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Abstract Previous implementations of the Material Mask
Overlay Scheme (MMOS) (Saxena, ASME J Mech Des
130(8):1–9, 2009, 2010; Jain and Saxena, ASME J Mech
Des 132(6):1–10, 2010) use stochastic search to achieve
well connected, perfectly binary topologies but are compu-
tationally expensive. Here, a gradient search is employed
to lay the negative masks over the design region. A contin-
uous material assignment model is presented and studied.
This investigation is motivated by the following goals: (a)
reduction in the number of evaluations thereby making the
search computationally efficient compared to the previous
implementations, (b) obtaining as close to well-connected
binary topologies as possible, and (c) influence of various
parameters on the quality of solutions and existence of gray
cells.

Keywords Mask overlay method · Structural optimization ·
Gradient search · Binary solutions

1 Prior work

To date, many topology design algorithms using continu-
ous approximation of the design region have been proposed
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and exemplified using both, stiff structures and compli-
ant mechanisms. Among the early ones is by Bendsøe
and Kikuchi (1988) who proposed the Homogenization
approach. The Solid Isotropic Material with Penalization (or
SIMP) approach was presented thereafter (Bendsøe 1995)
that modeled cell densities as design variables. The elastic
modulus E of each cell (or finite element) was approxi-
mated as E = ρn E0 where E0 represented the modulus of
the desired material. ρ = 0 implied absence of a cell from
the topology while ρ = 1 signified its presence. Param-
eter n(≥3) was used to expedite the cell’s material state
to approach one of the two aforementioned binary val-
ues. PEAK (Yin and Ananthasuresh 2001) and SIGMOID
(Saxena and Saxena 2007) were other material models used
to encourage binary topologies in such cell based material
layout approaches.

A few node based topology design algorithms were also
proposed (e.g., Guest et al. 2004) wherein densities were
associated with the nodes (and not the cells). The den-
sity at a node was projected using the linear projection and
regularized Heaveside functions onto the cells. Many meth-
ods employed rectangular finite elements that exhibit well
known connectivity singularities like the checkerboards,
point flexures, layering and islanding. Filtering was used
with cell based approaches to smear out the design and/or
the associated gradients (e.g., Sigmund 2007). Mapping
of material densities onto the wavelet based design space
(Yoon et al. 2004) was another alternative to suppress
checkerboards and de facto hinges. Wavelets help express
material density in terms of basis functions which are linked
to the length scales and are not directly coupled with the
finite element mesh (Poulsen 2003). With the node based
approaches, it was possible to impose a minimum length
scale on the design explicitly (Guest et al. 2004) to prevent
single node connections. Formation of local, disconnected
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layers or islands was avoided with refined finite element
meshes (Rahmatallah and Swan 2004).

To naturally eliminate the connectivity singularities, use
of honeycomb parameterization was proposed (Saxena and
Saxena 2003, 2007). Honeycomb representation offers only
edge connectivity between cells and thus ensures finite
stiffness at all junctions. Various finite element approxima-
tions were employed. E.g., a hexagonal cell was approxi-
mated using two four noded elements in three possible ways
(Saxena and Saxena 2003, 2007), and using six triangular
elements (Langelaar 2007). Intact, six noded Wachspress
finite elements (Talischi et al. 2009) were also used to obtain
the continuum response. In (Saxena 2010), isoparamet-
ric Wachspress hexagonal cells were used to accommodate
irregular hexagons that appear when the notches at the
contour boundaries are moderated.

Methods that do not directly associate the design with the
finite element information (e.g., elements or nodes) exist
as well. These use contours to impose the design on the
mesh. The level set method is a general purpose approach
employed to track and propagate an interface over time
(Sethian and Wiegmann 2000; Wang et al. 2005; Luo et al.
2008). In topology optimization, it uses an implicit embed-
ding function LSM(x, t) to evolve its contours z = 0 which
represent the continuum boundaries. Here, x ≡ (x , y, z)
is a Euclidean point and t represents time. Within iter-
ation, finite element equations pertaining to the physical
problem, and finite difference equations associated with the
Hamilton-Jacobi level set relation are solved. The velocity
field, computed using the finite element analysis, is coupled
with the embedding function to drive its isophotes (z = 0
contours) in the subsequent time step. Some other meth-
ods that can yield binary material layouts using stochastic
techniques are the sub-division scheme (Hull and Canfield
2006) and those by Chapman (Jakiela et al. 2000).

This work aims at reducing the number of function evalu-
ations with the Material Mask Overlay Method while retain-
ing single material (0–1) topologies as much as possible.
Use of a gradient based search with a continuous mate-
rial model is a natural choice. The following section briefs
how MMOS determines the continuum topology. Then,
continuous material assignment and sensitivity analysis are
presented. The algorithm is demonstrated with standard for-
mulations in structural optimization and many synthesis
examples. Discussion and closure are drawn last.

2 Material mask overlay method: overview

Figure 1 briefly explains the working of the Material Mask
Overlay Method which is based on well-known photolitho-
graphic scheme (used in MEMS or IC chip fabrication). A
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Fig. 1 Material Mask Overlay Strategy illustrated with negative
masks. Masks of circular shape (thick circles) are used for material
removal. Hexagonal cells whose centroids (small circles) are inside
a mask are empty (white) while those outside the masks are all filled
(black) with the desired material. Key: Fix fixed boundary, I input port,
triangle expected output deformation(in case of monolithic compliant
continua)

set of M masks, each acting as a ‘material sink’ is employed.
A mask of any size or shape lying over some region of the
domain is modeled to absorb the material beneath itself. All
other regions, not exposed to the masks, remain filled. The
continuum topology then gets determined by a set of unex-
posed cells, that is, those which are not encapsulated within
any mask. Properties of the desired material are assigned to
such cells. Figure 1 illustrates the use of ‘negative’ circular
masks though the masks can be of any other shape (e.g., see
Saxena 2010).

Previous implementations of MMOS employed circu-
lar (Saxena 2009; Jain and Saxena 2010), elliptic and
rectangular masks (Saxena 2010). Circular masks were
found to be adequate in determining the material layout
(Saxena 2010). Elliptical (that modestly represent simple
closed curves) and rectangular (those representing closed
polygons) masks do not bring in notable merits. Instead,
two variables per mask get additionally introduced in the
search space. Both, genetic algorithm (Saxena 2009) and
simple mutation based hill climber (Jain and Saxena 2010;
Saxena 2010) stochastic algorithm were used in single and
a sequence of sub-searches. Additionally, adaptive schemes
were used (Saxena 2010) wherein the number of masks (and
hence the number of decision variables) was judiciously
varied as the search progresses. While MMOS yields well
connected binary solutions, the associated stochastic search
is computationally expensive. Previous improvements in
MMOS were successful in lowering the number of function
evaluations from many thousands (∼100,000 or more) to a
few thousand. Even then, the computational efficiency of
the gradient based approaches is not matched. It is possible
to develop analytical material models with MMOS so that
a gradient search can be employed. One such possibility is
explored below.
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3 Material mask overlay method and gradient search

3.1 Material model

The material assignment approximation used herein
employs the logistic function f (α, t) given by

f (α, t) = 1

1 + e−αt
(1)

where α is a parameter. A sigmoid function (Saxena and
Saxena 2007) or any other continuous regularization of the
Heaveside step function is applicable. Figure 2 depicts the
behavior of f (α, t) as α is varied. For large α, f (α, t) ≈
0 or 1 for t ∈ {−∞, ∞}− {−δ, δ} where δ depends on
α. With increasing α, δ decreases which makes the inter-
val {−δ, δ} smaller. If α → ∞, f (α, t) → H(t) which
is the Heaveside function defined as H(t) = 1 for t > 0,
and H(t) = 0 otherwise. The density ρ j of the j th cell can
be associated with a circular mask MK identified by (xK ,
yK , RK ) where (xK , yK ) are its center coordinates and RK

is its radius. This relation can be expressed as

ρ j ∝ 1

1 + e−α(d j K −RK )
(2)

Here d j K =
√(

xK − x j
)2 + (

yK − y j
)2 is the distance

between the centroid (x j , y j ) of the j th cell and the center
of MK . For large α, when d j K < RK , ρ j ≈ 0 while when
d j K > RK , ρ j ≈ 1.This is consistent with the notion of
negative masks introduced in (Saxena 2009, 2010; Jain and
Saxena 2010). As required, cells enclosed within a mask
attain the void state while those outside the mask retain the
desired material. If d j K = RK , ρ j = 1/2 (irrespective of
how large α is) implying that a cell whose centroid lies very
near or on the mask boundary is neither fully void (ρ j = 0)
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Fig. 2 The logistic function used inthe material model. Higher values
of α encourage 0–1 material assignment

nor fully solid (ρ j = 1). Such cells get assigned fictitious
material states which are not intended in topology optimiza-
tion. To model the cumulative effect of all M masks on the
material state of the j th cell, individual terms in (2) can all
be multiplied. Thus, the cell density is now expressed as

ρ j =
∏Ma

k=1

{
1

1 + e−α(d jk−Rk)

}
+ ε (3)

where Ma is the number of masks. Equation (3) suggests
that if a cell’s centroid is not encapsulated within any
mask, the cell is filled with material. Otherwise, the mate-
rial is absorbed by the mask(s) laying over that cell. A
small positive ε is added to ensure that the overall stiffness
matrix stays non-singular throughout the small deformation
analysis.

