnetorheological fluid and an
applied magnetic field to generate the retarding braking
torque. The SEUMRE design optimization algorithm was
used to maximize the braking torque and minimize the
weight of the brake structure. The computation time and
optimized design parameters illustrated SEUMRE’s capa-
bility to converge to an accurate result faster than the
conventional global optimization methods. However, SA
provided significantly better optimization results than GA
and SEUMRE in terms of the cost function.
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1 Introduction

Global optimization algorithms are effective methods in
finding optimal solutions for given problems. They have
found success in many applications and have been exten-
sively used in many fields such as engineering, economics,
and mathematics. Many optimization algorithms have been
introduced, and new and improved algorithms appear in the
literature every year. Generally, optimization algorithms can
be divided into the following two main categories: gradient
based (deterministic) and non gradient based (Zabinsky and
Smith 1992; Hendrix 1998). Many engineering design prob-
lems are highly complex in nature. Therefore, deriving the
gradient is very expensive, and requires intensive computa-
tional efforts and resources. Accordingly non-gradient opti-
mization algorithms that are stochastic and heuristic based
(Gill et al. 1981; Baritompa and Hendrix 2005) have become
more attractive. These algorithms have become popular and
have found lots of interest because of their superior per-
formance and their capability in extracting information on
the search space without experiencing computational com-
plexities. Today, more efficient, effective and robust non-
gradient optimization algorithms are continuously being
introduced to handle complex engineering problems from
various applications.

In the authors recent work (Younis and Dong 2009a),
a new stochastic and heuristic based global optimization
search method, Space Exploration Unimodal Region Elim-
ination (SEUMRE), has been introduced. The optimization
algorithm starts the search by spreading sampling points to
explore the design space and based on the preliminary infor-
mation obtained to predict where global solution may exist
and where the search must be focused. Such optimization
algorithm is particularly suitable for highly nonlinear and
complex design optimization problems involving expensive
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analysis and simulation processes such as finite element
analysis (FEA) and computational fluid dynamics (CFD).

In this work, the SEUMRE algorithm is applied to solve
a highly nonlinear and complex real-life engineering design
optimization problem—the optimal design of automotive
magnetorheological brake (MRB). The method is also com-
pared with other well known stochastic optimization algo-
rithms, including genetic algorithm (GA) and simulated
annealing (SA). The main objective of the study is to fur-
ther explore the potential of the new global optimization
algorithm through a practical industrial design problem.

2 Global optimization algorithms

The well known global optimization algorithms, genetic
algorithm (GA) and simulated annealing (SA), as well as the
new space exploration and region elimination global opti-
mization algorithm, SEUMRE, are briefly reviewed and dis-
cussed in this section. Nevertheless, there are other heuristic
optimization algorithms that have proven to perform well
and converge to accurate solutions with reasonable compu-
tational cost, Particle Swarm Optimization (PSO) (Kennedy
and Eberhart 1995) and Ant Colony Optimization (ACO)
(Dorigo et al. 1996) algorithms are examples.

2.1 Genetic algorithm

Genetic algorithm (GA) is one of the most efficient meta-
heuristics that has been employed in a wide variety of
problems (Goldberg 1989; Michalewicz 1996). However,
GA, like other metaheuristics, suffers from the slow con-
vergence that brings about the high computational cost. GA
is a class of search procedures based on the mechanics
of natural genetics and natural selection (Goldberg 1989).
Generally, the GA mechanism consists of three funda-
mental operations: reproduction, crossover and mutation.
Reproduction is the random selection of copies of solu-
tions from the population according to their fitness value
to create one or more offspring. Crossover defines how
the selected chromosomes (parents) are recombined to cre-
ate new structures (offspring) for possible inclusion in the
population. Mutation is a random modification of a ran-
domly selected chromosome. Its function is to guarantee the
possibility to explore the space of solutions for any initial
population and to permit the freeing from a zone of local
minimum. Generally, the decision of the possible inclusion
of crossover/mutation offspring is governed by an appro-
priate filtering system. Both crossover and mutation occur
at every cycle, according to an assigned probability. The
aim of the three operations is to produce a sequence of
population which, in average, tends to improve.

2.2 Simulated annealing

Simulated annealing (SA) was developed by Kirkpatrick
et al. (1983) to deal with highly nonlinear problems. SA is
a generalization of the Monte Carlo method for examining
the equations of state and frozen states of n-body systems.
The algorithm emulates the annealing process on how liq-
uid freezes or metal recrystalizes in cooling. SA is easy to
implement, although the method converges slowly and it is
difficult to find an appropriate stopping rule. As a random-
search technique which exploits an analogy between the
way in which a metal cools and freezes into a minimum
energy crystalline structure, SA searches for a minimum in
a more general system, forming the basis of an optimization
technique for combinatorial and other problems.

