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Abstract This paper proposes formulations and algorithms
for design optimization under both aleatory (i.e., natu-
ral or physical variability) and epistemic uncertainty (i.e.,
imprecise probabilistic information), from the perspective
of system robustness. The proposed formulations deal with
epistemic uncertainty arising from both sparse and interval
data without any assumption about the probability distri-
butions of the random variables. A decoupled approach
is proposed in this paper to un-nest the robustness-based
design from the analysis of non-design epistemic variables
to achieve computational efficiency. The proposed methods
are illustrated for the upper stage design problem of a two-
stage-to-orbit (TSTO) vehicle, where the information on the
random design inputs are only available as sparse point data
and/or interval data. As collecting more data reduces uncer-
tainty but increases cost, the effect of sample size on the
optimality and robustness of the solution is also studied. A
method is developed to determine the optimal sample size
for sparse point data that leads to the solutions of the design
problem that are least sensitive to variations in the input
random variables.
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1 Introduction

In deterministic design optimization, it is generally assumed
that all design variables and system variables are precisely
known; the influence of natural variability and data uncer-
tainty on the optimality and feasibility of the design is not
explicitly considered. However, real-life engineering prob-
lems are non-deterministic, and a deterministic assumption
about inputs may lead to infeasibility or poor performance
(Sim 2004). In recent years, many methods have been devel-
oped for design under uncertainty. Reliability-based design
(e.g., Chiralaksanakul and Mahadevan 2005; Ramu et al.
2006; Agarwal et al. 2007; Du and Beiqing Huang 2007)
and robust design (e.g., Parkinson et al. 1993; Du and Chen
2000; Doltsinis and Kang 2004; Huang and Du 2007) are
two directions pursued by these methods. While reliability-
based design aims to maintain design feasibility at desired
reliability levels, robust design optimization attempts to
minimize variability in the system performance due to vari-
ations in the inputs (Lee et al. 2008). In recent years, several
methods have also been proposed to integrate these two
paradigms of design under uncertainty (e.g., Du et al. 2004;
Lee et al. 2008).

Taguchi proposed robust design methods for selecting
design variables in a manner that makes the product perfor-
mance insensitive to variations in the manufacturing process
(Taguchi 1993). Taguchi’s methods have widespread appli-
cations in engineering; however, these methods are imple-
mented through statistical design of experiments and cannot
solve problems with multiple measures of performances and
design constraints (Wei et al. 2009). With the introduction of
nonlinear programming to robust design, it has become pos-
sible to achieve robustness in both performance and design
constraints (Du and Chen 2000).
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The essential elements of robust design optimization
are: (1) maintaining robustness in the objective function
(objective robustness); (2) maintaining robustness in the
constraints (feasibility robustness); (3) estimating mean and
measure of variation (variance) of the performance func-
tion; and (4) multi-objective optimization. The rest of this
section briefly reviews the literature with respect to these
four elements and establishes the motivation for the current
study.

1.1 Objective robustness

In robust optimization, the robustness of the objective func-
tion is usually achieved by simultaneously optimizing its
mean and minimizing its variance. Two major robustness
measures are available in the literature: one is the vari-
ance, which is extensively discussed in the literature (Du
and Chen 2000; Lee and Park 2001; Doltsinis and Kang
2004) and the other is based on the percentile difference
(Du et al. 2004).

1.2 Feasibility robustness

Feasibility robustness i.e., robustness in the constraints can
be defined as satisfying the constraints of the design in the
presence of uncertainty. Du and Chen (2000) classified the
methods of maintaining feasibility robustness into two cat-
egories: (i) methods that use probabilistic and statistical
analysis, for example, a probabilistic feasibility formulation
(Du and Chen 2000; Lee et al. 2008), and a moment match-
ing formulation (Parkinson et al. 1993) and (ii) methods
that do not require them, for example, worst case analysis
(Parkinson et al. 1993), corner space evaluation (Sundaresan
et al. 1995), and manufacturing variation patterns (MVP)
(Yu and Ishii 1998).

A commonly used approach, the feasible region reduc-
tion method has been described in Park et al. (2006), which
is general and does not require any normality assumption.
This is a tolerance design method, where width of the feasi-
ble space in each direction is reduced by the amount kσ ,
where k is a user-defined constant and σ is the standard
deviation of the performance function. A comparison study
of the different constraint feasibility methods can be found
in Du and Chen (2000).