3.2 Gradient computation

The position and size of each circular mask over the domain
determine the material layout governed by the objective
and a set of constraints used. To determine these vari-
ables using a gradient search algorithm, design sensitivities
(function/constraint gradients) are computed below. Let �

represent a function or constraint and let ψK represent the
variables xK , yK or RK for the K th mask with respect to
which the derivatives are needed. Using chain rule

∂�

∂ψK
=

∑Nc

j=1

[
∂�

∂ρ j

] [
∂ρ j

∂ψK

]
(4)

where Nc is the number of cells. ∂�
∂ρ j

is usually available
for a design problem after the finite element analysis (see
Section 4.1). To compute

∂ρ j
∂ψK

, let C be given by

C =
∏ Ma

p = 1

p �=K

{
1

1 + e−α(d jp−Rp)

}
(5)

The contribution of the K th mask on the material density
ρ j is given by fK (α, d , R) where

fK (α, d, R) = 1

1 + e−α(d j K −RK )
(6)

Then

∂ fK (α, d, R)

∂ψK
= αe−α(d j K −RK )

[
1 + e−α(d j K −RK )

]2

∂
(
d j K − RK

)

∂ψK
(7)

If ψK ≡ xK ,

∂
(
d j K − RK

)

∂ψK
=

(
xK − x j

)

d j K
(8)
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If ψK ≡ yK ,

∂
(
d j K − RK

)

∂ψK
=

(
yK − y j

)

d j K
(9)

and if ψK ≡ RK , then

∂
(
d j K − RK

)

∂ψK
= −1 (10)

Finally,
∂ρ j
∂ψK

= C ∂ fK (α,d,R)
∂ψK

which requires (7–10).
∂ρ j
∂ψK

can
be simplified using (3), (5) and (7) as

∂ρ j

∂ψK
= ρ j

αe−α(d j K −RK )
[
1 + e−α(d j K −RK )

] ∂
(
d j K − RK

)

∂ψK
(11)

3.3 Discontinuity of derivatives

The derivatives in (11) are discontinuous for ψK ≡ xK and
yK when the center of the K th mask tends to coincide with
the centroid of the j th cell (i.e., when d j K → 0). Let (xK ,
yK ) approach (x j , y j ) along a line y – y j = m(x – x j ). Let
the mask radius RK be constant. Then

lim(xK ,yK )→(x j ,y j)
∂ρ j

∂ψK

= lim
(xK ,yK )→(x j ,y j)

ρ j
αe−α(d j K −RK )

[
1 + e−α(d j K −RK )

] ∂
(
d j K − RK

)

∂ψK

= lim
(xK ,yK )→(x j ,y j)

C
αe−α(d j K −RK )

[
1 + e−α(d j K −RK )

]2

∂
(
d j K − RK

)

∂ψK

= C
αeα(RK )

[
1 + eα(RK )

]2
lim

(xK ,yK )→(x j ,y j)

∂
(
d j K − RK

)

∂ψK

= C
αeα(RK )

[
1 + eα(RK )

]2
lim

(xK ,yK )→(x j ,y j)

(
xK − x j

)
(
xK − x j

)√
1 + m2

= C
αeα(RK )

[
1 + eα(RK )

]2

1√
1 + m2

for ψK ≡ xK (12)

and

lim(xK ,yK )→(x j ,y j)
∂ρ j

∂ψK

= C
αeα(RK )

[
1 + eα(RK )

]2

1√
1 + 1

m2

for ψK ≡ yK (13)

For any (xK , yK ) and (x j , y j ), if RK → 0, then

limRK →0
∂ρ j

∂ψK

= limRK →0 C
αeα(d j K −RK )

[
1 + e−α(d j K −RK )

]2

∂(d j K − RK )

∂ψK

= C limRK →0
αe−α(d j K −RK )

[
1 + e−α(d j K −RK )

]2

∂(d j K − RK )

∂ψK

= C
αe−α(d j K )

[
1 + e−α(d j K )

]2

∂(d j K − RK )

∂ψK

which is well behaved if (xK , yK ) is not close to (x j ,
y j ). However, the values of the limits in (12), (13) and
the one above vary if (xK , yK ) approaches (x j , y j )

along different lines (i.e., those with different slopes m)

which is why the derivatives in (11) are discontinuous.
Now, let d j K be computed differently such that d j K =√(

x j − xK
)2 + (

y j − yK
)2 + p for very small but positive

p. This change does not alter any of the equations above.
Taking the limits as (xK , yK ) → (x j , y j ) gives

lim
(xK ,yK )→(x j ,y j )

ρ j
αe−α(d j K −RK )

[
1 + e−α(d j K −RK )

] ∂(d j K − RK )

∂ψk

= C
αeα(RK )

[
1 + eα(RK )

]2
lim

(xK ,yK )→(x j ,y j )

∂(d j K − RK )

∂ψk

For ψ K ≡ xK

lim
(xK ,yK )→(x j ,y j)

∂
(
d j K − RK

)

∂ψK

= lim
(xK ,yK )→(x j ,y j)

(
xK − x j

)
√(

x j − xK
)2 (

1 + m2
) + p

= 0 ∀m.

(14)

A similar observation can be made for ψK ≡ yK . For small

p,
√(

x j −xK
)2+(

y j −yK
)2+ p≈

√(
x j −xK

)2+(
y j −yK

)2

if (xK , yK ) and (x j , y j ) are quite far apart. Thus, the cell
densities may be computed as in (3). However, adding a
small positive number to the denominators in (8) and (9)
has a similar effect as in (14). Thus

∂ρ j

∂xK
= ρ j

(
α exp

(−α
{
d j K − RK

}

1 + exp
(−α

{
d j K − RK

})
) (

xK − x j

d j K + ε

)

(15)

∂ρ j

∂yK
=ρ j

(
α exp

(−α
{
d j K − RK

}

1 + exp
(−α

{
d j K − RK

})
)(

yK − y j

d j K + ε

)
(16)
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∂ρ j

∂ RK
= −ρ j

(
α exp

(−α
{
d j K − RK

}

1 + exp
(−α

{
d j K − RK

})
)

(17)

3.4 Behavior of the derivatives as α → ∞

All derivatives in (15)–(17) are of the form

∂ρ j

∂ψK

= C1

(
α exp(−α{C2})

1 + exp(−α{C2})
)

where C1 = ρ j

(
xK −x j
d j K +ε

)
, ρ j

(
yK −y j
d j K +ε

)
or −ρ j and C2 =

d j K − RK . Note that C1 determines the sign of
∂ρ j
∂ψK

. The
plot of the above expression vs. α is shown in Fig. 3 for var-
ious values of C1 and C2. For C2 less than or equal to 0, the
j th cell is inside the K th mask and its density value is close

to the lower bound ε. Further,
∥∥∥ xK −x j

d j K +ε

∥∥∥ and
∥∥∥ yK −y j

d j K +ε

∥∥∥ � 1

implying that C1 is small and cannot be chosen indepen-
dently. Figure 3a shows the plot of

∂ρ j
∂ψK

for C2 = 0 and
C1 ∈ [–0.01, 0.01]. Except for C1 = 0 the magnitudes of
the derivatives are all comparatively larger than zero. Fur-
ther, the derivatives are proportional to C1. This implies that
all cells within a mask influence its position and size.

If the j th cell is outside the K th mask (i.e., C2 > 0), C1

can be chosen independently. Figure 3b–f show these plots
for C1 ∈ [–5, 5]. It is observed that the derivatives converge
to zero asymptotically implying that the parameters of the
K th mask are not influenced significantly by a cell which

is far from its center. This is expected. The magnitudes of
all derivatives converge to zero at a much faster rate for
α > 2 which can cause numerical instabilities in the algo-
rithm (see discussion).

