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Abstract Surrogate models are often used to replace expen-
sive simulations of engineering problems. The common
approach is to construct a series of metamodels based on
a training set, and then, from these surrogates, pick out the
best one with the highest accuracy as an approximation of
the computationally intensive simulation. However, because
the choice of approximate model depends on design of
experiments (DOEs), the traditional strategy thus increases
the risk of adopting an inappropriate model. Furthermore,
in the design of complex product system, because of its fea-
ture of one-of-a-kind production, acquiring more samples is
very expensive and intensively time-consuming, and some-
times even impossible. Therefore, in order to save sampling
cost, it is a reasonable strategy to take full advantage of all
the stand-alone surrogates and then combine them into an
ensemble model. Ensemble technique is an effective way
to make up for the shortfalls of traditional strategy. Moti-
vated by the previous research on ensemble of surrogates, a
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new technique for constructing of a more accurate ensem-
ble of surrogates is proposed in this paper. The weights are
obtained using a recursive process, in which the values of
these weights are updated in each iteration until the last
ensemble achieves a desirable prediction accuracy. This
technique has been evaluated using five benchmark prob-
lems and one reality problem. The results show that the
proposed ensemble of surrogates with recursive arithmetic
average provides more ideal prediction accuracy than the
stand-alone surrogates and for most problems even exceeds
the previously presented ensemble techniques. Finally, we
should point out that the advantages of combination over
selection are still difficult to illuminate. We are still using
an “insurance policy” mode rather than offering significant
improvements.

Keywords Metamodel · Surrogate · Ensemble ·
Design of experiment · Recursive arithmetic average

1 Introduction

With the continuing updating of CPU and escalation of
memory, the computer processing power has drastically
increased, but the computational cost of complex high-
fidelity engineering simulations often makes it impractical
to rely exclusively on simulation for design optimization
(Jin et al. 2001). Just taking Ford Motor Company as an
example, it reported that it takes the company about 36–160
h to run one crash simulation (Wang and Shan 2007). For
a two-dimension optimization problem, assuming that on
average 50 iterations are needed in the optimization process,
and assuming that each iteration requires one crash simula-
tion, then the total amount of computation time would reach
to as much as 75 days to 11 months, which is unacceptable
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in practice. In order to reduce the computational cost, sur-
rogate models (also referred to as “metamodels”) are used
to replace the expensive simulation models (Queipo et al.
2005; Viana et al. 2010). Surrogate evolves from the clas-
sical Design of Experiments (DOE) theory, in which the
polynomial model is known as “response surface model”.
Essentially, it is also a kind of surrogate. In addition to
commonly used polynomial model, Sacks et al. (1989a, b)
proposed a stochastic model, i.e., Kriging (Cresssie 1988),
to treat the deterministic computer response as a realiza-
tion of a random function with respect to the actual system
response. Neural networks are also often applied to simu-
late the responses for complex systems (Papadrakakis et al.
1998). Other types of metamodels include radial basis func-
tions (RBF) (Fang and Horstemeyer 2006), multivariate
adaptive regression splines (MARS) (Friedman 1991), least
interpolating polynomials (De Boor and Ron 1990), induc-
tive learning (Langley and Simon 1995), support vector
regression (SVR), and so on. In general, Kriging model is
more accurate for non-linear problems than other models
due to its capacity of interpolating the sample points and
filtering noisy data, but it is difficult to be obtained and used
because a global optimization process is involved to identify
the maximum likelihood estimators. In contrary to Kriging
model, polynomial models are relatively easy to be built
up and clear on parameter sensitivity but unsatisfactory in
accuracy because of the difficulty in determining its model
structure (its highest order and the number of items) (Jin
et al. 2001). The RBF model, particularly the multi-quadric
RBF, can interpolate sample points and is easy to build,
which thus seems to reach a trade-off between Kriging
models and polynomial models. SVR has been intensively
studied in the area of machine learning but seldom used in
computer experiment. Its capacity of fitting of data has been
tested and verified in Clarke et al. (2005), which shows that
the higher accuracy was achieved, compared with all other
metamodeling techniques including Kriging, polynomials,
RBF and MARS in a series of test problems. Just as the
author pointed out, the basic reasons why SVR outperforms
others are not clear. More recent and comprehensive reviews
of metamodeling can be traced to Kleijnen et al. (2005),
Wang and Shan (2007), Simpson et al. (2008) and Forrester
and Keane (2009).

If only one single predictor is desired, there are two
strategies for us to obtain the final prediction surrogate.
One is selection, which can be done using cross validation
(Picard and Cook 1984; Kohavi 1995); the other is combina-
tion, which can be traced to the development of committees
of neural networks by Perrone and Cooper (1993) with
further refinement by Bishop (1995). Zerpa et al. (2005)
and Goel et al. (2007) extended this idea to the ensem-
ble of metamodels. Goel et al. (2007) found that multiple
metamodels can be used to identify the regions of possible

high errors where predictions of metamodels differ widely.
Thereby this can guide the engineer to gather more sam-
ple points in this uncertain region to achieve more accurate
result. In addition, the authors also found that combining
of metamodels can provide us with a more robust ensem-
ble, which can effectively eliminate the negative impact
brought by inappropriate stand-alone metamodel, that is,
the use of multiple surrogates acts like an insurance pol-
icy against poorly fitted models, which is also confirmed by
Viana et al. (2009). Acar and Rais-Rohani (2009) proposed
a combining technique with optimized weight coefficients,
which are obtained by solving an optimization problem. The
technique in Acar and Rais-Rohani (2009) could achieve
a certain satisfactory result in some cases, nevertheless, it
has several deficiencies as following: (1) The optimization
problem used to determine the weight coefficients could not
ensure obtaining a global optimal solution, and is easily
trapped into a local optimum, and even has no local opti-
mal solution; and (2) The range of weight coefficients are
not constrained to wi ≥ 0 when solving the optimization
problem, as wi < 0 is difficult to be explained in actual
problems. In Acar and Rais-Rohani (2009), authors get the
weights by minimizing GMSE or RMSEv using a formal
optimization algorithm in MATLAB. In terms of minimiz-
ing RMSEv , the technique is essentially the same as the
Bishop’s approach on minimizing the mean square error
(MSE). Inspired by the works of Bishop (1995) and Acar
and Rais-Rohani (2009), Viana et al. (2009) also obtained
the weight coefficients by minimizing MSE. Viana et al.
(2009) got the solution of the weight via Lagrange mul-
tipliers, and the authors replaced the real error covariance
matrix C with cross-validation error matrix, with the corre-
sponding method named OWS (optimal weighted surrogate)
in the literature. However, OWS is essentially the same
as the approach based on minimizing GMSE in Acar and
Rais-Rohani (2009). In order to make the solution range
between zero and one, Viana et al. (2009) only used the
diagonal elements of C, with the corresponding method
named OWSdiag in the literature, and just as the authors
said in their paper, this method has similar structure and
prediction accuracy to the approach named heuristic com-
putation of the weights in Goel et al. (2007). In addition
to these ensemble techniques mentioned above, there are
several other ensemble techniques appeared in the litera-
tures, such as BestPRESS (Goel et al. 2007), OWSideal

Viana et al. (2009), and so on. Essentially, OWSideal Viana
et al. (2009) is the same as minimizing RMSEv in Acar and
Rais-Rohani (2009). The difference between them is that
RMSEv in Acar and Rais-Rohani (2009) employs a formal
optimization algorithm, while OWSideal Viana et al. (2009)
is obtained via Lagrange multipliers.

Motivated by the existing works, the ensemble technique
with recursive arithmetic average is proposed in this paper.
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The weights are obtained using a recursive process, in which
the values of these weights are updated in each iteration
until the last ensemble reach to a desirable prediction accu-
racy. This technique builds an ensemble of metamodels
by recursive arithmetic average several times rather than
arithmetically averaging the responses of the stand-alone
metamodels just once. In order to illustrate the performance
of the proposed technique, four types of metamodeling tech-
niques (polynomial function, Kriging, RBF and SVR) are
used to build up the ensemble, and these four stand-alone
metamoels as well as the existing ensemble techniques are
compared with the ensemble technique proposed in this
paper. The performances of these stand-alone metamodels
and all of the ensembles are evaluated by several commonly
used criteria (e.g., correlation (denoted by R), maximum
absolute error (MAE), average absolute error (AAE), root
of mean square error (RMSE), etc.). The experimental
results showed that the proposed ensemble of metamodels
with recursive arithmetic average provides more accurate
predictions than the stand-alone metamodels and for most
problems even exceeds the previously presented ensemble
techniques.