2.3 Space exploration and region elimination algorithms

Metamodeling based search, space exploration, and region
reduction/elimination methods are effective optimization
schemes for computationally intensive global design opti-
mization problems. The space exploration and region reduc-
tion methods start their search by sending agents or sam-
pling points to explore the entire design space. These agents
will yield some information (values of objective and con-
straint functions) about the design space. The obtained
information provide hints for ranking different multimodal
regions based on their potentials to contain the global opti-
mum, allowing more attention being put on these promising
regions during subsequent searches using more samples to
further explore the regions and to refine the unimodal model
over each region. Exploration of the design space is also
very valuable for a better understanding of the design prob-
lem. A surrogate model, or metamodel, is easy to construct
and “cheaper” to calculate, comparing to the calculation of
the original “expensive” objective function. For optimiza-
tion problems in which the calculations of the objective
and constraint functions require extensive numerical anal-
ysis and simulation, introduction of the metamodel and
use of the cheap points to replace the expensive points
can considerably reduce computation time and make global
optimization feasible.

Region elimination schemes intend to keep the size of the
design space under control. Many region elimination meth-
ods have been recently proposed. Among those, the most
representative group is the multivariable elimination proce-
dures (Gill et al. 1981), which reduce the design space by
discarding the unpromising regions that do not contain the
optimum. Another approach, metaheuristics (Weise 2009)
which uses a complex probability model to identify the
promising regions with a higher chance to contain the design
optimum. However, the strategy is computationally less



Application of SEUMRE in MRB design 763

efficient due to the complexity of the probabilistic models
used.

In general, metamodeling and region elimination based
search methods have been found promising for applica-
tions that require intensive computations (Jones et al. 1998;
Simpson et al. 2001; Wang et al. 2001, 2004; Shan and
Wang 2004; Wang and Shan 2004; Kaymaz and McMathon
2005; Huang et al. 2006; Younis and Dong 2009b). Due
to the nature of the MRB design optimization problem, the
top performing metamodeling and region elimination based
search method, SEUMRE (Younis and Dong 2009a), is used
in this work to identify the optimal design. Extended from
its predecessor, the Approximated Unimodal Region Elimi-
nation (AUMRE) algorithm (Younis et al. 2009), SEUMRE
consists of the following key elements: (a) dividing the
design space into several unimodal regions using design
experiment data; (b) identifying and ranking the regions that
most likely contain the global optimum; (c) fitting a Kriging
model (Cressie 1988) with additional design experiments
using Latin Hypercube designs (McKay et al. 1997) over
the most promising region and identifying its minimum; and
(d) moving to the next most promising region. The process
is carried on until all promising unimodal regions are pro-
cessed, and most likely the global optimum is obtained from
identified local optima. The pseudo codes and flowchart
(Fig. 1) of the algorithm are given in the following.

Pseudo code for SEUMRE:

1. Generate experimental designs in the design space.
2. Divide the design space into sub-spaces.

(a) Use min function values obtained as center points
for unimodal regions.

(b) Roughly identify the boundaries for the unimodal
regions.

(c) Refine the space by generating more experimental
designs.

3. Construct Kriging meta-model.
4. Find its optimum.
5. Move to the next design sub-space and repeat steps 2.a–

4.
6. If all design space is processed and termination criteria

are met, Compare obtained optimum values and find the
global optimum.

7. Terminate.

SEUMRE was tested on many representative benchmark
problems (Younis and Dong 2009a). Results of SEUMRE
on the representative benchmark problems and the required
computations represented by the number of objective func-
tion evaluations, and CPU time are shown and summa-
rized in Appendix 1. The formulas for the benchmark test
problems can be found in Younis and Dong (2009a).
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Fig. 1 SEUMRE algorithm flowchart (Younis and Dong 2009a)

3 Magnetorheological Brake (MRB) design
optimization problem

Conventional hydraulic brakes (CHB) are used to provide
required braking torque in stopping a vehicle. The CHB sys-
tem consists of brake pedal, hydraulic fluid, transfer pipes
and brake actuators (disk and drum brakes). When the driver
presses on the brake pedal, the hydraulic brake fluid pro-
vides the pressure in the brake actuators that squeezes the
brake pads onto the rotor. Unlike their conventional counter-
parts, electromechanical brake (EMB) systems offer poten-
tial improvements such as faster response, easy controller
implementation and parameter control, reduced weight and
wiring, reduced maintenance etc, due to their purely electri-
cal nature. Magnetic particle/fluid brake (or MRB) is one of
the commonly known electromechanical brakes introduced
as possible substitutes of the CHB systems.