The proposed material model with negative masks can be
compared to the projection schemes in (Guest et al. 2004;
Sigmund 2007). In (Guest et al. 2004), fixed solid circu-
lar features are used while in (Sigmund 2007), fixed void
circular features are employed. Further in (Sigmund 2007),
structures are defined in the modified projection method
via circular regions with fixed radius. Here, circular masks
are free to relocate and vary in size, and their number is
independent of the number of cells used in the discretiza-
tion. The minimum member size is controlled by the size
of the hexagonal cell which makes a solution mesh depen-
dent unless the feature size is indirectly imposed via some
constraint in the optimization formulation.

4 Examples

We employ the fmincon function available with the opti-
mization toolbox in MATLABT M to illustrate topol-
ogy optimization using negative masks. fmincon is a
general purpose algorithm that uses many features and
parameters. The examples are solved herein with the
medium-scale optimization (line search) option that uses
Sequential Quadratic Programming (SQP) as one of the

(a) C2 = 0, C1  [–0.01, 0.01] (b) C2 = 1, C1  [–5, 5]  (c) C2 = 2, C1 [–5, 5]

(d) C2 = 3, C1  [–5, 5]   (e) C2 = 4, C1  [–5, 5]   (f) C2 = 5, C1  [–5, 5]
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Fig. 3 a–f Plots of the derivatives (vertical axis) with respect to α (horizontal axis) for various values of C2. In each plot, the arrow indicates
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search algorithms. A compact educational description
of SQP is provided in (Epelman 2010). The MAT-
LAB code (main file: mmos_main.m) used is provided
in Appendix A with a brief explanation. It is avail-
able via the journal website and can also be downloaded
from home.iitk.ac.in/∼anupams/mmos81.zip. Many clas-
sical examples on optimal stiff structures and compliant
mechanisms are solved (Fig. 4). Effect of the grid size, num-
ber and maximum size of the negative masks, and other
parameters are studied. Filtering (e.g., Sigmund 2007; Wang
et al. 2010; Bourdin 2001) or projection (e.g., Guest 2009;
Xu et al. 2010) methods are avoided to explore the true
nature of the formulation. It is shown in (Saxena 2010)
that the number of masks actually required for topology
determination can differ from the initially chosen number.

Here however, masks are not added or deleted within the
iterations.

4.1 Small deformation stiff structures and compliant
mechanisms

A standard formulation to design stiff structures is to min-
imize the mean compliance (or strain energy, SE) under a
resource constraint. Thus

minimize : SE(ρ) = 1

2
UT KU

such that V = ∑Nc
i=1 ρi ≤ V o

(F1)

where ρ = [ρ1, ρ2,..., ρN ] is a set of cell densities, V rep-
resents the volume fraction and V o denotes its upper bound.

Fig. 4 Various classical
problems in stiff structure
(Problems 1–4) and compliant
mechanism (Problems 5–6)

design. Key: Bold arrows show
the applied loads P and/or the
direction of the desired
deformation 	. Fixed nodes and
edges on roller support are also
shown

Problem 1

such that 

Influence of variation in the maximum
permitted volume   

Problem 2

such that 

Influence  of variation in the number of
 masks.  

Problem 3

such that 

Effect of variation in the size 
of masks.  

Problem 4

such that 

Effect  of change in continuation 
parameter.   

Problem 5 Inverter Design

such that 

Problem 6 Crimper Design

such that 
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U is the overall displacement response of an intermediate
design computed using linear finite element analysis and K
is the global stiffness matrix. Vector F = KU comprises of a
set of input static loads. Gradients of the strain energy with
respect to the cell densities can be determined as

∂SE (ρ)

∂ρi
= −1

2
(ui )

T ∂ki

∂ρi
ui (18)

where ui are the nodal displacements (12 components of U)
of the i th hexagonal cell and ki is its stiffness matrix. If ki =
ρi ko where ko is the stiffness of the solid cell, then ∂ki

∂ρi
= ko.

Let ψ j represent one of the three design variables of the j th
mask. Then, using chain rule, ∂SE(ρ)

∂ψ j
can be expressed as

∂SE (ρ)

∂ψ j
=

∑Nc

i=1

(
∂SE (ρ)

∂ρi

∂ρi

∂ψ j

)
(19)

where
∂ρ j
∂ψK

are available from (15)–(17).
To design an optimal compliant topology, we use the

flexibility-stiffness formulation (Saxena and Ananthasuresh
2000). This multi-criteria objective allows maximizing the
desired output deformation 	 (see Fig. 1) and minimizing
the internal energy stored within the continuum to make it
capable of sustaining the external loads. An output spring
along the direction of the desired deformation ensures force
transfer or non-zero mechanical advantage. In standard
form, the flexibility-stiffness objective is written as

minimize : − M SE (ρ)

SE (ρ)
= −λ

VTKU
1
2 UTKU

such that V = ∑Nc
i=1 ρi ≤ V o

(F2)

Here, V is the displacement response obtained by applying
a unit dummy force along the direction of the desired defor-
mation (Yin and Ananthasuresh 2003). That is, if Fd is a
force vector that contains the dummy load, then Fd = KV.
MSE or mutual strain energy is the same as the desired out-
put deformation. λ is the scaling constant required to avoid
early convergence to a local minimum (see discussion).
Other formulations like the maximization of the mechan-
ical advantage or geometric advantage are similar to (F2)
but with different scale factors. Derivatives of the strain
energy with respect to mask parameters can be obtained
using (18) and (19). Gradients of the output displacement
can be computed as

∂ M SE (ρ)

∂ρi
= − (vi )

T ∂ki

∂ρi
ui (20)

where vi are the nodal components of V for the i th cell. Like
in (19), ∂ M SE(ρ)

∂ψ j
can also be evaluated using the chain rule.

That is

∂ M SE (ρ)

∂ψ j
=

∑Nc

i=1

(
∂ M SE (ρ)

∂ρi

∂ρi

∂ψ j

)
(21)

Now, for the gradients of the objective in (F2), i.e., for
∂

∂ψ j

(
− M SE(ρ)

SE(ρ)

)
, we have

∂

∂ψ j

(
− M SE (ρ)

SE (ρ)

)

= −
⎧
⎨
⎩

∂
∂ψ j

M SE (ρ)

SE (ρ)
−

M SE (ρ) ∂
∂ψ j

SE (ρ)

[
SE (ρ)

]2

⎫
⎬
⎭ (22)

which uses (15)–(21).
For all examples below, Ma = M × N user-specified

masks are placed uniformly over the domain. M is the num-
ber of masks along the horizontal direction while N is the
same along the vertical direction. Masks are allowed to
move outside the design region. Masks can be positioned
within the area (L + 2Rmax) × (W + 2Rmax) where L and
W are the length and width of the region and Rmax is the
maximum permitted user-specified radius of the mask.

Convergence for optimization is governed by the param-
eters max_iter, max_eval, tol_fun and tol_var. max_iter is
the maximum number of iterations permitted, max_eval cor-
responds to the upper bound on the number of function
evaluations, and tol_fun and tol_var are the minimum toler-
ances on the function and variable values. For all examples,
tol_fun = tol_var = 10−10 is used. Different values for the
permitted number of function evaluations and iterations are
used in different cases.

The focus is to obtain close to binary solutions which can
be achieved if the exponent is large. However, for large α,
most derivatives in (15)–(17) will be close to zero which
may lead to numerical problems (see Section 3.4). Thus,
a continuation approach is used wherein α is initially cho-
sen small and is gradually increased with the number of
function evaluations. It is expected that with increasing α,
the sequence of intermediate designs will converge to a
0–1 solution. Further, the exponents used to compute the
objective and resource constraint are decoupled. That is,
two exponents αf (for objective and its gradients) and αv

(for volume constraint and its derivatives) are used. In the
examples presented, αf is gradually increased with iterations
while αv is held constant at a low value (for all examples
presented, αv = 1) to prevent early convergence. This there-
fore permits the upper bound V o to control the continuum
volume only indirectly which is studied through Problem 1
(Fig. 4).

4.2 Results

4.2.1 Upper bound on the volume fraction

Problem 1 is solved with the elastic modulus E as
1,000 N mm−2, thickness t as 1 mm, αf (initial) = αv = 1,
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and Rmax = W/3. The problem is studied with different
mesh sizes while maintaining the L/W ratio. Case I corre-
sponds to a mesh with 80 × 40 cells, case II to 50 × 25
cells, and case III to 100 × 50 cells. Load P is taken as 20 N
for all cases. For the examples, αv = 1 while αf is gradually
increased as αf = fcont αf after every function evaluation
where fcont is the continuation parameter. fcont is chosen as
1.014. The solutions are generated for max_iter = 100 and
max_eval = 400. The upper bound V o on the continuum
volume is varied for different cases as shown in Fig. 5. The
final volume fractions V ∗ computed using the cell densities
of the solutions differ from the respective initial fractions
V o. This difference is large for coarse meshes. V ∗ gets
comparable to V o as the number of cells is increased.