The remainder of this paper is organized as follows. In
the next section, we present the basic weighted-sum for-
mulation and the different techniques that can be used to
select the weight factors for the stand-alone metamodels.
In Section 3, the test problems are considered and the
numerical procedure for finding an ensemble with recur-
sive arithmetic average is presented. The presentation and
discussion of results is displayed in Section 4. At last, the
summary of several important conclusions is discussed in
Section 5.

2 Ensemble of surrogates

For a given problem, if all the candidate metamodels devel-
oped for a given high-fidelity simulation happen to have the
same level of accuracy, then a very straightforward form for
the ensemble would be a simple average of the surrogates.
However, for a specified problem the usual case is that there
are some models that are more accurate than others. There-
fore, in order to improve the accuracy of ensemble, the
stand-alone surrogates have to be multiplied by different
weight coefficients. Using the weight-sum formulation, the
ensemble of surrogates for approximation of response can
be expressed as:

ŷs(x) =
N

∑

i=1

wi (x)ŷi (x)

N
∑

i=1

wi (x) = 1 (1)

where x is input variable, ŷs(x) is the ensemble response, N
is the number of surrogates in the ensembles, wi (x) is the

weight coefficient for the i th surrogate, ŷi (x) is the response
estimated by the i th surrogate.

Generally, the weight coefficients are selected such that
the surrogates with high accuracy have large weight factor
and vice versa.

All of the ensembles of surrogates in literatures can be
divided into three categories:

(1) Combining surrogates by minimizing cross-validation
errors (GMSE; PRESS in particular), e.g., heuris-
tic computation of the weight coefficient (Goel et al.
2007), the approach based on minimizing GMSEv in
Acar and Rais-Rohani (2009), OWS, OWSdiag (Viana
et al. 2009), and BestPRESS (Goel et al. 2007; Viana
et al. 2009);

(2) Combining surrogates using prediction variance, e.g.,
the approach obtaining the weights based on variance
reciprocal (Bishop 1995; Zerpa et al. 2005);

(3) Combining surrogates by minimizing mean square
error (or root of mean square error (RMSE)), e.g.,
OWSideal (Viana et al. 2009), the approach based on
minimizing RMSEv in Acar and Rais-Rohani (2009).

In the first category, the weights are determined using
training points, but, in the second and third category, the
weight is determined using several validation points in test
set. The techniques determining the weights using cross
validation are time-consuming, while the ones using vali-
dation points all require additional simulations for response
determination. Depending on the type of surrogate and the
computational cost of simulation calculation, one error met-
ric (PRESS or RSME) would be less expensive to evaluate
than the others (PRESS or RSME). If the cost of obtain-
ing data required for developing surrogate models is high,
choosing PRESS as error metric would be a reasonable strat-
egy, for additional response validations at test set are needed
with RMSE. On the contrary, if the surrogate-constructing
is computationally costly, RMSE (or MSE) used as error
metric would be a better choice, for only a single surrogate
would be constructed with RMSE. The technique proposed
in this paper belongs to the third category. Next, the details
of all the ensembles are presented below.

2.1 Weight coefficients selection based
on prediction variance

Based on the work of Bishop (1995), Zerpa et al. (2005)
used the ensemble of surrogates including response surface
(RS) model, Kriging model and RBF model in the optimiza-
tion of an alkali-surfactant polymer flooding process, and
chose the prediction variance as the error metric. The values
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of the weight coefficients are determined by the following
formula:

wi = w∗
i

/

M
∑

i=1

w∗
i , w∗

i = 1

Vi
(2)

where Vi is the prediction variance of the i th surrogate.

2.2 Combining surrogates by minimizing
cross-validation errors

2.2.1 Heuristic computation of the weight coef f icient

Goel et al. (2007) proposed a heuristic method for calcu-
lating the weight coefficients, which is known as PRESS
(predicted residual sum of squares) weighted average sur-
rogate, where the weight coefficients are computed as:

wi = w∗
i

/

M
∑

i=1

w∗
i , w∗

i = (Ei + αEavg)
β,

Eavg = 1

n

n
∑

i=1

Ei , β < 0, α < 1 (3)

where Ei is the PRESS error of the i th surrogate, α, β

are used to control the importance of averaging and indi-
vidual PRESS respectively. Goel et al. (2007) suggested
α = 0.05, β = −1.

2.2.2 The approach based on minimizing GMSEv

Acar and Rais-Rohani (2009) proposed a method for deter-
mining the weight coefficients, which is achieved through
minimizing some error metric, such as PRESS error. The
optimization problem is presented as:

min εs = Err
{

ŷs
(

wi , ŷi (xk)
)

yi
(

xk), k = 1 ∈ N
}

s.t.
N

∑

i=1

wi = 1 (4)

where Err{·} is the selected error metric which mea-
sures the accuracy of the ensemble-predicted response ŷs .
The author adopted the generalized mean square cross-
validation error (GMSE; leave-one-out cross validation or
PRESS in polynomial response surface approximation ter-
minology) as one kind of the error metric.

2.2.3 OWS (Optimal weighted surrogate)

Employing an ensemble of neural networks, Bishop (1995)
proposed a weighted surrogate obtained by approximating

the covariance between surrogates from residuals at training
or test points, whose approach is based on mimizing the
MSE:

MSEWAS = 1

V

∫

V
e2

WAS(x)dx = wT Cw (5)

where eWAS(x) = y(x) − yWAS(x) is the error associated
with the prediction of the WAS ensemble model, and the
integral, which is taken over the domain interest, permits
the calculation of the elements of C as:

ci j = 1

V

∫

V
ei (x)e j (x)dx (6)

where ei (x) and e j (x) are the errors associated with the
prediction given by the surrogate model i and j respectively.

C plays the same role as the the covariance matrix in
Bishop’s formulation. But C is approximated by the vectors
of cross validation errors, ẽ,

ci j � 1

p
ẽT

i ẽ j (7)

where p is the number of data points and the i and j indicate
different surrogates.

Given the C matrix, the optimal weighted surrogate
(OWS) is obtained by minimizing the MSE as:

min
w

MSEWAS = wT Cw (8)

s.t. 1T w = 1.
Using Lagrange multipliers, the solution is obtained as:

w = C−11
1T C−11

(9)

The weight in the formulation above may less than zero or
larger than one, whose meaning is difficult to explain in real
world, and, as pointed out by Viana et al. (2009), allow-
ing this freedom was found to amplify errors coming from
the approximation of matrix (7). In Viana et al. (2009), the
author enforced the weight positive by solving (9) using
only the diagonal elements of C . The approach is named
OWSdiag .

After examining formulas (4) and (9), we can find that
both approaches actually the same, for both of them are all
based on minimizing cross validation (especially PRESS;
GMSE). The difference between them is that the approach
in Acar and Rais-Rohani (2009) obtains the weights through
a optimization process, while the approach in Viana et al.
(2009) obtains the weights through an analysis expression,
however, both approaches have exactly the same solution.
Thereby, in order to avoid replication, OWS is not included
in the rest of this paper.
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2.2.4 BestPRESS

The traditional method of using an ensemble of surrogates
is to select the best surrogate among all of the considered
models. However, once the choice is made, the surrogate is
fixed even though the design of experiments is changed. If
the choice is refined for each new DOE, we can included
it in the strategies for multiple surrogates, where the model
with least error is assigned a weight of one and all others
are assigned zero weight. Just as many literatures do, we
also call this strategy BestPRESS model.

2.3 Combining surrogates by minimizing mean square
error (MSE) (or root of mean square error (RMSE))

2.3.1 OWSideal : the approach based on minimizing
RMSEv in Acar and Rais-Rohani (2009)

In formula (7), if ẽ is the real MSE in validation point
set rather than the cross-validation in training set, then C
is not the cross-validation error covariance matrix but the
real error covariance matrix in formula (9). Just as we
have pointed out above, OWSideal is exactly the same as
the approach based on minimizing RMSEv in Acar and
Rais-Rohani (2009). In Acar and Rais-Rohani (2009), the
RMSEv (where v is number of validation points in test set)
is chosen as the error metric in formula (4). Therefore,
in order to avoid replication, the remainder of this paper
doesn’t include OWSideal .