1.3 Estimating mean and variance of the performance
function

Various methods have been reported in the literature to esti-
mate the mean and standard deviation of the performance

function. These methods can be divided into three major
classes: (i) Taylor series expansion methods, (ii) sampling-
based methods and (iii) point estimate methods (Huang and
Du 2007).

The Taylor series expansion method (Haldar and
Mahadevan 2000; Du and Chen 2000; Lee and Park 2001)
is a simple approach. However, for a nonlinear perfor-
mance function, if the variances of the random variables
are large, this approximation may result in large errors
(Du et al. 2004). Sampling-based methods require infor-
mation on distributions of the random variables, and are
expensive. Efficient sampling techniques such as impor-
tance sampling, Latin hypercube sampling, etc. (Robert and
Casella 2004) and surrogate models (Ghanem and Spanos
1991; Bichon et al. 2008; Cheng and Sandu 2009) may
be used to reduce the computational effort. Point estimate
method (Rosenblueth 1975) overcomes the difficulties asso-
ciated with the computation of derivatives required in Taylor
series expansion. Different variations of this point estimate
method (Hong 1998; Zhao and Ono 2000; Zhao and Ang
2003) have been studied. A more recent approach to esti-
mating the mean and variance of the performance function
is the dimension reduction method (DRM) (Rahman and Xu
2004; Xu and Rahman 2004; Lee et al. 2008). DRM was
developed to overcome the shortcomings associated with
the Taylor series expansion and the sampling methods.

1.4 Multi-objective optimization

Robustness-based optimization considers two objectives:
optimize the mean of the objective function and minimize
its variation. An extensive survey of the multi-objective
optimization methods can be found in Marler and Arora
(2004). Among the available methods, the weighted sum
approach is the most common approach to multi-objective
optimization and has been extensively used in robust design
optimization (Lee and Park 2001; Doltsinis and Kang 2004;
Zou and Mahadevan 2006). Other methods include the
ε-constraint method (Mavrotas 2009), goal programming
(Zou and Mahadevan 2006), compromise decision support
problem (Bras and Mistree 1993, 1995; Chen et al. 1996),
compromise programming (CP) (Zeleny 1973; Zhang 2003;
Chen et al. 1999) and physical programming (Messac 1996;
Messac et al. 2001; Messac and Ismail-Yahaya 2002; Chen
et al. 2000). Each of these methods has its own advantages
and limitations.

Although there is now an extensive volume of litera-
ture for robust optimization methods and applications, all
these methods have only been studied with respect to phys-
ical or natural variability represented by probability dis-
tributions. Uncertainty in system design also arises from
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other contributing factors. Sources of uncertainty may be
divided into two types: aleatory and epistemic (Oberkampf
et al. 2004). Aleatory uncertainty is irreducible. Examples
include phenomena that exhibit natural variation like oper-
ating conditions, material properties, geometric tolerances,
etc. In contrast, epistemic uncertainty results from a lack
of knowledge about the system, or due to approximations
in the system behavior models, or due to limited or subjec-
tive (e.g., expert opinion) data; it can be reduced as more
information about the system is obtained.

One type of data uncertainty involves having limited data
to properly define the distribution parameters of the ran-
dom variables. This type of uncertainty may be reduced
by collecting more data. In some cases of data uncertainty,
distribution information of a random variable may only be
available as intervals given by experts. The objective of this
paper is to develop an efficient robust optimization method-
ology that includes both aleatory and epistemic uncertainty
described through sparse point data and interval data.

A few studies on robust design optimization are reported
in the literature to deal with epistemic uncertainty aris-
ing from lack of information. Youn et al. (2007) used a
possibility-based method, and redefined the performance
measure of robust design using the most likely values of
fuzzy random variables. Dai and Mourelatos (2003) pro-
posed two two-step methods for robust design optimization
that can treat aleatory and epistemic uncertainty separately
using a range method and a fuzzy sets approach. Most of
the current methods of robust optimization for epistemic
uncertainty need additional non-probabilistic formulations
to incorporate epistemic uncertainty into the robust opti-
mization framework, which may be computationally expen-
sive. However, if the epistemic uncertainty can be converted
to a probabilistic format, the need for these additional
formulations is avoidable, and well-established probabilis-
tic methods of robust design optimization can be used.
Therefore, there is a need for an efficient robust design
optimization methodology that deals with both aleatory and
epistemic uncertainty.

In this paper, we propose robustness-based design opti-
mization formulations that work under both aleatory and
epistemic uncertainty using probabilistic representations of
different types of uncertainty. Our proposed formulations
deal with both sparse point and interval data without any
assumption about probability distributions of the random
variables.