4.2.2 Number of masks

Problem 2 is solved to investigate the effect of change in
the number of user-specified masks on the solutions. The
elastic modulus and thickness are the same as in Problem 1.
The upper bound on the volume fraction is 0.2. All examples
are solved for the mesh with 80 × 41 cells. The maximum
mask radius is set as Rmax = W /3 = 41/3. As before, αf

(initial) = αv = 1 and αf is gradually increased after every
function evaluation while retaining the value of αv. The con-
tinuation parameter fcont is 1.014. Two loads of P = −10 N
each are applied just above and below the horizontal line of
symmetry (nodes do not exist on this line). The problem is
solved for three cases. The number of masks are varied as

Fig. 5 a–g Topologies for
Problem 1 obtained using three
mesh sizes. Solutions are shown
with (left) and without (right)
masks. The upper bound V o on
the volume fraction is varied as
shown for the respective cases.
V ∗ is the volume fraction
computed with the final cell
densities

Case I: 80  40 cells 

(a) V
o
 = 0.2, V

*
 = 0.29 

(b) V
o
 = 0.25, V

*
 = 0.34 

(c) V
o
 = 0.30, V

*
 = 0.39 

Case II: 50  25 cells 

(d) V
o
 = 0.1, V

*
 = 0.28 

(e) V
o
 = 0.2, V

*
 = 0.41 

Case III: 100  50 cells 

(f) V
o
 = 0.2, V

*
 = 0.25

(g) V
o
 = 0.3, V

*
 = 0.36
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M × N = 15 × 10, 10 × 10 and 20 × 12 respectively. It is
observed in problem 1 that when αf is increased, many (but
not all) cells are close to their binary states. Here therefore,
αf is allowed to increase further by setting max_iter to 150.
Alternatively, αf can also be increased by choosing larger
fcont which is explored in Problem 4. Maximum permitted
function evaluations are 400. The solutions are depicted in
Fig. 6.

4.2.3 Permitted upper bound on the mask size

Problem 3 involves minimization of the mean compliance
(strain energy) under multiple loads. Two loads of equal
magnitudes act at the middle right edge (Fig. 4). Each load
P is 40 N. For multiple load problems, the strain energy is
computed individually and their sum is minimized. Corre-
spondingly, their gradients are also added. The mesh used
for Problem 3 comprises 60 × 31 cells. Other parameters
like the modulus and thickness are the same as the first two
problems. The continuation factor is changed to 1.01 and the
maximum number of permitted iterations is lowered to 120.
Four cases are solved with M ×N = 15×10 masks with the
upper bound on the volume fraction as 0.1. In these, Rmax

is varied as W /3, W /2 and W and W /6 respectively where
W = 31, the number of cells along the vertical direction.
Figure 7 depicts the resultant topologies.

4.2.4 Continuation parameter

The final stiffness minimization problem is solved for the
multi-load case again shown as Problem 4 in Fig. 4. Here,
the effect of convergence to the Heaveside function is stud-
ied. The parameter choices are different from the first three
problems. The elastic modulus and continuum thickness are
changed to 100 N mm−2 and 5 mm respectively. Number
of masks along the horizontal and vertical directions are 14
each. The problem is solved with a fixed mesh size of 50
cells × 25 cells. The upper bound V o on the volume frac-
tion is changed to 0.05. Maximum number of iterations is
set to 120. For four individual cases, the final values of
αf are desired as 10, 20, 30 and 60 after 200 evaluations.
Accordingly, the continuation parameter fcont is computed
as exp( 1

200 log[αf]) = 1.0116, 1.0151, 1.0172 and 1.0207
and the permitted number of design evaluations max_eval is
set to 200. The designs are shown in Fig. 8.

4.2.5 Compliant inverter and crimper

We next synthesize the top symmetric half of a compli-
ant inverter (Problem 5 in Fig. 4) for two different mesh
sizes using the formulation in (F2). In the first case, the
mesh is chosen to comprise 40 × 20 cells. The magnitude

Fig. 6 a–c Solutions to
Problem 2. Three cases are
considered wherein the number
of masks is varied in each

Case I: Number of masks: M N = 15  10 

Case II: Number of masks: M N = 10  10

Case III: Number of masks: M N = 20  12 

(a) V
o
 = 0.2, V

*
 = 0.33

(b) V
o
 = 0.2, V

*
 = 0.29

(c) V
o
 = 0.2, V

*
 = 0.39



638 A. Saxena

Fig. 7 a–d Results for Problem
3. In the four cases considered,
the maximum permitted mask
size is varied

Case I: Rmax = W/3 

Case II: Rmax = W/2 

Case III: Rmax = W

Case IV: Rmax = W/6

(d) 

(b) 

(c) 

V  = 0.1, V  = 0.26o *

V  = 0.1, V  = 0.29o *

V  = 0.1, V  = 0.29o *

V  = 0.1, V  = 0.29o *

(a) 

of load P is 40 N at the left bottom corner. The right bot-
tom corner is where the output displacement is maximized
along the direction shown. An output spring of 2 N mm−1

along the direction of desired displacement simulates the
reaction force. For this problem, the modulus and thickness
are 1,000 N mm−2 and 1 mm, the number of masks along
the horizontal and vertical directions are 10 each, αf (ini-
tial) = αv = 1, and upper bound on the volume fraction is
0.2. First, the example is solved with no continuation on the
exponent αf. That is, fcont is set to 1. The scaling constant λ

in (F2) is set to 10,000. Smaller values (e.g., 1, 10, 100 and
1,000) of λ were not adequate to obtain the positive desired
displacement for this example. The permitted numbers of
iterations and function evaluations are set to 100 and 400
respectively. The resultant inverter topology (without and
with masks) is shown in Fig. 9a. As expected, there exist
many gray cells. Next, when continuation is performed with
fcont = 1.008 (αf is close to 24.2 after 400 evaluations),
close to 0–1 solution is obtained (Fig. 9b) albeit a few gray
cells are still present in the solution. Some disconnected
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Fig. 8 a–d Topologies for
Problem 4. The continuation
parameter is increased to obtain
close to binary designs

Case I: fcont = 1.0116 

Case II: fcont = 1.0151 

Case III: fcont = 1.0172

(c) V
o
 = 0.05, V

*
 = 0.26 

Case IV: fcont = 1.0207

(d) V
o
 = 0.05, V

*
 = 0.25 

(a)

(b)

regions also appear which can be considered as vestigial and
can be ignored (see discussion). Figure 9c shows a compli-
ant displacement inverter synthesized using 80 × 40 cell
mesh with V o reduced to 0.15 and λ increased to 50,000.

Finally, top symmetric halves of compliant crimpers are
designed (Problem 6, Fig. 4) using the formulation in (F2)
with three different meshes. The following parameters are
used. Elastic modulus is 100 N mm−2, thickness is 2 mm,
number of masks along the horizontal and vertical are 15
and 10 respectively, the load P applied is 50 N, and the
scaling constant λ in (F2) is 10,000. Maximum number of
iterations and function evaluations are set to 100 and 200
respectively. Figure 10 shows full solutions for different
mesh sizes, volume fractions and continuation parameters
used. As observed, some gray cells do get retained in the
topologies.

5 Discussion

This paper models topology optimization via negative
masks to obtain continua using gradient search. No filtering
(e.g., Sigmund 2007; Wang et al. 2010; Bourdin 2001)
schemes are employed to explore the true nature of the
model and to observe how different parameters in the
formulation influence the solutions. Problems 1–4 per-
tain to four standard and different stiffness maximization
examples.

5.1 Interpretation of solutions

In all solutions, checkerboards are not observed which is
attributed to the honeycomb geometry used. In problem 1,
optimal beam solutions are sought for different bounds on
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Fig. 9 Compliant inverter
topologies generated using a 40
× 20 cells without continuation,
b 40 × 20 cells with
continuation and c 80 × 40 cells
with continuation. The column
on the left shows full solutions
while that on the right shows top
symmetric halves with masks

(a) 

(b) 

(c) 

the volume fraction. It is observed that for coarse meshes,
the discrepancy between the upper bound V o on the vol-
ume fraction and the actual volume fraction V ∗ is more.
Note that the continuum volume is computed using αv = 1
and not the final exponent α f used to compute the strain
energy to avoid undesired early convergence. Thus, this
discrepancy is expected. A similar observation is made for
solutions (a)–(c) in Fig. 10. The difference between the vol-
ume fractions decreases if finer grids are used for domain
representation (Fig. 5a, c, e, f, g).