2.3.2 The strategy proposed in this paper-ensemble
of surrogates with recursive arithmetic average

As having been mentioned above, most of the ensemble
techniques obtain the weights by either minimizing cross-
validation errors or minimizing RMSE (or MSE). Although
the techniques using cross-validation errors don’t require
additional validation points, they must be constructed many
times, thereby, they are time-consuming. On the contrary,
the techniques with RMSE (or MSE) need additional vali-
dation points, but these approaches only need to construct
the surrogates once, so they are time-saving. In addition,
when the value of RMSE at the test points is used as the
error criterion, the techniques using RSME usually have
better results, for the error metric employed in obtaining
the weights is the same as that in measuring the prediction
accuracy (they all use RMSE). The technique proposed in
this paper also employs the prediction mean square error as
the error metric.

In all of the combining techniques, the simplest and
straight forward approach is to arithmetically average these
single surrogates. Nevertheless, arithmetically averaging the
stand-alone surrogates just once would not minimize the

prediction mean square error. In order to make the predic-
tion mean square error as low as possible, we consider to
employ recursive process. Generally, the iteration in recur-
sive process should be repeated several times, how many
of which depends on the specified stop criterion. In this
strategy, the algorithm stops when the prediction MSE of
the worst surrogate approaches to that of the best surro-
gate. In other words, all the updated surrogates in the last
iteration have similar prediction results (i.e., similar pre-
diction MSEs). Furthermore, we should point out that the
surrogates in the recursive process are not the initial sin-
gle surrogates but the combining surrogates obtained using
arithmetically averaging. The basic frame of this algorithm
is as follows:

Input: Initial weight coefficients
Step 0: Fit the training data {x j }, j = 1, 2, ...., T (where

T is the number of the training points) with N
candidate surrogates;

Step 1: Calculate their prediction mean square errors:

ei = 1
T

T
∑

j=1
(Suri j − ̂Suri j )

2, i = 1, 2, ...., N

(where ̂Suri j is the prediction value on the j th
validation point of the i th individual surrogate)
on the validation points;

Step 2: Find out the worst individual surrogate (i.e., the
surrogate that has the largest prediction MSE,
denoted by Surworst , and its corresponding pre-
diction MSE is denoted by MSEW orst Sur ) and
the best surrogate (i.e., the surrogate that has
the smallest prediction MSE, denoted by Surbest ,
and its corresponding prediction MSE is denoted
by MSEBest Sur ).
While(MSEW orst Sur − MSEBest Sur > tol)D

Step 3: Obtain the arithmetic average of the candidate N
surrogates; that is, all the candidate single sur-
rogates are added, and then divided by the total
number of all the candidate surrogates; denote
this average ensemble model using Surave;

Step 4: Replace the surrogate which has the largest pre-
diction MSE (i.e. Surworst ) with the simple aver-
age surrogate (i.e. Surave) made in step 3 (this
surrogate replaced by average surrogate may be
one of the initial candidate surrogates or the
average ensemble model in the previous time),
then we can get N new surrogates, of which
N − 1 surrogates are not changed; calculate and
then update the weights for the initial individual
surrogates;

Step 5: Do the same work as that in step 2; if the con-
dition in while (·) is met, then return to step 3,
otherwise break out of the loop.
EndWhile

Output: Optimal weight cofficients
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Such iteration will be taken until the prediction MSE has
no significant improvement. In the algorithm above, tol is
the tolerant value determined in advance (e.g., tol = 0.01).
Next, the convergence of the above-mentioned algorithm is
presented as follows.

For a problem, there are N kinds of surrogates Sur1,

Sur2, ..., SurN , the weight for Suri is wi , and
N
∑

i=1
wi = 1.

Assume the prediction value and prediction error of the
i th surrogate Suri on the j th data point respectively are
Suri j and ei j , j = 1, 2, ...., T (where T is the number of
the training points), then the prediction value and predic-
tion error of the simple average surrogate Surave on the

j th data point respectively are Surave( j) =
N
∑

i=1
wi Suri j

and eave( j) =
N
∑

i=1
wi ei j . Denote the weight vector by

W = [w1, w2, ...wN ]T , denote the prediction error vector
of the Suri by Ei = [ei1, ei2, ...eiT ]T , denote the prediction
error matrix by e = [E1, E2, ...EN ], and denote the sum of
prediction square error of the simple average surrogate by J ,
then the following stands:

J = W T EW, (10)

where

E = eT e =

⎡

⎢

⎢

⎢

⎣

E11 E12 . . . E1N

E21 E22 . . . E2N
...

...
...

...

EN1 EN2 . . . EN N

⎤

⎥

⎥

⎥

⎦

,

and where

Ei j = ET
i E j =

N
∑

i=1

eit e j t .

Apparently, Eii is the sum of prediction square error of
Suri .

Based on the description above, we have the following
lemma.

Lemma 1 Assume the prediction error vector E1, E2, ...,EN

is linear independent, and denote the sum of prediction
square error of the simple average surrogate by JA, then

JA < Jmax. (11)

Proof The weights of the simple average surrogate is

WA = [1/N , 1/N , ...1/N ]T , (12)

and

JA = W T
A EWA = 1

N 2

N
∑

i=1

N
∑

j=1

T
∑

t=1

eit e j t . (13)

Because E1, E2, ..., EN is linear independent, then

N
∑

t=1

eit e j t <

√

√

√

√

N
∑

t=1

e2
i t

√

√

√

√

N
∑

t=1

e2
j t

= √

Eii
√

E j j

≤ √

Jmax

√

Jmax = Jmax, (14)

so,

JA <
1

N 2

N
∑

i=1

N
∑

j=1

Jmax = Jmax.

The proof is finished. �	

Theorem 1 Denote the error vector which is obtained by
replacing the worst surrogate with the simple average sur-
rogate (i.e. Surave) in kth iteration by

E (k) =
(

E (k)
11 , E (k)

22 , ...E (k)
N N

)

, (15)

then

lim
k→∞ E (k) = (d, d, ....d), (16)

where, d = M SEBest Sur .

Proof Denote E (0)
max = max{Eii } and E (k)

max = max{E (k)
i i },

where i = 1, 2, ...N . Because the worst surrogate is
replaced by the simple average surrogate in each iteration,
according to lemma 1, E (0)

max > E (1)
max > ... > E (k)

max > ....
On the other hand, the best initial surrogate is not changed
in each iteration, then E (k)

max ≥ M SEBest Sur . Because it is

monotonous and bounded, the data serial
{

E (k)
max

}∞
k=0

has its

limit, denoted by d , i.e., lim
k→∞ E (k)

max = d .

Apparently, d ≥ M SEBest Sur . Next, we will prove d =
M SEBest Sur . In fact, if d > M SEBest Sur , according to
lemma 1, we can replace the worst surrogate with the sim-
ple average surrogate, then the prediction MSE of the worst
surrogate will less than d in the next iteration, which is con-
tradict to the conclusion lim

k→∞ E (k)
max = d . Therefore, d =

M SEBest Sur , i.e., lim
k→∞ E (k)

max = M SEBest Sur .

Furthermore, denote E (0)
min = min{Eii } and E (k)

min =
min{E (k)

i i }, we can easily know E (0)
min = E (1)

min = ... =
E (k)

min = ... = M SEBest Sur . So, lim
k→∞ E (k) = (d, d, ....d),

where d = M SEBest Sur . The proof is finished. �	
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The technique proposed in this paper has several differ-
ences from the existing ensemble techniques:

(1) Because cross-validation often tends to overestimate
errors, the real gain in accuracy of the ensemble tech-
nique based on cross-validation is limited, the illustra-
tion about which is presented in Viana et al. (2009).
However, as for the third class of ensemble technique
based on minimizing RMSE mentioned above, if the
validation points are acquired easily, we can consider
to get more validation points to construct the ensemble.
Generally, the more validation points are used to deter-
mine the weights in ensemble of surrogates, the better
prediction accuracy can be achieved by the ensem-
ble. If the validation point set is large, the prediction
MSE of the ensemble of surrogates would approache
to that of the BestRMSE (Viana et al. 2009). In the
process of obtaining the weights, the validation points
are also needed in the technique proposed here, and
with recursive scheme, the proposed technique can
achieve desirable results. In a word, the technique pro-
posed in this paper is based on minimizing RMSE, and,
because it adopt recursive process, has an ideal predic-
tion capacity, which is the difference of the proposed
technique in this paper from those techniques based
on minimizing cross-validation (especially, GMSE;
PRESS).