MRB employs magnetorheological fluids (MRFs) that
have controllable rheological characteristics through varia-
tion in magnetic field. MRFs are created by adding micron-
sized iron particles to an appropriate carrier fluid such as
oil, water or silicon. Their rheological behavior is almost
the same as that of the carrier when no external magnetic
field is present. However, when exposed to a magnetic field,
the iron particles acquire a dipole moment aligned with the
applied magnetic field to form linear chains parallel to the
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field (Phillips 1969; An and Kwon 2003). This reversibly
changes the liquid to solid-like that has a controllable yield
strength, whose magnitude depends directly on the magni-
tude of the applied magnetic field. A basic configuration of
MRB was introduced by (Park et al. 2006). As shown in
Fig. 2, in this configuration, a rotating disk (3) is enclosed
by a static casing (5), and the gap (7) between the disk and
casing is filled with the MR fluid (a typical MR fluid is
a type of functional fluid which has a suspension of mag-
netic particles in inert carrier liquids). A coil winding (6)
is embedded on the perimeter of the casing and when elec-
trical current is applied to it, magnetic fields are generated,
and the MR fluid in the gap becomes solid-like instanta-
neously. The shear friction between the rotating disk and
the solidified MR fluid provides the controllable retarding
torque and the magnitude of the shear friction is directly
related to the applied magnetic flux density on the fluid.

The literature presents a number of MR fluid-based
brake designs, e.g., (Carlson et al. 1998; Webb 1998;
Carlson 2001; Lord Corporation Material Division 2003;
Liu et al. 2006; Park et al. 2006). In (Carlson et al. 1998;
Carlson 2001), Carlson of Lord Corporation proposed and
patented general purpose MRB actuators, which subse-
quently became commercially available (Lord Corporation
Material Division 2003). In Webb (1998), an MRB design
was proposed for exercise equipment (e.g., as a way to pro-
vide variable resistance). Recently, an MRB was designed
and prototyped for a haptic application as well (Liu et al.
2006).

Detailed analysis and design considerations of an MRB
can be found in our previous work (Karakoc et al. 2008). In
this work, practical design criteria such as material selec-
tion, sealing, working surface area, viscous torque genera-
tion, applied current density, and MR fluid selection were
considered to select a basic automotive MRB configuration.
Then, a detailed finite element analysis (FEA) is performed
to analyze the resulting magnetic circuit and heat distri-
bution within the MRB configuration. This is followed
by design optimization to obtain optimal design param-
eters that can generate the maximum braking torque in
the chosen configuration. A prototype MRB was subse-
quently built and tested and the experimental results showed
a good correlation with the finite element simulation
predictions.

4 MRB model

The MRB design optimization is based on the model for
calculating the braking torque resulted from different MRB
configurations. The idealized characteristics of the MR fluid

can be described effectively by using the Bingham plastic
model (Phillips 1969; An and Kwon 2003; Kordonsky 1993;
Weiss et al. 1994). According to this model, the total shear
stress τ is:

τ = τH sgn(γ̇ ) + μpγ̇ (1)

where τ H is the yield stress due to applied magnetic field,
μp is the no-field plastic viscosity of the fluid and γ̇ is the
shear rate. The braking torque for the geometry shown in
Fig. 2 can be defined as follows:

Tb =
∫

A
τrd A = 2π N

∫ r2

r1

(τH sgn(γ̇ ) + μpγ̇ )r2dr (2)

where A is the working surface area (the domain where the
fluid is activated by applied magnetic field intensity), r2 and
r1 are the outer and inner radii of the disk, N is the number
of disks used in the enclosure and r is the radial distance
from the centre of the disk.

Assuming the MR fluid gap in Fig. 2 to be very small
(e.g., ∼1 mm), the shear rate can be obtained by:

γ̇ = rw

h
(3)

with the additional assumption of linear fluid velocity dis-
tribution across the gap and no slip conditions. In (3), w is
the angular velocity of the disk and h is the thickness of
the MR fluid gap. In addition, the yield stress, τ H , can
be approximated in terms of the magnetic field intensity
applied specifically onto the MR fluid, HM RF , and the MR
fluid dependent constant parameters, k and β, i.e.