When comparing solutions (a), (e) and (f) in Fig. 5, it
is observed that the three topologies are different. For the
80 × 40 cell mesh, the final volume fraction V ∗ is about
0.29. For the 50 × 25 cell and 100 × 50 cell meshes, the
final volume fractions are respectively 0.41 and 0.25. Thus,
even when these solutions are generated using the same
initial upper bound on the volume fraction, they exist on
different final constraint boundaries (those corresponding to
αf). This alludes to two aspects. (a) The upper bound V o

offers only indirect control on the continuum volume which
becomes better with mesh refinement. (b) The final solu-
tions lie on different constraint boundaries and are therefore
different.

There is some similarity between solutions (c) and (e) in
Fig. 5 with final volume fractions as 0.39 and 0.41. Solu-
tions (a) and (g) are similar as well though the difference
between their final volume fractions is more. However,
solutions (a) and (d) with V ∗ = 0.29 and 0.28 respectively
are not similar. Likewise, solutions (b) and (g) with final
volume fractions as 0.34 and 0.36 are different in appear-
ance. These observations allude to the third aspect that
features in the topologies can change with the mesh size
(note that relatively coarse meshes are used here). Solution
(f) in Fig. 5 is a typical example which shows two addi-
tional diagonal bars, each of thickness comparable to the
cell-size in the mesh. As mentioned earlier, such solutions
are expected since no explicit filtering methods are used.
Permitting slightly larger volume fraction (e.g., in solu-
tion g) does help eliminate these bars. Also, the member
thicknesses improve.

Topologies in Fig. 6 suggest that solutions can vary with
the user-specified number of masks. Here as well, the final
solutions lie on different constraint boundaries even though
all are generated using the same upper bound V o. Thus,
all reasons mentioned above hold true. In (Saxena 2010),
via adaptively changing the number of masks, existence of
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Fig. 10 a–h Compliant
Crimpers designed using
formulation (F2)

(b) 50(a) 50 20, V
o
 = 0.2, fcont = 1.01 20, V

o
 = 0.1, fcont = 1.014   (c) 50 20, V

o
 = 0.05, fcont = 1.014

(d) 70 30, V
o
 = 0.1, fcont = 1.016   (e) 70 30, V

o
 = 0.15, fcont = 1.018 

  (f) 90 40, V
o
 = 0.2, fcont = 1.01   (g) 90 40, V

o
 = 0.15, fcont = 1.014   (h) 90 40, V

o
 = 0.05, fcont = 1.012

their optimal number for a continuum topology optimization
problem is suggested. The observation herein is related to
some extent with that in (Saxena 2010). In other words, if an
optimal continuum is synthesized with a strict final resource
constraint and if the number of masks is allowed to vary, the
actual number of masks required will usually be different
from those initially specified. The results in Fig. 7 suggest
that the solutions can change with the variation in the upper
bound on the mask radius. Those in Figs. 6 and 8 illustrate
that close to binary solutions are possible if the continuation
of the exponent αf is handled carefully. Some disconnected
islands are observed in Figs. 6, 7, 8, 9 which are addressed
later in this section. All topologies have serrated boundaries,
which are expected with coarse meshes due to the hon-
eycomb geometry. Also, no explicit boundary smoothing
step as in (Saxena 2010) is implemented. When observing
compliant topologies, both long and short connections of
thickness comparable to the cell size are observed. Also,
gray cells exist in such solutions.

5.2 Efficiency: stochastic vs. gradient based search

Amongst the stochastic approaches that determine topolo-
gies by overlaying negative masks, the adaptive approach
in (Saxena 2010) is the most efficient requiring about 2,000
function evaluations. Other approaches (e.g. Saxena 2009;

Jain and Saxena 2010) that use genetic algorithm or succes-
sive searches require much more. To exemplify efficiency
of the proposed approach, the convergence plots for the
first six solutions in Fig. 5 are shown in Fig. 11. The plots
suggest that for most cases, the strain energy is minimized
significantly much earlier than 200 function evaluations.
After 100 evaluations, strain energy is lowered gradually
while the exponent αf still increases so that close to binary
solutions are obtained near the end of the search. This is
about a factor of 10 reduction compared to the stochas-
tic approach in (Saxena 2010). However, the topologies
obtained therein are well connected and perfectly binary,
the boundaries are smoother with moderated notches, and
the number of masks is altered per iteration so that their
adequate number is determined. In comparison, here, the
solutions are close to binary with some gray (fictitious) cells
still present and the number of masks remains the same
as those specified by the user. But, there is a significant
decrease in the number of evaluations.

5.3 Isolated islands

Some solutions in Figs. 6–9 contain regions that do not form
a part of the respective main topologies. Investigation on
whether such regions can be considered vestigial and can
be removed is performed. The strain energy density (SED)
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Fig. 11 Convergence histories
for the first six topologies in
Fig. 5
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contours of these solutions are plotted in Fig. 12. For each
case, regions in the SED contours are identified by circles
with arrows pointing towards the corresponding dark dis-
connected hexagonal cells in the topologies. It is observed
that such regions store 1% or less of the maximum strain
energy density implying that they can be considered non-
functioning and can be discarded. Note that these exist very
close to the perimeters of a few masks and such regions
attain the material densities close to 1 not because of their
participation in the main continuum. Rather, they seem to
be the artifacts of the high exponent value αf. In fact, if
the isolated cells are part of the main continuum, the objec-
tive (at least for stiff structures) can be improved depending
on where in the topology the cells get placed. Since there
are only a few islands in a solution, it is reckoned that the
improvement will be marginal.

5.4 Numerical intricacies

The method presented here relies on proper choice of ini-
tial parameters and initial guess so that small deformation
stiff structures and compliant continua can be designed.
Care should be taken especially when choosing the initial
values of the exponents. In the author’s experience when
solving symmetric stiff structure problems (Problems 1–
4), specifying αf (initial) and αv > 1 has often led to the
loss of symmetry in density and gradient values. A pos-
sible reason could be that numerical errors get introduced
due to the near zero values of

∂ρ j
∂ψK

and hence the objective
and constraints (Fig. 3). At any time during optimization,
the exponent should not be overly large. This is again due

to
∣∣∣ ∂ρ j
∂ψK

∣∣∣ being very close to zero making it difficult for

the optimization algorithm to proceed further. The scale
factor λ in (F2) is a parameter on which the design of
a compliant continuum can significantly depend on. At
times, an undesired local minimum may result requiring

the initial guess (initial position and sizes of the masks) to
be altered. Based on experience, the author recommends
the following values/ranges for different parameters. Sig-
nificant improvements in the proposed algorithm are still
possible which will be addressed in future endeavors. Inter-
ested readers and practitioners are invited to experiment
with and modify/improve the MATLAB program (provided
as supplementary material and in Appendix A; the interac-
tive interface is accessed via mmos_main.m).The code is
inspired by the previous educational articles on topology
optimization that employ SIMP and level set methods (e.g.,
Sigmund 2001; Challis 2010; Andreassen et al. 2011).

1. Exponents αf/αv (alp in the code): A low initial value
(αf = αv = 1 strictly recommended, or less) should
be used. The author has not experimented much with
αf = αv < 1 (e.g., 0.9). For a symmetric problem,
if asymmetric mask movement/sizing is observed, opti-
mization can be re-started with lower initial αf and αv.
The continuation parameter fcont may also be lowered.
Alternatively, the problem can be solved by considering
its symmetric half.

2. Continuation parameter fcont (fact in the code): A value
very close to but greater than 1 should be used. These
values are mentioned with various examples solved in
the paper. The parameter can be estimated as fcont =
exp

(
1

max _eval log
[
αfinal

f

])
where max_eval is the num-

ber of evaluations permitted and αfinal
f is the final value

of the exponent. The above relation assumes that the
initial αf is 1. The author suggests that the number
of evaluations allowed should be large enough so that
increase in the exponent value is gradual. αfinal

f will
depend on the optimization problem at hand, but use
of a very high value is not recommended (e.g., see
solutions to Problem 4).
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(a) Solution Fig. 6a (b) Solution Fig. 6b (c) Solution Fig. 7a

(d) Solution Fig. 7b (e) Solution Fig. 7c

(g) Solution Fig. 9(c)

(f) Solution Fig. 8c
 

Color Key: 

 

Fig. 12 a–g Contour plots of the strain energy density (SED) for some solutions in Figs. 6, 7, 8, 9. The SEDs corresponding to the disconnected
regions are marked with circles/ellipses

3. Rmax (max_R in the code): Per Fig. 7, values of max_R
in the range [1/6W , W ] where W is related to the mini-
mum dimension of the rectangular region, has posed no
difficulty in yielding solutions. This can however not be
generalized.