(2) As for OWSideal (Bishop 1995; Viana et al. 2009),
using Lagrange multipliers to get the weight solution
can neither ensure the weights larger than or equal
to one nor ensure not less than zero, whose physical
meaning in many circumstances is difficult to explain.
Similarly, the approach based on minimizing RMSEv

(Acar and Rais-Rohani 2009) also hasn’t added the
condition wi ≥ 0 into formula (4). If wi ≥ 0 is
added into formula (4), the analysis expression like (9)
cannot been obtained, and a lot of iterations in sim-
plex method of operational research or other formal
intelligent optimization algorithm would be needed.
Thereby, when the dimension of the problem is large,
the optimization process is also time-consuming. So, a
simple and straight-forward approach is needed. Arith-
metic average ensemble surrogate proposed in this
paper can ensure the weights nonnegative and not
larger than one, which is convenient to explain the
importance of each candidate single surrogate.

(3) As mentioned in (2), the optimization process is also
time-consuming, especially in problems with large
dimensions. On the contrary, recursive process is time-
saving compared to optimization process. The number
of iterations is effected by tol and usually is a dozen or
dozens, so it executes more quickly than optimization

process. The experiment results presented in the end of
Section 4 confirm this.

3 Experiments

3.1 Benchmark problems

In order to test the proposed technique in this paper, we
choose the following analytic functions that are commonly
used as benchmark problems in literatures.

Branin–Hoo:

y(x1, x2) =
(

x2 − 5.1x2
1

4π2
+ 5x1

π
− 6

)2

+ 10

(

1 − 1

8π

)

cos
(

x1
) + 10 (17)

where x1 ∈ [−5, 10], x2 ∈ [0, 15].
CamelBack:

y
(

x1, x2
) =

(

4 − 2.1x2
1 + x4

1

3

)

x2
1 + x1x2

+
(

−4 + 4x2
2

)

x2
2 (18)

where x1 ∈ [−3, 3], x2 ∈ [−2, 2].
Goldstein–Price:

y
(

x1, x2
) =

[

1 + (

x1 + x2 + 1
)2

×
(

19 − 4x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2

)]

×
[

30 + (

2x1 − 3x2
)2

×
(

18 − 32x1 + 12x2
1

+ 48x2 − 36x1x2 + 27x2
2

)]

(19)

where x1, x2 ∈ [−2, 2].
Hartman:

y(x) = −
m

∑

i=1

ci exp

⎡

⎣−
n

∑

j=1

ai j
(

x j − pi j
)2

⎤

⎦ (20)

where xi ∈ [0, 1].
Both the three-variables (n = 3) and the six-variables

(n = 6) models of this function are considered. The val-
ues of function parameters ci , pi j , ai j for Hartman-3 and
Hartman-6 models, given in Tables 1 and 2, are taken from
Goel et al. (2007) and Acar and Rais-Rohani (2009). For the
chosen examples, m = 4.
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Table 1 Parameters used in Hartman function with three variables

i ai j ci pi j

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673

2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470

3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547

4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828

3.2 Abalone problems

In the prediction of the life-span of abalone, every sam-
ple of abalone includes the following eight indicators: sex,
length, diameter, thickness, total weight, the weight apart
from shell, the weight of guts, and the weight of shell.
The life-span of abalone is predicted according to the
above-mentioned indicators. We choose 200 samples for
this experiment from http://archive.ics.uci.edu/ml/datasets/
Abalone.

3.3 Design and analysis of computer experiments

As for these five test functions presented in formulas (17)–
(20) and the Abalone problem, all of them use the Latin
hypercube sampling (LHS). Some people also call it the
symmetrical LHS sample to distinguish from Latin hyper-
cube(LH), which keeps the mid-point principle. These kinds
of sampling have a better nature than Monte-Carlo sampling
(or call it simple random sampling). In this paper we have
adopted the principle of maximizing the minimum distance,
which refers to finding the set of sample that meets the for-
mula max{min

i �= j
d(xi , x j )} (where d is some kind of criterion

to measure distance) in n (n = 20 in benchmark problems
and n = 80 in Abalone problem) times repeated sampling.

In order to reduce the influence of random factors, we
randomly select 1,000 training sets for these three test func-
tions expressed in formulas (17)–(19) and the Hartman-3.
However, considering the computational cost, we select
200 training sets for Hartman-6 and 500 ones for Abalone.
Depending on the number of input variables, and con-
sidering the computational cost, the training set for each
benchmark problem is composed of 12–60 design points,
which are the same as that in Acar and Rais-Rohani (2009).
For these ensembles which depend on minimizing RMSE

Table 3 Summary of training and test data used in each benchmark
problem

Benchmark Design Training Design Test

problem variables sets point point

Branin–Hoo 2 1,000 12 441

Camelback 2 1,000 12 441

Goldstein–Price 2 1,000 12 441

Hartman-3 3 1,000 20 441

Hartman-6 6 200 56 512

Abalone 8 500 60 140

(or prediction MSE), there are additional validation points
needed. Depending on the precision level sought for esti-
mating the error, the number of validation points, denoted
by V , will vary with different problem. V = 0.8N (where
N is the no. of training points) was used in these approaches
based on minimizing RMSE (certainly including the tech-
nique proposed in this paper). Hence, all the corresponding
surrogates, including stand-alone surrogates and ensembles,
are constructed multiple times with the error estimation
being the average value corresponding to multiple replica-
tion of the same surrogate. Additional information about the
training and test data sets is provided in Table 3.

The accuracies of each stand-alone and ensemble model
for the benchmark problems are measured using correla-
tion coefficient (denoted by R), root mean square error
(RMSE), average absolute error (AAE), and max absolute
error (MAE). Their definitions are expressed as:

Root mean square error:

RM SE =
√

∑nerror

i=1

(

yi − ŷ
)2

/nerror

Average absolute error:

AAE =
∑nerror

i=1

∣

∣yi − ŷ
∣

∣/nerror

Max absolute error:

M AE = max
∣

∣yi − ŷ
∣

∣, i = 1, ......, nerror

Table 2 Parameters used in Hartman function with six variables

i ai j ci pi j

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

http://archive.ics.uci.edu/ml/datasets/Abalone
http://archive.ics.uci.edu/ml/datasets/Abalone
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Correlation coefficient:

R
(

y, ŷ
) =

1
V

∫

V

(

y − y
)(

ŷ − ŷ
)

dv

δ(y)δ
(

ŷ
)

1

V

∫

V

y ŷdv =
∑nerror

i=1
yi ŷi/nerror ,

y =
∑nerror

i=1
yi/nerror ,

δ(y) =
√

∑nerror

i=1

(

yi − y
)2

/nerror

In these four definitions above, nerror is the number of the
samples in the test set, yi is the actual response, y is average
value of actual response, ŷ is the metamodel response, ŷ is
the average value of metamodel response.

Because the experiments are repeated 1,000 (200 or 500)
times, the mean and the coefficient of variation (CV) of R,
RMAE, AAE, and MAE are used to evaluate the predic-
tion accuracy of each stand-alone metamodel and ensemble
model. The definition of CV is expressed as:

CV = δ
/

μ

where δ is the standard variance of samples, and μ is the
mean of samples.

3.4 Ensemble techniques

There are four techniques considered in this paper: PRS,
KRG, SVR, and RBF. These surrogates are used as the
four members of the ensemble that is developed based on
the several previously described techniques. All the param-
eters are identified using cross-validation (leave-one-out
(LOO) is adopted in this paper) such that they minimize
the MSE. In all the above-mentioned surrogates, the fol-
lowing parameters should be identified: the highest order
(denoted by d) in PRS, the parameter (c) in multiquadrics
of RBF, the parameter (θ ) in Gassian correlation function
of Kriging, and the parameter (C, ε, σ ) in SVR. The LOO
cross-validation results are presented in Table 4. The mathe-
matical descriptions of the five metamodels are provided in
the Appendix A.

4 Results and analysis of experiments

Part of the marks used to label the ensemble techniques is
inherited from Acar and Rais-Rohani (2009). The model
based on the simple average is denoted by EA; the one based
on the heuristic method of Goel et al. (2007) is labeled
as EG; the one based on the prediction variance of Zerpa
et al. (2005) is denoted by EV; the one based on mini-
mizing PRESS (GMSE) in Acar and Rais-Rohani (2009)
is labeled as EP; the one based on minimizing RMSEv in
Acar and Rais-Rohani (2009) is labeled as EM; OWSdiag in
Viana et al. (2009) is denoted by Od; BestPRESS is denoted
by BP; and the one proposed in this paper is denoted by
ER. The results of different benchmark problems are shown
with the help of boxplots (the description of boxplot is pro-
vided in the Appendix B), and the means and CVs of the
error metrics are presented with several tables. Addition-
ally, to facilitate comparison of the performances of the the
ensembles and single surrogates, the frequencies of the rank
of them in terms of R, RMSE, AAE, and MAE are also
presented with other several tables.