The performance of robustness-based design can be
defined by the mean and variation of the performance func-
tion. In our proposed formulations, we obtain the optimum
mean value of the objective function (e.g., gross weight)
while also minimizing its variation (e.g., standard devia-

tion). Thus, the design will meet target values in terms
of both design bounds and standard deviations of design
objectives and design variables thereby ensure feasibility
robustness.

A Taylor series expansion method is used in this paper
to estimate the mean and standard deviation of the per-
formance function, which requires means and standard
deviations of the random variables. However, with sparse
point data and interval data, it is impossible to know the true
moments of the data, and there are many possible probabil-
ity distributions that can represent these data (Zaman et al.
2011). In this paper, we propose methods for robustness-
based design optimization that account for this uncertainty
in the moments due to sparse point data and interval data
and thereby include epistemic uncertainty into the robust
design optimization framework. As collecting more data
reduces uncertainty but increases cost, the effect of sample
size on the optimality and the robustness of the solution is
also studied. A method to determine the optimal sample size
for sparse point data that will lead to the minimum scatter
on solutions to the design problem is also presented in this
paper.

In some existing methods for robust design under epis-
temic uncertainty, all the epistemic variables are considered
as design variables (Youn et al. 2007). However, if the
designer does not have any control on an epistemic variable
(e.g., Young’s modulus in beam design), considering that
variable as a design variable might lead to a solution that
could underestimate the design objectives. Therefore, in this
paper, we propose a general formulation for robust design
that considers some of the epistemic variables as non-design
variables, which leads to a conservative design under epis-
temic uncertainty. An example of epistemic uncertainty in
a design variable is the geometric dimension of a compo-
nent, whose manufactured value is different from the design
value. This difference might be specified as an interval by
an expert, or only a few instances of historic values of this
difference might be available.

Note that the proposed robustness-based design opti-
mization method is general and capable of handling a
wide range of application problems under data uncertainty.
The proposed methods are illustrated for the conceptual
level design process of a two-stage-to-orbit (TSTO) vehicle,
where the distributions of the random inputs are described
by sparse point and/or interval data.

The rest of the paper is organized as follows. Section 2
proposes robustness-based design optimization framework
for sparse point data and interval data. In Section 3, we illus-
trate the proposed methods for the conceptual level design
process of a TSTO vehicle. Section 4 provides conclusions
and suggestions for future work.
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2 Proposed methodology

2.1 Deterministic design optimization

In a deterministic optimization formulation, all design vari-
ables and system variables are considered deterministic. No
random variability or data uncertainty is taken into account.
The deterministic optimization problem is formulated as
follows:

min
x

f (x)

s.t. LB ≤ gi (x) ≤ UB for all i

lb ≤ x ≤ ub (1)

where f (x) is the objective function, x is the vector of
design variables, gi (x) is the i th constraint, LB and UB are
the vectors of lower and upper bounds of constraints gi ’s
and lb and ub are the vectors of lower and upper bounds of
design variables.

In practice, the input variables might be uncertain and
solutions of this deterministic formulation could be sensitive
to the variations in the input variables. Robustness-based
design optimization takes this uncertainty into account.
The optimal design points obtained using the deterministic
method could be used as initial guesses in robustness-based
optimization.

2.2 Robustness-based design optimization

In the proposed methodology, we use variance as a measure
of variation of the performance function in order to achieve
objective robustness, the feasible region reduction method
to achieve feasibility robustness, a f irst-order Taylor series
expansion to estimate the mean and variance of the perfor-
mance function, and a weighted sum method for the aggre-
gation of multiple objectives. This combination of methods
is only used for the sake of illustration. Other approaches
can be easily substituted in the proposed methodology. The
robustness-based design optimization problem can now be
formulated as follows:

min
d

f (μ, σ ) = (
w∗μ f + v∗σ f

)

s.t. LB + kσ (gi (d, z)) ≤ E (gi (d, z))