4. V o (volf in the code): For this parameter, a range
of values between [0.05, 0.3] has been employed
in the examples. As mentioned before, this param-

eter controls the continuum volume only indirectly
which improves with mesh refinement. For a coarse
mesh, one may try with V o as low as 0.05 and
expect the final volume fraction to be close to 0.3.
For fine meshes, V o will usually approximate the
final volume fraction better. If desirable solutions are
not obtainable for a low V o, larger values may be
tried.
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5. λ (lines 28 and 29 in analysis_mmos_ef f.m): The value
of this parameter can significantly influence the solu-
tion of a compliant mechanism. λ is used to scale the
magnitude of the output displacement with respect to
the strain energy. For the problems solved herein, λ is
set to 10,000 or 50,000. However, choice of λ > 0 is
problem dependent.

6. epsilon: A low positive value (e.g., 10−3 or 10−4) is
usually employed as the lower bound for cell densities.

7. adj_x and adj_y: The author has set these values as zero
for the examples. They are used to respectively control
the horizontal and vertical positions of the entire group
of masks in the initial guess.

6 Closure

Topology optimization with negative masks is implemented
in this paper with gradient search. It was previously
shown using the honeycomb parameterization that well con-
nected perfectly binary solutions could be attained with
the stochastic search, but the approach required a large
number of design evaluations. The computational effort
required herein is about 1/10th compared to its prede-
cessor schemes that use the random mutation based hill
climber procedure. Close to binary solutions are possi-
ble if the increase in the exponent of the logistic function
is gradual. Some fictitious cells can appear at continuum
boundaries and at sites where the local critical feature size
is comparable to the characteristic size of the mesh. It is
conjectured that a hybrid method combining both, gradi-
ent and stochastic searches will help obtain well connected,
perfectly binary topologies efficiently. This, in particular,
will be useful when designing large deformation continua
(e.g., Bruns and Tortorelli 2001; Pedersen et al. 2001;
Saxena and Ananthasuresh 2001; Rai et al. 2007, 2009;
Mankame and Ananthasuresh 2007; Reddy et al. 2010)
where computation of the search directions will be possi-
ble for solutions with convergent nonlinear displacement
analyses. For a non-convergent one, stochastic mutation
steps will help alter that intermediate design to a neigh-
boring convergent one which can be used as an initial
guess for the subsequent gradient search. Extension of the
Material Mask Overlay Method to three-dimensional con-
tinuum design is straight forward by replacing the circular
masks with the spherical ones and hexagonal cells with
tetrakaidecahedrons.
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Appendix A: The matlab code

A.1 The main call

1. function [mask_new] = mmos81(nd,eh,F1,F2,DBC,E,
th,Nx,Ny,ep,alp,mR,vf,oc,adx,ady,fact,fig)

2. % developed by Anupam Saxena for Academic use,
12/3/2010

3. for i = 1:size(eh,1), ct(i,:) = sum(nd(eh(i,[2:7]),[2,3]),
1)/6; end, % hex centroids

4. [X, Y] = meshgrid([min(ct(:,1))+adx + ([0:Nx-1]/
(Nx−1))*(max(ct(:,1)) − min(ct(:,1)))], [min(ct(:,2))+
ady+([0:Ny−1]/(Ny-1))* (max(ct(:,2))−min(ct(:,2)))]);

5. mask = [reshape(X,Nx*Ny,1)′ reshape(Y,Nx*Ny,1)′
2*ones(1,Nx*Ny)]; % [X Y R] mask variable
initialization

6. low = [(min(ct(:,1))−mR)*ones(1,Nx*Ny) (min(ct(:,
2))−mR)*ones(1,Nx*Ny) (0)*ones(1,Nx*Ny)]; %
lower bound

7. upp = [(max(ct(:,1))+mR)*ones(1,Nx*Ny)(max(ct(:,
2))+mR)* ones(1,Nx*Ny) (mR)*ones(1,Nx*Ny)]; %
upper bound

8. options = optimset(‘Display’,‘iter’,‘MaxIter’,100,
‘MaxFunEvals’,200,‘TolX’,1e-10,‘TolFun’,1e−10,
‘GradObj’,’on’,‘GradConstr’,‘on’,‘DerivativeCheck’,
‘off’);

9. save(‘alp1’,‘alp’);
10. mask_new = fmincon(@(xx)analysis_mmos_eff(xx,

nd,eh,F1,F2,DBC,E,th,ct,Nx,Ny,alp,ep,oc,fact,fig),
mask,[],[],[],[],low,upp,@(xx)vol_cons_mmos(xx,alp,
eh,ct,Nx,Ny,ep,vf*size(eh,1),[],[]),options);

11. load alp1, [cell_dens,sens_mask] = sensitivity_
mask_mmos(mask_new,eh,ct,alp,Nx,Ny,ep); % final
densities

12. plot_masks_and_densities_mmos(nd,eh,cell_dens,
mask_new,ct,Nx,Ny,fig); % final solution plot

A.2 The analysis function

13. function [obj,obj_sens,dv] = analysis_mmos_eff(mk,
nd,eh,F1,F2,DBC,E,th,cent,Nx,Ny,alp,ep,oc,fact,fig),
% analysis function

14. load alp1.mat, [dens,sens] = sensitivity_mask_mmos
(mk,eh,cent,alp,Nx,Ny,ep); % cell densities, deriva-
tives w.r.t mask parameters

15. if (alp < 60), alp = fact*alp; end, % continuation on
exponent

16. KE = element_stiffness_mmos(E,th); % element
stiffness matrix, same for all cells

17. nn = eh([1:size(eh,1)],[2:7]); % connectivity
information
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18. ldof(:,2*[1:6]−1) = 2*nn(:,[1:6])−1; % local degrees
of freedom

19. ldof(:,2*[1:6]) = 2*nn(:,[1:6]);
20. IJX = zeros(144*size(eh,1),3); % Triplets for Global

Stiffness assembly
21. ntrip = 0;
22. for n = 1:size(eh,1), % assembly of the Global

Stiffness
23. forkr=1:12
24. forkc=1:12
25. ntrip = ntrip + 1;
26. IJX(ntrip,:) = [ldof(n,kr) ldof(n,kc) dens(n,1)*KE

(kr,kc)];
27. end
28. end
29. end
30. KG = sparse(IJX(:,1),IJX(:,2),IJX(:,3),2*size(nd,1),

2*size(nd,1)); % Global Stiffness in sparse form
31. FF12 = sparse(2*size(nd,1),4); %[Input Force F,

Virtual Force Fd, displacements U, displacements V]
in columns

32. FF12( 2*(F1(:,2) − 1) + F1(:,3),1) = F1(:,4); % input
force vector F

33. FF12( 2*(F2(:,2) − 1) + F2(:,3),2) = F2(:,4); %
virtual force vector Fd

34. FixDOF = 2*(DBC(:,2) −1) + DBC(:,3); % Fixed
displacement IDs

35. KG(2*(F2(:,2)-1)+F2(:,3),2*(F2(:,2)-1)+F2(:,3))=
KG(2*(F2(:,2)-1)+F2(:,3),2*(F2(:,2)-1)+F2(:,3))+
diag(F2(:,5)); % output spring

36. FF12(setdiff([1:2*size(nd,1)],FixDOF),[3:2+oc])=
KG(setdiff([1:2*size(nd,1)],FixDOF),setdiff([1:2*
size(nd,1)],FixDOF)) \ FF12(setdiff([1:2*size(nd,1)],
FixDOF),[1:oc]);

37. dv(:,1) = −0.5*sum(reshape(FF12(ldof,3),size(eh,1),
12)*KE.*reshape(FF12(ldof,3),size(eh,1),12),2);
% derivatives of strain energy w.r.t densities

38. dv(:,2) = −sum(reshape(FF12(ldof,4),size(eh,1),12)*
KE.*reshape(FF12(ldof,3),size(eh,1),12),2); % deriva-
tives of the output displacements w.r.t densities

39. SE_MSE = [0.5*FF12(:,3)′*FF12(:,1) FF12(:,4)′
*FF12(:,1)]; % Strain energy and output displacement

40. obj1 = [SE_MSE(1) −10000*SE_MSE(2)/SE_MSE
(1)]; % SE, −Lambda*MSE/SE

41. obj_sens1=sens′*[dv(:,1) −10000*(dv(:,2)/SE_MSE(1)
− SE_MSE(2)*dv(:,1)/SE_MSE(1)ˆ2)]; % obj. deriva-
tives w.r.t mask parameters

42. obj = full(obj1(oc)); % objective being minimized
43. obj_sens = obj_sens1(:,oc); % sensitivities of objec-

tive being minimized
44. save(‘alp1’,‘alp’), save(‘mask_prev’,‘mk’), plot_

masks_and_densities_mmos(nd,eh,dens,mk,cent,Nx,
Ny,fig); pause(1e-6), % intermediate solution plot