τH = k Hβ
M RF (4)

By substituting (3) and (4), the braking torque equation
in (2) can be rewritten as:

Tb = 2π N
∫ r2

r1

(
k Hβ

M RF sgn (γ̇ ) + μp
rw

h

)
r2dr (5)

Then, (5) can be divided into the following two parts after
the integration:

TH = 2π

3
Nk Hβ

M RF

(
r3

2 − r3
1

)
(6)

Tμ = π

2h
Nμp

(
r4

2 − r4
1

)
w (7)
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Fig. 2 Basic MRB design (Park
et al. 2006)

where TH is the torque generated due to the applied mag-
netic field and Tμ is the torque generated due to the viscosity
of the fluid. Finally, the total braking torque is Tb = Tμ +
TH . From the design point of view, the parameters that can
be varied to increase the braking torque generation capac-
ity are: the number of disks (i.e. N ), the dimensions and
configuration of the magnetic circuit (i.e. r2, r1, and other
structural design parameters shown in Fig. 2), and HM RF

that is directly related to the applied current density in the
electromagnet and materials used in the magnetic circuit.

The flux density is radially changing with the distance
from the symmetry axis. Thus, the shear values are inte-
grated over the working surface area to obtain the braking

torque. HM RF is not constant and the magnetic field in
MRF is not homogenous. The flux varies in the radial and
axial direction. In the simulation, in order to calculate the
shear stress, the flux density in the vicinity of the shear disk
is used. So the values are taken from the fluid-shear disk
boundary and used in order to solve for the braking torque
calculations.

In order to solve for the braking torque, the magnetic
field distribution over the MRB domain has to be calculated.
Therefore, a nonlinear finite element model (FEM) for the
MRB is created and, using this model, the braking torque
generation for different configurations can be calculated.
For the current comparison study of the global optimization

Fig. 3 Chosen MRB based on
the design criteria and
dimensional parameters related
to magnetic circuit design
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algorithms, a one disk MRB configuration, shown in Fig. 3,
is adapted as the benchmark design.

5 Formulation of the optimization problem

The cross-section of the selected one disk configuration
of the MRB is shown in Fig. 3. As a next step, the cho-
sen design configuration was optimized for higher braking
torque and lower weight. In setting up such an optimiza-
tion problem for the MRB, a cost function was defined by
including the braking torque and weight as functions of the
dimensional parameters of the magnetic circuit shown in
Fig. 3.

The objective function of the MRB optimization problem
is defined as

Minimize : f (d) = kw

W

Wref
− kt

TH

Tre f
(8)

where;

kw + kT = 1 (9)

subject to:

W < 150 N and Dbrake < 240 mm (10)

in which W (N) is the weight of the actuator, TH (Nm) is
the braking torque generated due to applied magnetic field,
Dbrake is the overall diameter of the actuator, d = [d1, d,
..., d10]T is the design variable vector that consists of the
dimensional parameters shown in Fig. 3 and kw and kT are
the weighting coefficients. In order to solve the objective
function, kw and kT were set to be 0.1 and 0.9, respec-
tively, as the maximum torque generation is of our primary
concern. In addition, the reference weight value Wref was
obtained considering the overall system weight of the CHB
(Karakoc et al. 2008). Moreover, since the braking torque

Fig. 4 MDO procedure for
computing the cost function a
random design
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Table 1 Comparison of the resulting optimum design parameters and computational efficiency

Global optimization Obtained optimum Obtained optimum design parameters (cm) Number of CPU Relative CPU

algorithm function value iterations time (h) time (h)

Simulated annealing (SA) −1.3623 2.28, 3.99, 3.75, 0.27, 0.50, 2.35, 1.10, 2500 4.0348 1.344

1.97, 0.10, 1.27

Genetic algorithms (GA) −1.0998 3.84, 2.47, 5.01, 0.30, 0.76, 1.85, 1.15, 1100 3.002 1.000

2.00, 0.10, 1.23

Space exploration (SEUMRE) −1.1630 1.04, 2.92, 4.71, 0.15, 0.73, 2.15, 1.13, 115 1.145 0.381

1.82, 0.11, 1.34

generated by the proposed MRB configuration is compa-
rably less than that of the CHB, Tre f was selected to be
20 Nm. This reference torque value was selected by check-
ing a number of random MRB designs which satisfied the
constraints.

As the constraints for the optimization problem, the
weight of the actuator was set to be smaller than the weight
of the CHB, i.e. W < 150 N. In addition to this, since the
brake should fit into a wheel, the diameter of the MRB is set
to be smaller than the inner diameter of the wheel. In this
study, the brake is optimized for the standard 13 in. wheel
whose inner diameter is 240 mm, i.e. Dbrake < 240 mm.