4.1 Correlation coefficient

The correlation coefficients for different test functions are
shown in Fig. 1, from which we can see: (1) No single
metamodel works best for all test functions and correla-
tion coefficient for different stand-alone metamodel varied
with DOE significantly; the eight ensemble models work
better than the worst stand-alone metamodel, and corre-
lation coefficient for ensemble model varied with DOE
insignificantly; (2) In almost all of the test problems,
although EM and ER have similar median, and have bet-
ter performance than the other ensemble models, EM has
longer tail, which indicates that EM is less robust than ER;
(3) EP has the worst performance among all the ensembles
for A, B, and C; (4) BP has the second worst performance in
A and B, and has the worst performance in D, which reveals
that BP can not capture the real error perfectly, that is, BP
can not find the best single surrogate according to the cross-
validation in most of the replications; and (5) At last, it is
worthy noting that, in all the test problems, EG and Od have
the similar results.

Table 4 Summary of LOO
cross-validation results for the
parameters in all of the
surrogates

Benchmark problem d in PRS θ in KRG C, ε, σ in SVR c in RBF

Branin–Hoo 2 7 C = 1e3, ε = 0.15, σ = 7 5

Camelback 2 12 C = 1e3, ε = 0.15, σ = 7 0

Goldstein–Price 2 12 C = 1e6, ε = 1e − 4, σ = 1 2

Hartman-3 2 8 C = 10, ε = 0.015, σ = 0.7 2

Hartman-6 4 8 C = 10, ε = 0.015, σ = 0.7 2

Abalone 2 40 C = 1e3, ε = 0.01, σ = 4 0
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Fig. 1 Correlations between actual and predicted response for different surrogate models. a Branin–Hoo, b Camelback, c Goldstein–Price,
d Hartman-3, e Hartman-6, f Abalone
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Table 5 Mean and CV (in parenthesis) of correlation coefficient between actual and predicted response (based on 1,000/200/500 DOEs) for
different metamodels, the highest value in each category is shown in bold for ease of comparison

Branin–Hoo Camelback Goldstein–Price Hartman-3 Hartman-6 Abalone

RBF 0.8985 (0.0606) 0.7678 (0.065) 0.8386 (0.1042) 0.7351 (0.1806) 0.962 (0.011) 0.7703 (0.0573)

SVR 0.9155 (0.0495) 0.6729 (0.1427) 0.7661 (0.1708) 0.889 (0.0497) 0.9532 (0.0153) 0.5866 (0.2908)

KRG 0.8616 (0.1041) 0.5276 (0.1713) 0.6826 (0.3009) 0.8672 (0.0666) 0.9303 (0.1416) 0.6681 (0.0985)

PRS 0.8017 (0.0816) 0.7583 (0.0829) 0.7941 (0.0746) 0.8862 (0.0433) 0.989 (0.0036) 0.2798 (0.5704)

EG 0.9025 (0.0559) 0.754 (0.0728) 0.8224 (0.1118) 0.8943 (0.0364) 0.9826 (0.004) 0.7580 (0.0792)

EP 0.845 (0.1332) 0.5919 (0.3809) 0.7742 (0.2109) 0.8589 (0.0771) 0.9882 (0.0037) 0.7428 (0.1093)

Od 0.9025 (0.0559) 0.754 (0.0728) 0.8224 (0.1118) 0.8944 (0.0365) 0.9856 (0.0037) 0.7581 (0.0790)

EM 0.9175 (0.0608) 0.7549 (0.1305) 0.8302 (0.1951) 0.889 (0.0427) 0.9891 (0.0031) 0.7638 (0.0821)

BP 0.8689 (0.0913) 0.6862 (0.1798) 0.7904 (0.1695) 0.8725 (0.0687) 0.9883 (0.0051) 0.7404 (0.1654)

EV 0.9084 (0.0518) 0.7642 (0.0672) 0.8369 (0.0951) 0.8978 (0.0332) 0.9865 (0.004) 0.7648 (0.0783)

EA 0.9006 (0.0538) 0.7538 (0.071) 0.8329 (0.0969) 0.8767 (0.0483) 0.9761 (0.0072) 0.5846 (0.2694)

ER 0.9153 (0.049) 0.7724 (0.0682) 0.8434 (0.0911) 0.9002 (0.0298) 0.9888 (0.0033) 0.7717 (0.0663)

Table 5 shows the mean and the coefficient of varia-
tion for different test functions to assess the performance of
different metamodels. It is clear that the average correlation
coefficient for ER was the best for almost all the test func-
tions except Branin–Hoo and Hartman-6. On the contrary,
EM has a best performance in Branin–Hoo and Hartman-
6. In addition, it is interesting that, in low dimensional
problems, such as Branin–Hoo, Camelback, and Goldstein–
Price, EG and Od have exactly the same result, and in high
dimensional problems, such as Hartman-3, Hartman-6, and
Abalone, although their results are not the same, their results
are similar. Combining Table 6 to Table 5, we can find that
besides four times of 1st, there are two times of 3rd in ER,
that is, ER has an ideal result in all of the six test problems,
which indicates ER has a robust prediction capacity. On the
other hand, the performances of the other ensembles and all
the individual surrogates vary apparently with test problems.
Even the second best ensemble, EM, performs well just in

two test problems, but in the other problems, it doesn’t per-
form perfectly, just one time of 4th and three times of 5th.
The third best model is RBF. Though RBF is inferior to ER
and EM, it is still the best in all of the individual surrogates,
and it seems has certain reasonable robust results.

4.2 RMSE

Next, we compare different metamodels based on the
RMSE in predictions at test points. As shown in Fig. 2,
we can see: (1) RBF has the best performance in all of the
stand-alone metamodels in problem B, C, and F, its pre-
diction accurate is par with the best ensemble model; In
addition, PRS was either the best or the second best for
all the test problems in all of the stand-alone metamod-
els; (2) Generally, all of these eight ensemble models are
better than the worst stand-alone metamodel, and RMSE
for ensemble models didn’t vary with DOE significantly,

Table 6 Frequency of the rank
of the ensemble surrogates and
the individual surrogates in the
ensembles for all the benchmark
problems and Abalone problem
(the total number of problems is
six), and the error metric is
correlation coefficient

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th Total

RBF – 3 – – – – – 1 – 1 – 1 6

SVR – 1 – – – 1 – – – 2 2 – 6

KRG – – – – – – – – 1 2 – 3 6

PRS – 1 – 1 – – 1 1 – – – 2 6

EG – – – 1 1 2 1 1 – – – – 6

EP – – – – 1 – 1 – – 1 3 – 6

Od – – 1 – 1 2 2 – – – – – 6

EM 2 – – 1 3 – – – – – – – 6

BP – – – 1 – – – 1 4 – – – 6

EV – 1 3 1 1 – – – – – – 6

EA – – – 1 – – 1 2 1 – 1 – 6

ER 4 – 2 – – – – – – – – – 6
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Fig. 2 RMSE for different surrogate models. a Branin–Hoo, b Camelback, c Goldstein–Price, d Hartman-3, e Hartman-6, f Abalone
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Table 7 Mean and CV of RMSE for different metamodels, the lowest value in each category is shown in bold for ease of comparison

Branin–Hoo Camelback Goldstein–Price Hartman-3 Hartman-6 Abalone

RBF 22.7999 (0.2556) 17.5359 (0.0953) 75,561.4431 (0.2435) 1.03 (0.335) 0.3205 (0.136) 2.4271 (0.0937)

SVR 21.0289 (0.2527) 21.1345 (0.07) 83,727.7761 (0.2431) 0.5388 (0.1577) 0.353 (0.1438) 3.8816 (0.2447)

KRG 26.0097 (0.2833) 23.0588 (0.0748) 91,279.917 (0.2529) 0.5824 (0.1552) 0.3798 (0.3383) 2.7764 (0.0848)

PRS 33.5966 (0.184) 18.5474 (0.1812) 87,716.7881 (0.2054) 0.5642 (0.1834) 0.1716 (0.1526) 13.1735 (0.5685)

EG 22.6632 (0.2488) 18.3123 (0.0866) 78,633.1366 (0.2502) 0.5275 (0.1351) 0.2166 (0.112) 2.5157 (0.1227)

EP 28.6822 (0.3768) 23.127 (0.3099) 86,662.5008 (0.3136) 0.6132 (0.2253) 0.1772 (0.1471) 2.6141 (0.2013)