A.3 Computation of cell densities and their gradients w.r.t
mask parameters

45. function [dens,sens] = sensitivity_mask_mmos(mk,
eh,ct,alp,Nx,Ny,ep)

46. for i = 1:size(eh,1), % computation of cell densities
47. dens(i,1) = ep+prod((1+exp(-alp*(sqrt((ct(i,1)-mk([1:

Nx*Ny])).ˆ2+(ct(i,2)-mk([Nx*Ny+1:2*Nx*Ny])).ˆ2 )-
mk([2*Nx*Ny+1:3*Nx*Ny])))).ˆ(-1));

48. end
49. dens(find(dens>1)) = 1;
50. for j = 1:Nx*Ny, % computation of density derivatives

w.r.t mask parameters
51. pp = [mk(j) mk(j+Nx*Ny) mk(j+2*Nx*Ny)];
52. d1 = sqrt((pp(1)-ct(:,1)).ˆ2 + (pp(2)-ct(:,2)).ˆ2) +

0.001;
53. sens(:,j) = (alp*dens(:,1).*exp(−alp*(d1-pp(3))).*

(pp(1)-ct(:,1))./d1)./(1+exp(−alp*(d1-pp(3)))); % sen-
sitivity w.r.t X_k

54. sens(:,j+Nx*Ny) = (alp*dens(:,1).*exp(−alp*(d1-
pp(3))).*(pp(2)-ct(:,2))./d1)./(1 + exp(-alp*(d1-
pp(3)))); % sensitivity w.r.t Y_k

55. sens(:,j+2*Nx*Ny) = −(alp*dens(:,1).*exp(-alp*(d1-
pp(3))))./(1+exp(−alp*(d1-pp(3)))); % sensitivity
w.r.t R_k

56. end

A.4 Element stiffness matrix

57. function [K] = element_stiffness_mmos(E,thick), %
element stiffness matrix for nu = 0.29

58. K = E*thick*(1/1000)*[616.43012 92.77147
−168.07333 65.54377 −232.28511 −0.00032
−120.65312 −83.28564 −71.60020 −92.77115
−23.81836 17.74187;

59. 92.77147 509.30685 101.02751 −71.90335 0.00032
−18.03857 −83.28564 −24.48314 −92.77179
−178.72347 −17.74187 −216.15832;

60. −168.07333 101.02751 455.74522 0.00000
−168.07333 −101.02751 −71.60020 −92.77179
23.60185 −0.00000 −71.60020 92.77179;

61. 65.54377 −71.90335 0.00000 669.99176 −65.54377
−71.90335 −92.77115 −178.72347 −0.00000
−168.73811 92.77115 −178.72347;

62. −232.28511 0.00032 −168.07333 −65.54377
616.43012 −92.77147 −23.81836 −17.74187
−71.60020 92.77115 −120.65312 83.28564;

63. −0.00032 −18.03857 −101.02751 −71.90335
−92.77147 509.30685 17.74187 −216.15832
92.77179 −178.72347 83.28564 −24.48314;

64. −120.65312 −83.28564 −71.60020 −92.77115
−23.81836 17.74187 616.43012 92.77147
−168.07333 65.54377 −232.28511 −0.00032;
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65. −83.28564 −24.48314 −92.77179 −178.72347
−17.74187 −216.15832 92.77147 509.30685
101.02751 −71.90335 0.00032 −18.03857;

66. −71.60020 −92.77179 23.60185 −0.00000
−71.60020 92.77179 −168.07333 101.02751
455.74522 0.00000 −168.07333 −101.02751;

67. −92.77115 −178.72347 −0.00000 −168.73811
92.77115 −178.72347 65.54377 −71.90335 0.00000
669.99176 −65.54377 −71.90335;

68. −23.81836 −17.74187 −71.60020 92.77115
−120.65312 83.28564 −232.28511 0.00032
−168.07333 −65.54377 616.43012 −92.77147;

69. 17.74187 −216.15832 92.77179 −178.72347
83.28564 −24.48314 −0.00032 −18.03857
−101.02751 −71.90335 −92.77147 509.30685;];

A.5 Volume constraint and its gradients

70. function [g,d,cons_sens,d1] = vol_cons_mmos(mk,
alp,eh,ct,Nx,Ny,ep,vstar,d,d1), % volume constraint
and derivatives

71. [cell_dens,sens_mask] = sensitivity_mask_mmos
(mk,eh,ct,alp,Nx,Ny,ep);, % cell densities and
derivatives

72. g = sum(cell_dens)- vstar; % volume constraint
73. cons_sens = sum(sens_mask,1)′; % derivatives of g

A.6 Plot function for intermediate and final solutions

74. function []= plot_masks_and_densities_mmos(nd,eh,
cd,mk,ct,Nx,Ny,basefig)

75. figure(basefig), cla, hold on; axis equal
76. for i = 1:size(eh,1), % plot densities
77. fill([nd(eh(i,[2:7]),2)],[nd(eh(i,[2:7]),3)],[(1-cd(i,1))

(1-cd(i,1)) (1-cd(i,1))],‘EdgeColor’,[(1-cd(i,1)) (1-cd
(i,1)) (1-cd(i,1))]);

78. end
79. for j = 1:Nx*Ny,
80. plot([mk(j)+mk(2*Nx*Ny+j)*cos(0:pi/24:2*pi)],

[mk(Nx*Ny+j)+mk(2*Nx*Ny+j)*sin(0:pi/24:2*pi)],
‘r’);

81. end

A.7 Function incorporating multiple load cases

1. function [obj,obj_sens,dv] = analysis_mmos_
multiload_eff(mk,nd,eh,F1,F2,DBC,E,th,ct,Nx,
Ny,alp,ep,oc,fact,fig)

2. load alp1.mat[dens,sens] = sensitivity_mask_mmos
(mk,eh,ct,alp,Nx,Ny,ep);

3. if (alp < 60), alp = fact*alp; end, % continuation on
exponent

4. KE = element_stiffness_mmos(E,th); % element
stiffness matrix, same for all cells

5. nn = eh([1:size(eh,1)],[2:7]); % connectivity
information

6. ldof(:,2*[1:6]-1) = 2*nn(:,[1:6])-1; % local degrees of
freedom

7. ldof(:,2*[1:6]) = 2*nn(:,[1:6]);
8. IJX = zeros(144*size(eh,1),3); % Triplets for Global

Stiffness assembly
9. ntrip = 0;

10. for n = 1:size(eh,1), % assembly of the Global
Stiffness

11. forkr=1:12
12. forkc=1:12
13. ntrip = ntrip + 1;
14. IJX(ntrip,:) = [ldof(n,kr) ldof(n,kc) dens(n,1)*

KE(kr,kc)];
15. end
16. end
17. end
18. KG = sparse(IJX(:,1),IJX(:,2),IJX(:,3),2*size(nd,1),

2*size(nd,1)); % Global Stiffness in sparse form
19. FF12 = sparse(2*size(nd,1),2*size(F1,1)); % input

vector containing multiple loads
20. for i = 1:size(F1,1), FF12(2*(F1(i,2) − 1) + F1(i,3),

i) = F1(i,4); end, % individual forces in different
columns

21. FixDOF = 2*(DBC(:,2) − 1) + DBC(:,3); % Fixed
displacement IDs

22. FF12(setdiff([1:2*size(nd,1)],FixDOF),[1+size(F1,1):
2*size(F1,1)])=KG(setdiff([1:2*size(nd,1)],FixDOF),
setdiff([1:2*size(nd,1)],FixDOF))\FF12(setdiff([1:2*
size(nd,1)],FixDOF),[1:size(F1,1)]);

23. for i = 1:size(F1,1), dv(:,i) = -0.5*sum(reshape(FF12
(ldof,i+size(F1,1)),size(eh,1),12)*KE.*reshape(FF12
(ldof,i+size(F1,1)),size(eh,1),12),2); end

24. for i = 1:size(F1,1), SE(i) = 0.5*FF12(:,i+size(F1,1))′
*FF12(:,i); end, % individual strain energies and their
derivatives (above)

25. obj = full(sum(SE)); % objective: net strain energy
26. obj_sens = sens′*(sum(dv,2)); % derivatives of obj

w.r.t mask parameters
27. save alp1alpobj, save mask_savemk; plot_masks_and_

densities_mmos(nd,eh,dens,mk,ct,Nx,Ny,fig); pause
(1e-6)

Appendix B: Execution and explanation of the code

B.1 Quick execution

(a) Type mmos_main.m at the Matlab prompt.
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(b) Click on any Load Problem button (top six but-
tons on the interface). These problems are similar
to the respective problems in the paper. To solve
Problems III and IV (multiple load problems), anal-
ysis_mmos_ef f in line 10 of mmos81.m should be
replaced by analysis_mmos_multiload_ef f. For the
rest, analysis_mmos_ef f should be retained.