≤ UB − kσ (gi (d, z)) for all i

lbi + kσ (xi ) ≤ di ≤ ubi − kσ (xi )

for i = 1, 2, . . . nrdv,

lbi ≤ di ≤ ubi

for i = 1, 2 . . . , nddv (2)

where μ f and σ f are the mean value and standard deviation
of the objective function, respectively; d is the vector of

deterministic design variables as well as the mean values of
the uncertain design variables x; nrdv and nddv are the num-
bers of the random design variables and deterministic design
variables, respectively; and z is the vector of non-design
input random variables, whose values are kept fixed at their
mean values as a part of the design. w ≥ 0 and v ≥ 0 are
the weighting coefficients that represent the relative impor-
tance of the objectives μ f and σ f in (2); gi (d, z) is the i th
constraint; E(gi (d, z)) is the mean and σ(gi (d, z)) is the
standard deviation of the i th constraint. L B and UB are
the vectors of lower and upper bounds of constraints gi ’s;
l b and ub are the vectors of lower and upper bounds of the
design variables; σ(x) is the vector of standard deviations of
the random variables and k is some constant. The role of the
constant k is to adjust the robustness of the method against
the level of conservatism of the solution. It reduces the fea-
sible region by accounting for the variations in the design
variables and is related to the probability of constraint sat-
isfaction. For example, if a design variable or a constraint
function is normally distributed, k = 1 corresponds to the
probability 0.8413, k = 2 to the probability 0.9772, etc. The
choice of k simply indicates that we would like to restrict
the feasible region to k standard deviations away from the
mean, and this choice is made by the designer.

Note that the robust design formulation in (2) is a stan-
dard nonlinear multi-objective optimization formulation.
The optimality conditions of such a formulation have been
extensively described in the literature including Cagan and
Williams (1993) and Marler and Arora (2004).

In the proposed formulation, the performance functions
considered are in terms of the model outputs. The means
and standard deviations of the objective and constraints are
estimated by using a first-order Taylor series approximation
as follows:

Performance function: Y = g (X1, X2, ...., Xn) (3)

First-order approximate mean of y:

E
(
Y ′) ≈ g

(
μX1 , μX2 , ...., μXn

)
(4)

First-order variance of y:

V ar
(
Y ′) ≈

n∑

i=1

(
∂g

∂ Xi

)2

V ar (Xi )

+
n∑

i=1

n∑

j=1

∂g

∂ Xi

∂g

∂ X j

i �= j

Cov
(
Xi , X j

)
(5)

Note that in (4) and (5), Y ′ has been used instead of Y to
indicate that the mean and variance of Y are obtained by
approximation method.
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The implementation of (2) requires that variances of the
random design variables Xi and the means and variances
of the random non-design variables Zi be precisely known,
which is possible only when a large number of data points
are available. In practical situations, only a small number of
data points may be available for the input variables. In other
cases, information about random input variables may only
be specified as intervals, as by expert opinion. This is input
data uncertainty, causing uncertainty regarding the distribu-
tion parameters (e.g., mean and variance) of the inputs Xi

and Zi . Robustness-based optimization has to take this into
account. In the following subsections, we propose a new
methodology for robustness-based design optimization that
accounts for data uncertainty.

2.3 Robustness-based design optimization
under data uncertainty

The inclusion of epistemic uncertainty in robust design adds
another level of complexity in the design methodology. The
design variables d and/or the input random variables z in (2)
might have epistemic uncertainty. Since the designer does
not have any control on the non-design epistemic variables
z, the design methodology has to employ a search among
the possible values of such epistemic variables in order to
find an optimal solution. In such case, we get a conservative
robust design. The robustness-based design optimization
problem can now be formulated with the following general-
ized statement, where the objective is to minimize the worst
case cost (i.e., upper bound of the cost, which is due to the
epistemic uncertainty):

min
d

(
max
μz

f (μ, σ ) = (
w ∗ μ f + v ∗ σ f

)
)

s.t. LB + kσ
(
gi

(
d, μz

)) ≤ E (gi (d, z))

≤ UB − kσ
(
gi

(
d, μz

))
for all i

l b + kσ (x) ≤ d ≤ ub − kσ (x)

Zl ≤ μz ≤ Zu (6)

where Zl and Zu are the vectors of lower and upper bounds
of the decision variables μz of the inner loop optimization
problem.

Note that in this formulation, the outer loop decision vari-
ables d may consist of stochastic design variables as well
as epistemic design variables. The outer loop optimization
is a design optimization problem, where a robust design
optimization is carried out for a fixed set of non-design epis-
temic variables. The inner loop optimization is the analysis
for the non-design epistemic variables, where the optimizer

searches among the possible values of the non-design epis-
temic variables to calculate the upper bound of the objective
function value.