Due to the multidisciplinary nature of the design prob-
lem, the Multidisciplinary Design Optimization (MDO)
procedure is used in the calculation of the objective function
for each design as illustrated in Fig. 4. Detailed analysis for
forming the MDO problem can be found in (Karakoc et al.
2008). The optimization problem is then solved using the
SEUMRE algorithm. To assess the performance of the algo-
rithm, two other commonly used global optimization search
methods, GA and SA, are also used as comparison tests. The
results are presented and discussed in detail in the following
section.

6 Results of the optimization and discussions

For a given MRB design configuration, COMSOL
MultiphysicsTM, a commercial FE software package, was
used to calculate the magnetic flux density within MRB.
MATLABTM was then used to solve for the weight and the
braking torque using the given brake configuration and the
FEA result. Each of the three global optimization programs
has been run multiple times and the best optimum result is
accepted and used as the measure for search efficiency, as
given in Table 1. A PC with dual core Intel Xeon (E5140)
processor and 8 GB memory is used during the design
optimization. All computations were carried out in MAT-
LAB environment. The global optimization programs are
either downloaded from the referenced sites or based on the
research codes written by the authors.

The obtained optimum function values are −1.3623,
−1.0998 and −1.1630 from SA, GA and SEUMRE, respec-
tively. It appears that SA outperformed the rest in terms of
the solution accuracy. However it took SA approximately
4.035 h to reach the optimum solution with high accuracy. If
we take the computation cost into consideration, SEUMRE
performed well in comparison to SA and GA. Because GA

Table 2 Optimized MRP
prototype specifications Main specifications of MRP Optimization methods used

SA GA SEUMRE

Diameter (mm) 240.00 240.00 240.00

Coil wire size AWD 21 (dia. 0.77 mm)

MR fluid used MRF-132DG

Maximum current applied (A) 1.80 1.80 1.80

Maximum current density applied (A/m2) 2.54E+6 2.54E+6 2.54E+6

Magnetic materials used Steel 1018 Steel 1018 Steel 1018

Weight (kg) 14.8708 14.4875 13.7014

Amount of MR fluid used (m3) 6.725E-05 6.77E-05 5.44E-05

Maximum braking torque (Nm) 33.9896 27.92 30.04
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is well known and widely used algorithm it was considered
as a reference to measure the performance of all. The last
column in Table 1 represents optimum solutions. SEUMRE
and SA required 1/3 and 1.3 times of the CPU time, com-
paring with GA. Table 1 illustrates the needed computation
time and number of iterations by these three algorithms to
converge to the global optimum. SEUMRE used less com-
putation time and required least number of iterations (115
iterations) to converge to the design optimum. SA and GA
required 2500 and 1100 iterations, respectively. SA is the
worst in terms of both the number of iterations and CPU
time although it does lead to a significantly better minimum
in the global optimization.

The optimal design parameters from the global opti-
mization are given in Table 2. One of the very important
considerations of MRB system with many rotating parts is
the weight. The optimal design using SEUMRE leads to a
minimum weight of 13.7 kg, compared to 14.67 and 14.49
Kg from SA and GA, respectively.

Tables 4 and 5 in Appendix 2 showed the results for one
disk and at different weight factors. These two scenarios
were tested and shown even though they are not of concern
in this application since maximizing the torque and mini-
mizing the weight is the goal of this paper. In Table 4 the
weight was emphasized over the torque so a higher weigh
factor is assigned for the weight while a low weight factor
is assigned for the torque. It can clearly be observed that
the weight and the torque results are not good. In Table 5
same weight factor has been assigned to the weight and the
torque. The results have a little improvement compared to
the pervious scenario.

In this application, the SA algorithm with a deterministic
local optimization core search scheme led to more accu-
rate optimum regarding the obtained optimum value of the
objective function. While the SEUMRE algorithm uses the
Kriging search scheme and GA uses the stochastic search
method, excellent for high order, large dimensional prob-
lems, came slightly short on the convergence accuracy. The
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resulting small accuracy difference may be quite different
for another problem.

The other important consideration is the maximum
torque generated during braking. Figure 5 shows the rela-
tion between the current applied to the coil in Amps and
the generated braking torque in Nm obtained using the three
global optimization algorithms. Optimization result from
SA gave better results than SEUMRE and GA. The amount
of the generated braking torque obtained by SA is 33.47 Nm
compared to 30.04 and 27.92 Nm from SEUMRE and GA,
respectively (see Table 2).