Od 22.6632 (0.2488) 18.3123 (0.0866) 78,633.1366 (0.2502) 0.5275 (0.1363) 0.1965 (0.1278) 2.5152 (0.1224)

EM 20.7718 (0.3358) 18.495 (0.2002) 74,107.4594 (0.3402) 0.5417 (0.1602) 0.1697 (0.1354) 2.4633 (0.1664)

BP 25.7626 (0.2828) 19.8679 (0.1606) 81,685.6578 (0.2426) 0.5858 (0.2042) 0.1758 (0.1893) 2.5812 (0.2004)

EV 21.8817 (0.243) 17.8344 (0.0853) 75,288.8687 (0.2555) 0.5167 (0.1288) 0.1892 (0.1419) 2.4617 (0.1625)

EA 23.0023 (0.2299) 18.2824 (0.0795) 76,377.3937 (0.2541) 0.5709 (0.1502) 0.2579 (0.144) 4.1356 (0.4929)

ER 20.9243 (0.2487) 17.4485 (0.0981) 73,666.9996 (0.248) 0.5112 (0.1216) 0.1722 (0.1398) 2.4053 (0.1316)

which suggestes the ensemble models are more robust; (3)
Stand-alone model on the whole has worse prediction accu-
racy than ensemble model, which indicates the necessity of
adopting the ensemble techniques; and (4) The technique of
ER proposed in this paper has better performance than the
other ensemble models in RMSE.

Table 7 shows that the average RMSE for ER was the
best for almost all the test functions except Branin-Hoo and
Hartman-6. Although the average RMSE for ER in Branin–
Hoo is gently larger than EM, ER has a lower CV, which
indicates that ER is more robust than EM in Branin–Hoo.

Table 8 complements Table 7 and shows the frequencies
of the rank of all the ensembles and individual surrogates
in the ensembles. From the table, we can see that the result
is similar to that in Table 6. For all of the benchmark prob-
lems and Abalone problem, ER is the first for four times,
is the second for one time, and is the third for one time.
Apparently, ER is the best model in all of the ensembles
and individual models in terms of RMSE. The second best

model is EM, and the third best model is the single surrogate
RBF.

4.3 AAE

Figure 3 shows the AAE for different metamodels on
different test functions. It shows us the following findings:
(1) For problem A, PRS has a higher AAE than the rest indi-
vidual metamodels; there are three individual metamodels
which have similar AAEs, which may be the reason why
these eight ensemble models also have similar AAEs. (2)
For the test problem D, E, and F, the ensemble models have
significantly lower AAE than the worst individual surrogate.
(3) For problem F, PRS has the worst result, which possi-
bly suggest that PRS is actually not suitable for such kind
of problems; and because of PRS’s bad performance, EA
has a similarly bad result. (4) Being similar to PRS in F,
RBF is also not suit for D; but in A, B, C and F, RBF has
ideal results, which indicates the performance of surrogate

Table 8 Frequency of the rank
of the ensemble surrogates and
the individual surrogates in the
ensembles for all the benchmark
problems and Abalone problem
(the total number of problems is
six), and the error metric is
RMSE

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th Total

RBF – 2 – 1 – – 1 – – 1 – 1 6

SVR – – 1 – 1 – – – 1 2 1 – 6

KRG – – – – – – – – 2 1 1 2 6

PRS – 1 – – – – 1 1 – – 1 2 6

EG – – 1 – 1 2 1 1 – – – – 6

EP – – – – 1 – – 1 – 1 2 1 6

Od – – – 1 2 2 1 – – – – – 6

EM 2 1 – 1 – 1 1 – – – – – 6

BP – – – 1 – – 1 1 2 1 – – 6

EV – 1 3 1 – 1 – – – – – – 6

EA – – – 1 1 – – 2 1 – 1 – 6

ER 4 1 1 – – – – – – – – – 6
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Fig. 3 AAE for different surrogate models. a Branin–Hoo, b Camelback, c Goldstein–Price, d Hartman-3, e Hartman-6, f Abalone



Ensemble of surrogates with recursive arithmetic average 665

Table 9 Mean and CV of AAE for different metamodels, the lowest value in each category is shown in bold for ease of comparison

Branin–Hoo Camelback Goldstein–Price Hartman-3 Hartman-6 Abalone

RBF 14.4519 (0.2082) 11.2727 (0.1027) 36,679.175 (0.2101) 0.6827 (0.3337) 0.2431 (0.1293) 1.556 (0.1014)

SVR 13.73 (0.2219) 15.2986 (0.0949) 39,375.2395 (0.1612) 0.3877 (0.1635) 0.2709 (0.1491) 3.0463 (0.2319)

KRG 16.7237 (0.2812) 15.245 (0.1117) 41,927.5562 (0.1906) 0.4087 (0.1751) 0.2911 (0.3955) 1.7918 (0.0981)

PRS 23.7886 (0.1749) 13.2713 (0.1991) 51,316.771 (0.3272) 0.4096 (0.1776) 0.1343 (0.1456) 5.0286 (0.3196)

EG 14.5383 (0.2088) 12.0577 (0.1009) 36,098.5254 (0.1814) 0.367 (0.1284) 0.1658 (0.1078) 1.8129 (0.0953)

EP 19.3623 (0.373) 16.542 (0.3475) 43,921.8599 (0.3823) 0.4354 (0.2226) 0.1374 (0.1416) 1.7974 (0.1275)

Od 14.5383 (0.2088) 12.0577 (0.1009) 36,098.5254 (0.1814) 0.3672 (0.129) 0.151 (0.1231) 1.8125 (0.0953)

EM 14.0549 (0.3019) 13.1827 (0.2077) 40,091.8514 (0.3533) 0.3881 (0.153) 0.1322 (0.1269) 1.6653 (0.1198)

BP 16.6824 (0.2864) 13.374 (0.1902) 40,112.9957 (0.2347) 0.4127 (0.1961) 0.1374 (0.1795) 1.7165 (0.2976)

EV 13.995 (0.2122) 11.6794 (0.091) 35,012.6802 (0.1796) 0.361 (0.1166) 0.1457 (0.1346) 1.7449 (0.1063)

EA 14.8322 (0.2016) 11.9761 (0.0824) 35,495.4535 (0.1881) 0.3955 (0.1468) 0.1984 (0.1531) 2.2763 (0.1933)

ER 13.5391 (0.2212) 11.7025 (0.1216) 35,340.7912 (0.1844) 0.3615 (0.1096) 0.1339 (0.1303) 1.6335 (0.1103)

is problem-dependent. Additionally, from Table 9, we can
see that RBF performance best in Camelback and Abalone,
EV performance best in Goldstein–Price and Hartman-6,
and ER performance best just in Branin-Hoo. In addition,
Table 10 shows that RBF and EV have the highest frequency
of 1st, and the EM and ER have the second highest fre-
quency of 1st. But ER has the highest times (four times) of
2nd in all of the ensembles and individual surrogates. Com-
bining the times in the 1st, 2nd, and 3rd, and considering
the robustness, we think that the best robust model should
be ER, the second should be EV, and the third should be EV.

4.4 MAE

Next, the MAEs of different metamodels for different test
functions are compared. Figure 4 shows that, for A and C,
all of these models, including ensembles and single surro-
gates, have similar MAEs, but in the other problems, the
difference in MAE is apparent; for B, EP has a worst per-
formance in all of the ensembles, and it has a long tail in the

figure, which means it has a larger deviation; for D and F,
the worst models is RBF and PRS respectively.

Numerical quantification of the results is given in
Table 11, where we can observe that ER is not the best
model in all of the problems, EM perform best in three test
problems, and other three single surrogates all perform best
in one problem. With the help of Table 12, we also find that
the best model may be EM. But combining the times of the
1st, 2nd, and 3rd, it is easy to find that ER is also a more
reasonable robust model than the single surrogate, such as,
RBF, SVR, and PRS.