The nested formulation does not guarantee to converge
and even if it converges, it is computationally very expen-
sive. In nested approach, for every iteration of the epistemic
analysis, the design optimization problem under aleatory
uncertainty has to be repeated. Therefore, we un-nest the
design optimization problem from the epistemic analysis
and thereby achieve computational efficiency. This nested
optimization problem can be decoupled and expressed as:

d∗ = arg min
d

(
w ∗ μ f

(
d, μ∗

z
) + v ∗ σ f

(
d, μ∗

z
))

s.t. LB + kσ
(
gi

(
d, μ∗

z
)) ≤ E (gi (d, z))

≤ UB − kσ
(
gi

(
d, μ∗

z
))

for all i

lb + kσ (x) ≤ d ≤ ub − kσ (x) (7)

μ∗
z = arg max

μz

(
w ∗ μ f

(
d∗, μz

) + v ∗ σ f
(
d∗, μz

))

s.t. LB + kσ
(
gi

(
d∗, μz

)) ≤ E (gi (d, z))

≤ UB − kσ
(
gi

(
d∗, μz

))
for all i

Zl ≤ μz ≤ Zu (8)

The optimization problems in (7) and (8) are solved iter-
atively until convergence. Note that the first constraint
(i.e., the robustness constraint) in (8) is required to ensure
that the optimization is driven by all non-design epistemic
variables, because sometimes the objective function may
not be a function of all non-design epistemic variables.
In cases when the objective function is the function of
all non-design epistemic variables, this constraint is not
required. Figure 1 illustrates the decoupled approach for
robustness-based design optimization under both aleatory
and epistemic uncertainty.

Note that d∗ are fixed quantities in the optimization
in (8) and μ∗

z are the fixed quantities in the optimization
in (7).

2.3.1 Robustness-based design with sparse point data

This section develops a methodology for robustness-based
design optimization with sparse point data, using the for-
mulations in (7) and (8). It is assumed that only sparse
point data are available for the uncertain design variables
as well as non-design epistemic variables. In using central
limit theorem, it is customary to consider that the sample is
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Design Optimization (Eq. (7))

d*
µZ

*

Uncertainty Analysis for non-design 
epistemic variables (Eq. (8))

Yes

Required Design

No
Converge?

Fig. 1 Decoupled approach for robustness-based design optimization

reasonably large when the sample size n is greater than or
equal to 30. In this paper, we assume a variable is described
by the sparse point data if the sample size is less than 30. In
practical problems, sparse data may refer to much smaller
sample sizes.

When a variable, either design or non-design, is
described by sparse point data, there is uncertainty about
the mean and variance calculated from the samples. In
the design optimization (7), the mean values of the design
variables (either aleatory or epistemic) are controlled by
the given design bounds. As in design optimization under
aleatory uncertainty alone, here also it is assumed that
the variances of the epistemic design variables do not
change as their mean values change. However, since the
mean values of the non-design variables cannot be con-
trolled in the design optimization, the proposed robustness-
based design optimization methodology accounts for the
uncertainty about mean values of such epistemic variables
through the optimization in (8).

The constraints on the non-design epistemic variables in
(8) are implemented through the construction of confidence
intervals about mean values. As these variables are
described by the sparse point data, it is possible that the
underlying distributions of the variables might have major
deviations from normality. Therefore, we have used the
Johnson’s modified t statistic (Johnson 1978) to construct

the confidence bounds on mean values of the non-design
epistemic variables as follows:

Zl = z − tα/2,n−1
s√
n

+ μ3

6s2n

Zu = z + tα/2,n−1
s√
n

+ μ3

6s2n
(9)

where z is the vector of means of the epistemic variables, s
is the vector of sample standard deviations, n is the sample
size of the sparse point data, μ3 is the third central moment⎛

⎝μ3 = 1
n

n∑

i=1

(

xi − 1
n

n∑

j=1
x j

)3
⎞

⎠ and tα/2,n−1 is obtained

from the Student t distribution at (n −1) degrees of freedom
and α significance level. This modified statistic takes into
account the skewness of the distribution and thus provides
a better estimate of the confidence bound in the presence of
limited data.

The proposed robustness-based design optimization
methodology accounts for the uncertainty about the vari-
ances for all epistemic variables by first estimating
confidence bounds on variances and then solving the opti-
mization formulations in (7) and (8) using the upper bound
variances for the input random variables xi and zi . Solving
the optimization formulations in (7) and (8) using the upper
bound variances for all the epistemic variables ensures that
the resulting solution is least sensitive to the variations in
the input random variables.