Also in this paper, the optimal design parameters of MRB
for different number of disks (2, 3, and 4 disks) were
determined. The optimization results of different number
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of disks and different weight coefficients can be found in
Appendix 2 in this paper. The results presented in Tables 6,
7 and 8 in Appendix 2 shows that as the number of the disks
increases the torque generated increases. Figure 6 supports
that claim. It also reports that SA outperformed the other
optimization methods in terms of the obtained optimum
function value and the torque generated. SA obtained the
max torque values. SEUMRE obtained the best weight with
comparably good Torque values and at less computational
cost as can be seen in Tables 6, 7, and 8 in Appendix 2.

The overall performance of an optimization algorithm for
computation intensive design optimization problems, such
as the MRB design, is judged using the following two
criteria.

• Computational efficiency

The number of iterations and computation time needed
by SEUMRE is always less than that for GA and SA. It is
well reflected by the results from the design optimizations
using SEUMRE, GA and SA.

• Performance or convergence accuracy

SEUMRE can locate the global optimum quickly and
reach comparable accuracy for intensive computation opti-
mization applications. In this work, SA converged to the
global optimum with higher accuracy due to its capable,
deterministic local optimization search scheme. It also per-
forms comparably well regarding the value of the objective
function. The optimum objective function of SA was 17%
better than that of SEUMRE and 24% better than that of GA.
However, much greater computation efforts (high number of
iterations and CPU time) are needed to reach this accuracy.

Figure 7 shows the tradeoff between accuracy and com-
putational cost. It can be clearly observed from Fig. 7
that both SA and GA take significant time to converge
to a minimum. Among these methods, SEUMRE has the
best accuracy to computational time ratio; however SA
converges to results better than SEUMRE results faster
than SEUMRE. Although the SA results are significantly
enhanced, significant improvements in the computational
time makes SEUMRE a faster and accurate alternative for
existing stochastic optimization algorithms.

7 Conclusions

In this work, the new space exploration and region elimi-
nation based SEUMRE, and the conventional GA and SA
global optimization algorithms were used for the design
optimization of an automotive MRB system. The optimal
design parameters of the MRB system were identified with
maximum braking torque generated at the rotating disks and
minimum brake system weight. The results obtained from
the three optimization algorithms were compared against
each other in terms of computational efficiency and accu-
racy. The results indicated that SEUMRE was computa-
tionally advantageous than GA and SA. However, it was
also found that SA provided significantly better optimiza-
tion results than GA and SEUMRE regarding the obtained
value of the objective function. The advantages of SEUMRE
as a new promising global optimization algorithm for com-
plex engineering applications requiring intensive numerical
computation are demonstrated.

Appendix 1: Sample of test results of SEUMRE
method

Table 3 Results of
representative benchmark
problems using SEUMRE
method

RMSE root mean square error

Test problem Number of Global optimum solution # Function CPU RMSE

dimension Analytical Obtained evaluation time (s)

Shubert 2 −186.7309 −186.730 56 4.10 1.2e-06

Sphere 10 0.0000 1.3059 282 158.3 2.8e-05

Hartmann, H6 6 −3.3220 −3.3222 79 14.2 0.0151

Hartmann, H16 16 25.875 26.8800 262 433.2 0.0042



770 A. Younis et al.

Appendix 2: Comparison of the resulting optimum
design parameters and computational efficiency
for different number of disks and weight coefficients

Table 4 Optimization results for one disk when KT = 0.1 and Kw = 0.9

Global optimization Obtained optimum Obtained optimum design parameters #Fun. CPU Weight Torque

algorithm function value (cm) evaluations time (h) (Kg) (Nm)

Simulated annealing (SA) −0.057 0.50, 0.50, 2.00, 0.10, 0.30, 0.50, 0.50, 2602 10.78 0.2327 0.1684

0.20, 0.10, 0.20

Genetic algorithms (GA) 0.0343 4.85, 2.32, 2.28, 0.25, 0.42, 0.71, 0.59, 1420 1.88 0.5901 0.2384

0.24, 0.15, 0.22

Space exploration (SEUMRE) 0.0842 2.42, 0.97, 2.04, 0.18, 0.51, 1.25, 0.69, 280 0.38 1.4329 0.3784

0.41, 0.22, 0.82

Table 5 Optimization results for one disk when KT = 0.5 and Kw = 0.5

Global optimization Obtained optimum Obtained optimum design parameters #Fun. CPU Weight Torque

algorithm function value (cm) evaluations time (h) (Kg) (Nm)

Simulated annealing (SA) −0.3835 4.26, 4.93, 2.83, 0.23, 0.30, 3.00, 0.63, 2582 9.80 6.940 25.822