(c) Click on the MMOS81 button to observe the solutions
evolve.

B.2 Explanation

The Matlab implementation used is composed of 6 primary
functions. The main call is:

p = mmos81(node, elem_hexx, F1, F2, DBC, E, t, N x,

N y, epsi, alp, max_R, vol f, obj_cho, ad j_x,

ad j_y, f act, base f ig);

All parameters of this function are generated/specified inter-
actively. The function itself is accessed from within the user
interface (provided with the supplementary material; exe-
cute mmos_main.m to access the interface) though this call
can be made separately at the Matlab prompt after the design
domain, loading and boundary conditions, i.e., arrays node,
elem_hexx, F1 (forces1), F2(forces2), and DBC(dispbc1)
are generated (steps I–VI; Click on the respective help but-
tons). A user can independently specify the elastic modulus
(E), thickness (t), initial number of masks along the hor-
izontal and vertical (Nx and Ny), minimum cell density
value (epsi), initial value of the exponent (alp), maximum
mask radius (max_R; note that the minimum radius is zero),
volume fraction (volf ), obj (‘1’ for minimizing the strain
energy in (F1) and ‘2’ to design a compliant mechanism
using the flexibility-stiffness formulation in (F2)), initial
horizontal and vertical mask adjustments (adj_x and adj_y;
set both as zero if no adjustments in the initial guess is
required), the factor (fact) by which the exponent (alp) is
increased per function evaluation (set fact as close as pos-
sible to 1 but slightly larger, say 1.014; fact can also be
computed if the final target value of α and the number
of iterations/evaluations to be performed are approximately
known; see discussion), and finally the figure number
(basef ig) in which the plots are desired. Variable pcontains
the final mask information.

B.3 The main program (lines 1–12)

The centroids ctof the hexagonal cells are computed in line
3. In line 4, evenly spaced array of Nx × Ny points are gen-
erated using the meshgrid function in Matlab. These form
the mask centers in line 5. Each mask is initialized with

radius 2 units. This value can be changed if a different initial
guess is to be specified. Line 5 also reveals how the design
variable vector is formed with first, all Nx × Ny horizon-
tal coordinates followed by the same number of the vertical
coordinates of the masks. The last Nx × Ny entries corre-
spond to the mask radii. Lines 6 and 7 specify the lower and
upper bounds on the mask variables. Masks can be placed
anywhere within the rectangle of size (L + 2max_R) ×
(W + 2max_R) where L and W are the dimensions of
the rectangular region within which the domain is placed.
Note that the domain itself need not be rectangular in shape.
Line 8 specifies some options for the fmincon function (type
optimset at the Matlab prompt for details). Line 9 saves
the initial, user specified value of the exponent α to be
accessed by the analysis function (analysis_mmos_ef f.mor
analysis_mmos_multi_load_ef f.m) of the code. A call to the
Matlab’s optimization routine fmincon is made in line 10.
The routine requires the objective and constraint informa-
tion to be given via two separate functions (Appendices B.4
and B.5). The mask positions and sizes are stored in the
mask_new array. In line 11, the final value of the exponent
is retrieved and cell densities are computed. They are plotted
in line 12.

B.4 Objective and its gradients (lines 13–44)

The current value of the exponent is retrieved (line 14)
based on which the cell densities are computed. The expo-
nent is increased by the factor fact in line 15 if α is less
than its maximum value (e.g., 60, which can be changed
if required). The element stiffness matrix, KE is accessed
in line 16.The connectivity information from the elem_hexx
array (eh) is accessed in line 17. Local degrees of freedom
are computed only once in lines 18–19. For efficient assem-
bly of the stiffness matrix, the notion is to assemble it in
triplets I, J and X within a for loop and then transfer this
information to a sparse matrix at the end of the loop. With
the mesh size known, sizes of I, J and X are known before-
hand so that they can be initialized before the assembly
loop (line 20). Assembly is performed in lines 21–29 and
the global stiffness matrix KG is stored as a sparse matrix
in line 30.In line 31, matrix FF12 of size 2Nnode × 4 is
initialized. The matrix contains four vectors—the first is
the input force vector (F s.t. F = KU), the second is the
vector containing the dummy load (Fd = KV) to compute
the output displacement, and the third and fourth vectors U
and V are the displacement responses due to the first two
load vectors. In lines 32–33, the first two columns of FF12
are updated with information from the input load array
forces1 ≡ F1 and the output displacement array forces2 ≡
F2. Fixed degrees of freedom are determined in line 34
via the dispbc1 ≡ DBC array. The output spring(s) is (are)
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added to the global stiffness matrix in line 35. The displace-
ment vectors U and V, i.e., the third and fourth columns
of FF12 are solved for in line 36. Note that if only strain
energy is minimized (obj_cho = 1), only one displacement
vector U is computed. Otherwise, for obj_cho = 2 which
is the switch to design compliant mechanisms, both U and
V are determined. Gradients of the strain energy and out-
put deformation for each cell are computed in lines 37–38.
These lines compute the gradients directly which are stored
in the array dv. The first column in dv stores the sensitivi-
ties pertaining to the strain energy while the second column
stores the same for the output deformation. For obj_cho =
1, the second column in dv is not needed (the entries are all
zeros). Line 39 stores the strain energy and output displace-
ment in vector SE_MSE as the first and second entries. The
two objectives in (F1) and (F2) are stored in line 40. The
scale factor λ in (F2) appears here which should be adjusted
if required. In line 41, sensitivities of both objectives with
respect to the mask parameters are obtained. Lines 42 and
43 release the function value and its gradients as the first
two output variables. In line 44, the current value of the
exponent is saved to be accessed and increased (lines 14–
15) by fact the next time a call is made to this function by
fmincon. The current mask parameters are also saved. The
intermediate solution, positions and sizes of the masks are
plotted.

B.5 Partial derivatives of cell densities w.r.t mask
parameters (lines 45–56)

Lines 45–56 compute the cell densities and its derivatives
with respect to the mask variables. Lines 46–48 compute
the cell densities in vectorized form (a for loop is absorbed
within line 47). Line 49 imposes the upper limit of 1 on
the cell densities. The lower limit is already imposed via
line 47 through ep (epsilon). Lines 50 through 56 compute
the derivatives of the cell densities with respect to mask
parameters. Array sens in lines 53–55 stores these deriva-
tives. In the first Nx × Ny columns, derivatives are stored
with respect to the horizontal mask coordinates. The next
Nx × Ny columns contain derivatives with respect to the
y mask coordinates, and the last same number of columns
store gradients with respect to their radii.

B.6 Element stiffness matrix (lines 57–69)

The element stiffness matrix is computed separately using
the unit Wachspress hexagonal finite element. 19 integra-
tion points are used with modulus and thickness as 1 each.
Poisson’s ratio is taken as 0.29. The resultant constant
matrix of size 12 × 12 is stored in these lines. The proce-
dure for evaluation of the stiffness matrix is documented in

(Saxena 2010; Talischi et al. 2009). User specified val-
ues of the elastic modulus (E) and continuum thickness
(t) are multiplied to this matrix. Note that K is symmetric
which can be used to reduce information storage (and make
stiffness assembly more efficient).

B.7 Volume constraint and its gradients (lines 70–73)

The fmincon.m routine in Matlab requires the constraints to
be specified using a separate function. Both linear and non-
linear constraints can be specified. Linear constraints are
not used and so the corresponding values and coefficients
are passed in and out as empty matrices d and d1 (Correlate
the arguments of this function with line 10 of the code). Cell
densities and sensitivities are computed again. But here, the
initial, user specified value of the exponent is used. That is,
the exponent is not updated as in line 15. The volume con-
straint is registered in line 72 and its gradients are computed
in Line 73. Since ∂V

∂ρi
=1∀i , ∂V

∂ψ j
is the sum over all rows in a

column that corresponds to the ψ j th mask variable.

B.8 Plot of intermediate and final results (74–81)

Intermediate cell densities are plotted via lines 76–78 while
the mask positions and their sizes are plotted through lines
79–81.

B.9 Function incorporating multiple load cases

All loads may be input through forces1 array (to be edited
directly within the MATLAB’s workspace), and each line
will correspond to a different load case. A separate function
analysis_mmos_multiload_ef f.m Appendix A.7 is available
with changes to incorporate computation of strain energy
and its derivatives for different load cases. To determine
stiff structures for multiple loads (e.g., Problems 3 and
4), line 10 of the code should be modified by replacing
analysis_mmos_ef f with analysis_mmos_multiload_ef f.
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