4.5 The effect of the number of the validation points

All of the results above all are under the consideration of
V = 0.8N in ER, EM, Od, and EV. In order to examine the
effect of the number of the validation points V on the predic-
tion results of all the ensemble surrogates, V = 0.3N and
V = 0.5N are also considered in the following experiments.
Considering the length of this article, however, we just

Table 10 Frequency of the rank
of the ensemble surrogates and
the individual surrogates in the
ensembles for all the benchmark
problems and Abalone problem
(the total number of problems is
six), and the error metric is AAE

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th Total

RBF 2 – – – 1 1 – – – 1 – 1 6

SVR – 1 – – 1 – 1 – – – 3 – 6

KRG – – – – – 1 – 1 – 3 – 1 6

PRS – – 1 – – – – 1 1 – – 3 6

EG – – 1 – 2 1 – 1 1 – – – 6

EP – – – – 1 – 1 – – – 3 1 6

Od – – – 2 – 1 2 1 – – – – 6

EM 1 – 1 1 – 1 1 1 – – – – 6

BP – – – 2 – – – – 3 1 – – 6

EV 2 1 1 – 1 1 – – – – – – 6

EA – – 1 1 – – 1 1 1 1 – – 6

ER 1 4 1 – – – – – – – – – 6
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Fig. 4 MAE for different surrogate models. a Branin–Hoo, b Camelback, c Goldstein–Price, d Hartman-3, e Hartman-6, f Abalone
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Table 11 Mean and CV of MAE for different metamodels, the lowest value in each category is shown in bold for ease of comparison

Branin–Hoo Camelback Goldstein–Price Hartman-3 Hartman-6 Abalone

RBF 127.6625 (0.3819) 84.4234 (0.1566) 518,555.0576 (0.3305) 5.0071 (0.3943) 1.2935 (0.2311) 8.4792 (0.1422)

SVR 118.6682 (0.3763) 97.7798 (0.1332) 616,152.7969 (0.3028) 1.8825 (0.1665) 1.3168 (0.1725) 11.328 (0.3425)

KRG 144.5638 (0.3585) 106.9659 (0.1243) 667,815.863 (0.3049) 2.1898 (0.1447) 1.4146 (0.1877) 9.235 (0.0879)

PRS 152.6863 (0.2804) 75.1959 (0.2063) 537,426.472 (0.2663) 2.3453 (0.2376) 0.6422 (0.2529) 104.9109 (0.7085)

EG 126.265 (0.3681) 86.9356 (0.1472) 572,094.3508 (0.3101) 2.1057 (0.19) 0.8178 (0.1947) 8.9009 (0.3601)

EP 142.6643 (0.3916) 100.0874 (0.3107) 592,091.0514 (0.3333) 2.4378 (0.3166) 0.672 (0.2357) 9.8579 (0.6017)

Od 126.2649 (0.3681) 86.9355 (0.1472) 572,094.3508 (0.3101) 2.1027 (0.1921) 0.7385 (0.2052) 8.8962 (0.359)

EM 109.7812 (0.4649) 80.4475 (0.2613) 495,956.4763 (0.4159) 2.1948 (0.2682) 0.6392 (0.213) 9.1818 (0.4288)

BP 141.3762 (0.3511) 89.953 (0.1961) 573,893.8504 (0.3195) 2.3108 (0.2833) 0.6588 (0.2743) 8.7025 (0.1599)

EV 125.4616 (0.3697) 85.3022 (0.1538) 554,610.7838 (0.3053) 2.0448 (0.1763) 0.7118 (0.2158) 8.8935 (0.4399)

EA 128.5255 (0.3544) 87.7427 (0.1471) 558,522.7134 (0.303) 2.3961 (0.2009) 0.9642 (0.1889) 27.0526 (0.8824)

ER 120.3731 (0.3747) 81.6007 (0.1766) 536,010.0076 (0.3106) 1.9944 (0.1839) 0.6435 (0.2171) 8.7271 (0.3136)

take Camelback as an example. Different from Tables 5–
12, where the Rs (or RMSEs; AAEs; MAEs) of all the
test problems are get together in a same table, here, we get
together the R, RMSE, AAE, and MAE for Camelback and
presented them in a same table, thereby, the total number is
four (the number of the error metrics (R, RMSE, AAE, and
MAE)) rather than six (the number of the test problems).
Tables 13, 14 and 15 presents the results for V = 0.3N ,
V = 0.5N , and V = 0.8N respectively. From the three
tables, we can obtain the following findings: (1) The pre-
diction accuracies of the ensemble models (ER, EM, Od,
EV), which base on the validation points, improved with
the increasing number of validation points; (2) Neverthe-
less, their speed of improvement is different; varying from
V = 0.3N to V = 0.8N , ER has an apparent improvement,
the frequency of 1st improves from zero to two. on the other
hand, the improvement in EM is not so apparent; and (3)
when V = 0.3N , RBF has the best performance, so, when
the validation points is not easy to obtain, choosing a single
surrogate may be a reasonable strategy, but in practice, we

have no the prior knowledge about which is the best single
surrogate.

Additionally, we should point out that the performance
of BP (BestPRESS) is not ideal according to the results pre-
sented in Tables 5–15, which may suggest (1) it is difficult
for cross-validation to capture the real errors, so, the best
single surrogate can not be picked out according to the
cross-validation; and (2) even if it can perfectly estimate the
real error, its prediction accuracy would only be similar to
the best single surrogate (after all, BestPRESS is like assign-
ing a unit weight for the surrogate with smallest PRESS
and zeroing all the others), but according to the experi-
ments results, the capacity of single surrogate may be worse
than ensemble models. Finally, we compare the efficiency
between EM and ER, because they are both based on mini-
mizing RSME (or prediction MSE). The time consumption
of EM and ER is presented in Table 16. In this experi-
ence, we choose a low dimensional problem, a median
high dimensional problem, and a high dimensional prob-
lem as test problems. From the table, we can see that in low

Table 12 Frequency of the rank
of the ensemble surrogates and
the individual surrogates in the
ensembles for all the benchmark
problems and Abalone problem
(the total number of problems is
six), and the error metric is
MAE

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th Total

RBF 1 1 – 1 – – 1 – – 1 – 1 6

SVR 1 1 – – – – – – – 2 2 – 6

KRG – – – – – 1 – 1 – – 1 3 6

PRS 1 1 – 1 – – – – 1 – – 2 6

EG – – – – 1 2 1 2 – – – – 6

EP – – – – 1 – – – 1 2 2 – 6

Od – – – 1 2 1 2 – – – – – 6

EM 3 1 – – – – 2 – – – – – 6

BP – 1 – 1 – – – 1 3 – – – 6

EV – – 1 2 2 1 – – – – – – 6

EA – – – – – 1 – 2 1 1 1 – 6

ER – 1 5 – – – – – – – – – 6
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Table 13 Frequency of the rank
of the ensemble surrogates and
the individual surrogates in the
ensembles for Camelback in
terms of the error metrics: R,
RMSE, AAE, and MAE; the
validation point V = 0.3N

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th Total

RBF 3 – 1 – – – – – – – – – 4

SVR – – – – – – – – 4 – – – 4

KRG – – – – – – – – – 2 1 1 4

PRS 1 1 – – – – 2 – – – – – 4

EG – – – 2 1 1 – – – – – – 4

EP – – – – – – – – – 2 2 – 4

Od – – – 1 3 – – – – – – – 4

EM – – – – – – – – – – 1 3 4

BP – – – – – – – 4 – – – – 4

EV – 1 2 1 – – – – – – – – 4

EA – – 1 – – 2 1 – – – – – 4

ER – 2 – – – 1 1 – – – – – 4

Table 14 Frequency of the rank
of the ensemble surrogates and
the individual surrogates in the
ensembles for Camelback in
terms of the error metrics: R,
RMSE, AAE, and MAE; the
validation point V = 0.5N

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th Total

RBF 1 1 1 1 – – – – – – – – 4

SVR – – – – – – – – – – 3 1 4

KRG – – – – – – – – – – 1 3 4

PRS 1 – – – – – – 1 1 1 – – 4

EG – – – – 2 1 1 – – – – – 4

EP – – – – – – – 2 2 – – – 4

Od – – – – 1 3 – – – – – – 4

EM 1 – 2 1 – – – – – – – – 4

BP – – – – – – – 1 – 3 – – 4

EV – – 1 2 1 – – – – – – – 4

EA – – – – – – 3 – 1 – – – 4

ER 1 3 – – – – – – – – – – 4

Table 15 Frequency of the rank
of the ensemble surrogates and
the individual surrogates in the
ensembles for Camelback in
terms of the error metrics: R,
RMSE, AAE, and MAE; the
validation point V = 0.8N