1.98, 0.1, 0.58

Genetic algorithms (GA) −0.2983 4.04, 4.68, 2.99, 0.28, 0.78, 2.15, 1.01, 1040 2.32 10.119 26.696

2.00, 0.13, 0.97

Space exploration (SEUMRE) −0.2694 0.67, 4.83, 2.31, 2.60, 0.66, 2.81, 0.66, 245 0.36 4.8468 18.101

1.90, 0.22, 0.28

Table 6 Optimization results for two disks when KT = 0.9 and Kw = 0.1

Global optimization Obtained optimum Obtained optimum design parameters #Fun. CPU Weight Torque

algorithm function value (cm) evaluations time (h) (Kg) (Nm)

Simulated annealing (SA) −4.2300 2.44, 3.71, 3.69, 0.10, 0.51, 1.04, 1.71, 1.76, 2514 9.80 15 101.042

0.10, 0.45, 1.36

Genetic algorithms (GA) −2.4904 2.40, 2.47, 4.55, 0.10, 0.72, 2.54, 0.70, 0.63, 1060 1.53 13.9832 60.2853

0.12, 1.08, 0.83

Space exploration (SEUMRE) −3.9608 1.55, 4.38, 4.19, 0.16, 0.60, 1.16, 1.00, 0.88, 798 1.88 14.9894 94.75

0.16, 0.59, 1.25

Upper and Lower Boundaries for Multi-Disk Cases: UB = [0.05, 0.05, 0.12, 0.003, 0.01, 0.03, 0.02, 0.02, 0.003, 0.02, 0.02]; LB = [0.005, 0.005,
0.02, 0.001, 0.003, 0.005, 0.005, 0.002, 0.001, 0.002, 0.002]
UP upper boundaries, LB lower boundaries
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Table 7 Optimization results for three disks when KT = 0.9 and Kw = 0.1

Global optimization Obtained optimum Obtained optimum design parameters #Fun. CPU Weight Torque

algorithm function value (cm) evaluations time (h) (Kg) (Nm)

Simulated annealing (SA) −6.7697 3.50, 4.34, 2.89, 0.28, 0.40, 1.99, 0.96, 0.40, 2525 9.84 14.999 160.2925

0.10, 0.70, 1.31

Genetic algorithms (GA) −3.8378 2.02, 3.65, 4.24, 0.13, 0.34, 1.35, 0.70, 0.69, 1360 2.28 14.0575 91.7346

0.10, 0.86, 0.74

Space exploration (SEUMRE) −5.7366 0.90, 3.60, 3.46, 0.16, 0.41, 1.49, 1.34, 0.50, 609 1.03 14.9525 136.1700

0.11, 0.71, 1.23

Table 8 Optimization results for four disks when KT = 0.9 and Kw = 0.1

Global optimization Obtained optimum Obtained optimum design parameters #Fun. CPU Weight Torque

algorithm function value (cm) evaluations time (h) (Kg) (Nm)

Simulated annealing (SA) −8.2925 1.82, 0.50, 2.71, 0.10, 0.54, 2.11, 1.17, 0.32, 2536 7.27 14.999 195.8254

0.10, 0.29, 1.05

Genetic algorithms (GA) −2.7125 4.81, 0.94, 4.76, 0.20, 0.57, 2.14, 0.70, 0.34, 1040 1.52 14.9702 65.61

0.10, 1.08, 0.74

Space exploration (SEUMRE) −5.5800 1.15, 2.84, 2.83, 0.12, 0.56, 1.93, 0.85, 0.50, 637 1.14 14.9981 132.6464

0.11, 0.80, 1.17

References

An J, Kwon D (2003) Modeling of a magnetorheological actua-
tor including magnetic hysteresis. J Intell Mater Syst Struct
14(9):541–550

Baritompa B, Hendrix EMT (2005) On the investigation of stochastic
global optimization algorithms. J Glob Optim 31(4):567–578

Carlson JD (2001) Magnetorheological brake with integrated flywheel.
US Patent No. 6186290 B1. United States Patent Office; 13
February 2001

Carlson JD, LeRoy DF, Holzheimer JC, Prindle DR, Marjoram RH
(1998) Controllable brake. US Patent No. 5842547. United States
Patent Office; 1 December 1998

Cressie N (1988) Spatial prediction and ordinary Kriging. Math Geol
20(4):405–421

Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by
a colony of cooperating agents. IEEE Trans Syst Man Cybern Part
B Cybern 26(1):29–41