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th Total

RBF 1 2 – 1 – – – – – – – – 4

SVR – – – – – – – – – 3 1 – 4

KRG – – – – – – – – – 1 1 2 4

PRS 1 – – 1 – – – 2 – – – – 4

EG – – – – 1 2 1 – – – – – 4

EP – – – – – – – – – – 2 2 4

Od – – – – 1 2 1 – – – – – 4

EM – 1 – – 1 – 2 – – – – – 4

BP – – – – – – – – 4 – – – 4

EV – 1 2 – 1 – – – – – – – 4

EA – – – 2 – – – 2 – – – – 4

ER 2 – 2 – – – – – – – – – 4
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Table 16 Comparison of the time cost between the processes of obtaining the weights in ER and EP (1,000 times replications in BH, and 200
times replications in Hartman-6; run time in EP is denoted by EPtim , and run time in ER is denoted by ERtim ), the run times are the mean values

Benchmark problems EPtim ERtim EPtim /ERtim ratio Number of iterations in ER tol in ER

BH 0.0137 0.0215 1.57 47.773 0.1

Hartman3 0.0016 0.0227 14.19 8.513 0.1

Hartman6 0.0026 0.0307 7.935 11.81 0.1

dimensional problem BH (two dimensions), the cost in time
consumption using EP is nearly two times as much as that in
ER; for median high dimensional problem Hartman-3 (three
dimensions), the cost of time consumption using EP is 14.19
times as much as that in ER; Furthermore, in high dimen-
sional problem Hartman-6 (six dimensions), the cost in time
consumption using EP is 7.935 times as much as that in
ER. The experiment result reveals that when the dimension
in problem is large (especially when dozens of variables
appear in real-life problems), choosing recursive arithmetic
average ensemble technique rather than the ensemble tech-
niques based on optimization process may be a reasonable
strategy. The results support the viewpoint presented in the
last paragraph of Section 2.3.2.

5 Conclusion

In this paper, we examined several existing combining tech-
niques, proposed recursive arithmetic average ensemble
technique, and finally discussed the experiment results.

1. After examination of the existing combining tech-
niques, we find (1) OWSidea is essentially the same as
EM; and (2) OWS is also the same as EP. The difference
between them is just the expression used to obtain the
weights.

2. After examination of the results for these five test func-
tions and Abalone problem, we can see clearly that the
ensemble technique proposed in this paper has more
significant prediction accuracy than stand-alone meta-
models in most problems, and for almost all of problems
presented in this paper even surpasses the previously
reported ensemble techniques.

3. Because of adopting cross validation in choosing of
the best parameters in stand-alone metamodels, all of
the models, including individual models and ensem-
ble models, have significantly improved their prediction
accuracy.

4. EG and Od have the similar results in terms of R,
RMSE, AAE, MAE in all of the test problems, espe-
cially in low dimensional problem. The cause is that
EG and Od have the similar structure, which we have
pointed out in Section 1.

5. In this paper, we limit our conclusion to low dimension
problems (less than seven dimensions), what about the
high dimension problems is our future research work.

Although the technique proposed in this paper achieves
desirable results, the advantages of combination over selec-
tion are still difficult to clarify (Yang 2003). This is, despite
our efforts, we are still operating using the “insurance pol-
icy” mode rather than offering substantial improvements. In
addition, finding more efficient methods to improve the pre-
diction accuracy of the ensemble model is also our future
work.
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Appendix A: Several metamodeling techniques

Here, there are four metamodeling techniques (PRS, RBF,
Kriging, SVR) are considered.

A.1 PRS

For PRS, the highest order is allowed to be 4 in this paper,
but the used order in a specific problem is determined by the
selected sample set. When the highest order of a polynomial
model is 4, it can be expressed as:

˜F(x) = a0 +
N

∑

i=1

bi xi +
N

∑

i=1

cii x2
ii

+
ci j xi x j
∑

i j (i< j)

+
N

∑

i=1

di x3
ii

+
N

∑

i=1

ei x4
ii

(21)

where ˜F is the response surface approximation of the actual
response function, N is the number of variables in the input
vector x, and a, b, c, d, e are the unknown coefficients to be
determined by the least squares technique.

Notice that 3rd and 4th order models in polynomial
model do not have any mixed polynomial terms (interac-
tions) of order 3 and 4. Only pure cubic and quadratic terms
are included to reduce the amount of data required for model
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construction. A lower order model (Linear, Quadratic, and
Cubic) includes only lower order polynomial terms (only
linear, quadratic, or cubic terms correspondingly).

A.2 RBF

The general form of the RBF approximation can be ex-
pressed as:

f (x) =
m

∑

i=1

βiϕ
(∥

∥x − xi
∥

∥

)

(22)

Powell (1987) considers several forms for the basis func-
tion ϕ(·):

1. ϕ(r) = e

(

−r2
/c2

)

Gaussian
2. ϕ(r) = (r2 + c2)

1
2 Multiquadrics

3. ϕ(r) = (r2 + c2)− 1
2 Reciprocal Multiquadrics

4. ϕ(r) = (r/c2
)

log
(r/c

)

Thin-Plate Spline
5. ϕ(r) = 1

1+e
r
/c

Logistic

where c ≥ 0. Particularly, the multi-quadratic RBF form
has been applied by Meckesheimer et al. (2001, 2002) to
construct an approximation after Hardy (1971), who used
linear combinations of a radically symmetric function based
on the Euclidean distance of the form:

ϕ(x) = β0 +
n

∑

i=1

β
∥

∥x − xi
∥

∥ (23)

where ‖·‖ represents the Euclidean norm. Replacing ϕ(x)

with the vector of response observations, y yields a linear
system of n equations and n variables, which is used to
solve β. As described above, this technique can be viewed
as an interpolating process. RBF surrogates have produced
good fits to arbitrary contours of both deterministic and
stochastic responses (Powell 1987). Different RBF forms
were compared by McDonald et al. (2000) on a hydro code
simulation, and the author found that the Gaussian and the
multi-quadratic RBF forms performed best generally.

A.3 Kriging

For computer experiments, kriging is viewed from a
Bayesian perspective where the response is regarded as a
realization of a stationary random process. The general form
of this model is expressed as:

Y (x) =
k

∑

j=1

β j f j (x) + Z(x) (24)

Where f j , j = 1, ...., k is assumed as a known vector of
function, β j is an unknown constant needed to estimated,
and Z(·) is a stochastic process, commonly assumed to be
Gaussian, with mean zero and covariance

Cov(Z(w), Z(u)) = σ 2 R(w, u)

= σ 2 exp

{

−θ

d
∑

i=1

(wi − ui )
2

}

where σ 2 is the process variance. In practice, the linear
model component in (20) is often reduced to only an inter-
cept b since the inclusion of a more complex linear model
does not necessarily yield a better prediction.

A.4 ε-SVR

Given the data set {(x1, y1), ......, (xl , yl)}(where l denotes
the number of samples) and the kernel matrix Ki j =
K (xi, xj), and if the loss function in SVR is ε-insensitive
loss function

Lε ( f (x) − y) =
{

0, | f (x) − y| < ε

| f (x) − y| − ε, other
, (25)

then the ε-SVR is written as:

min 
(w, ξ) = 1

2
wT w + C

l
∑

i=1

(

ξ−
i + ξ+

i

)

(26)

s.t.

⎧

⎪

⎨

⎪

⎩

f
(

xi
) − yi ≤ ε + ξ+

i

yi − f
(

xi
) ≤ ε + ξ−

i

ξ−
i , ξ+

i ≥ 0,

, i = 1, · · · l.

The Lagrange dual model of the above model is expressed
as:

min
α(∗)

1

2

l
∑

i, j=1

(

αi − α∗
i

)

(

α j − α∗
j

)

K
(

xi , x j
)

−
l

∑

i=1

(

αi − α∗
i

)

yi + ε

l
∑

i=1

(

αi + α∗
i

)

(27)

s.t.

⎧

⎨

⎩

0 ≤ αi , α
∗
i ≤ C , i = 1, · · · , l,

l
∑

i=1

(

αi − α∗
i

) = 0.
,

where K (·, ·) is kernel function. After being worked out the
parameter α(∗), the regression function f (x) can be gotten.

Appendix B: Box plots

In a box plot, the box is composed of lower quartile (25%),
median (50%), and upper quartile (75%) values. Besides the
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box, there are two lines extended from each end of the box,
whose upper limit and lower limit are defined as follows:

low_limit = max {Q1−1.5IQR, Xminimum} (28)

up_limit = min {Q3+1.5IQR, Xmaximum} (29)

where Q1 is the value of the line at lower quartile, Q3 is
the value of the line at upper quartile, IQR = Q3 − Q1,
Xminimum and Xmaximum are the minimum and maximum
value of the data. Outliers are data with values beyond the
ends of the lines by placing a “+” sign for each point.
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