Gill PE, Murray E, Wright MH (1981) Practical optimization.
Academic, New York

Goldberg DE (1989) Genetic algorithms in search, optimization and
machine learning. Addison Wesley, New York

Hendrix EMT (1998) Global optimization at work. Ph.D. Dissertation,
Wageningen Agricultural University

Huang D, Allen T, Notz W, Zeng N (2006) Global optimization of
stochastic black-box system via sequential Kriging meta-models.
J Glob Optim 34:441–466

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization
of expensive black-box functions. J Glob Optim 13(4):455–492

Karakoc K, Park E, Suleman A (2008) Design consideration for an
automotive magnetorheological brake. Mechatronics 18:434–447

Kaymaz I, McMathon CA (2005) A response surface method based on
weighted regression for structural reliability analysis. Probab Eng
Mech 20:11–17

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Pro-
ceedings of IEEE international conference on neural networks,
pp 1942–1948

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simu-
lated annealing. Science 220:671–680

Kordonsky W (1993) Elements and devices based on magnetorheolog-
ical effect. J Intell Mater Syst Struct 4(1):65–69

Liu B, Li WH, Kosasih PB, Zhang XZ (2006) Development of an MR
brake based haptic device. Smart Mater Struct 15:1960–1966

Lord Corporation Material Division (2003) MR Brake product bulletin,
2107-3. Lord Corporation, Cary

McKay M, Bechman R, Conver W (1997) A comparison of three
methods for selecting values of input variables in the analysis
techniques for computer codes. Technometrics 21(2):239–245

Michalewicz Z (1996) Genetic algorithms + data structures = evolu-
tion programs. Springer, New York

Park EJ, Stoikov D, Falcao da Luz L, Suleman A (2006) A per-
formance evaluation of an automotive magnetorheological brake
design with a sliding mode controller. Mechatronics 16:405–416

Phillips RW (1969) Engineering applications of fluids with a variable
yield stress. Ph.D. Thesis, University of California, Berkeley, CA

Shan S, Wang G (2004) Space exploration and global optimization
for computationally intensive design problems: a rough set based
approach. Struct Multidisc Optim 28:427–441



772 A. Younis et al.

Simpson TW, Mauery TM, Korte JJ, Mistree F (2001) Krig-
ing models for global approximation in simulation-based
multidisciplinary design optimization. AIAA J 39(12):2233–
2241

Wang G, Shan S (2004) Design space reduction for multi-objective
optimization and robust design optimization problems. SAE Inter-
national, Warrendale

Wang G, Dong Z, Aitchison P (2001) Adaptive response surface
method—a global optimization scheme for approximation- based
design problems. J Mech Eng 33:707–733

Wang L, Shan S, Wang G (2004) Mode-pursuing sampling method for
global optimization on expensive black-box functions. Eng Optim
36(4):419–438

Webb G (1998) Exercise apparatus and associated method including
rheological fluid brake. US Patent 5749807

Weise T (2009) Global optimization algorithms, theory and applica-
tions. Accessed at: www.it-weise.de/projects/book.pdf

Weiss KD, Carlson JD, Nixon DA (1994) Viscoelastic properties of
magneto- and electrorheological fuids. J Intell Mater Syst Struct
5(11):772–775

Younis A, Dong Z (2009a) Metamodeling and search using space
exploration and unimodal region elimination in computation
intensive design optimization. J Eng Optimiz 42(6):517–533

Younis A, Dong Z (2009b) Global optimization using mixed surro-
gate models for computation intensive designs. In: 2nd Interna-
tional Symposium on Computational Mechanics (ISCM II), 12th
international conference on Enhancement and Promotion of Com-
putational Methods in Engineering and Science (EPMESC XII).
Hong Kong—Macau

Younis A, Xu R, Dong Z (2009) Approximated unimodal region elim-
ination based global optimization method for engineering design.
Intl J Prod Dev 9(1/2/3):164–187

Zabinsky ZB, Smith RL (1992) Pure adaptive search in global opti-
mization. Math Program 53:323–338

http://www.it-weise.de/projects/book.pdf

	Application of SEUMRE global optimization algorithm in automotive magnetorheological brake design
	Abstract
	Introduction
	Global optimization algorithms
	Genetic algorithm
	Simulated annealing
	Space exploration and region elimination algorithms

	Magnetorheological Brake (MRB) design optimization problem
	MRB model
	Formulation of the optimization problem
	Results of the optimization and discussions
	Conclusions
	Appendix 1: Sample of test results of SEUMRE method
	Appendix 2: Comparison of the resulting optimum design parameters and computational efficiency for different number of disks and weight coefficients
	References