The chi-square distribution is a good assumption for the
distribution of the variance, especially if the underlying pop-
ulation is normal. The two-sided (1−α) confidence interval
for the population variance σ 2 can be expressed as (Haldar
and Mahadevan 2000):

[
(n − 1) s2

c1−α/2,n−1
; (n − 1) s2

cα/2,n−1

]
(10)

where n is the sample size, s is the sample standard devia-
tion of sparse point data, and cα/2,n−1 is obtained from the
chi-square distribution at (n − 1) degrees of freedom and α

significance level. Note that (10) can still be used to obtain
approximate confidence bounds for variance if the under-
lying population is not normal. However, in such cases,
other approximation methods (Bonett 2006; Cojbasic and
Tomovic 2007) can be used to obtain more reliable estimates
of confidence bounds.

Note that (10) is used to estimate the confidence inter-
val for the input random variables described by sparse point
data. Once the confidence intervals for the input random
variables are obtained using (10), the upper bound vari-
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ances are used to estimate the variances of the performance
function using first-order Taylor series approximation as
discussed in Section 2.

The optimization formulation shown in (7) and (8)
involves aggregation of multiple objectives. In the proposed
formulations, the aggregate objective function consists of
two types of objectives, expectation and standard devi-
ation of model outputs. Since different objectives have
different magnitudes, a scaling factor has to be used in the
formulation.

2.3.2 Determination of optimal sample size
for sparse point data

The optimal solutions depend on the sample size of the
sparse data as will be discussed in Section 3.1. Therefore,
it is of interest to determine the optimal sample size of the
sparse data that leads to the solution of the design problem
that is least sensitive to the variations of design variables.
This will facilitate resource allocation decisions for data col-
lection. The following two optimization formulations are
solved iteratively until convergence for the optimal sample
sizes of the epistemic design variables (n∗

d) and epistemic
non-design variables (n∗

e). The formulations in (11) and
(12) are the weighted sum formulations of a three-objective
optimization problem, where the first and second objectives
are the mean and standard deviation of the performance
function respectively and the third objective is the total cost
of obtaining samples for all the random variables.

[
d∗, n∗

d

] = arg min
d,nd

⎛

⎝w ∗ E
(
gi

(
d, μ∗

z

))

+ v ∗ σ
(
gi

(
d, μ∗

z

)
, nd, n∗

e
)

+ (1 − w − v)

∗
⎛

⎝
m∑

j=1

nd j cd j +
q∑

j=1

n∗
e j

ce j

⎞

⎠

⎞

⎠

s.t. LB + kσ
(
gi

(
d, μ∗

z

)
, nd, n∗

e
) ≤ E (gi (d, z))

≤ UB − kσ
(
gi

(
d, μ∗

z

)
, nd, n∗

e
)

for all i

lb + kσ (x, nd) ≤ d ≤ ub − kσ (x, nd)

m∑

j=1

nd j cd j +
q∑

j=1

n∗
e j

ce j ≤ C

nd j ≤ bd j for all j (11)

[
μ∗

z , n∗
e
] = arg max

μz,ne

⎛

⎝w ∗ E
(
gi

(
d∗, μz

))

+ v ∗ σ
(
gi

(
d∗, μz

)
, n∗

d, ne
)

+ (1 − w − v)

∗
⎛

⎝
m∑

j=1

n∗
d j

cd j +
q∑

j=1

ne j ce j

⎞

⎠

⎞

⎠

s.t. LB + kσ
(
gi

(
d∗, μz

)
, n∗

d, ne
) ≤ E (gi (d, z))

≤ UB − kσ
(
gi

(
d∗, μz

)
, n∗

d, ne
)

for all i

Zl (ne) ≤ μz ≤ Zu (ne)

m∑

j=1

n∗
d j

cd j +
q∑

j=1

ne j ce j ≤ C

ne j ≤ bej for all j (12)

where w ≥ 0 and v ≥ 0 are the weighting coefficients
that represent the relative importance of the objectives; nd j

and ne j are the sample sizes and bd j and be j are the maxi-
mum sample size possible for the j th design and non-design
random variables, respectively. m and q are the number of
design and non-design random variables, respectively. cd j

and ce j are the cost of obtaining one sample for the j th ran-
dom design and non-design variables, respectively and C is
the total cost allocated for obtaining samples for all the ran-
dom variables. Note that as in (8), the robustness constraint
in (12) is only required if the objective function is not a func-
tion of all non-design epistemic variables. The optimization
formulation presented above is a mixed-integer nonlinear
problem. A relaxed problem is solved in Section 3.

2.3.3 Robustness-based design with interval data

This section develops a methodology for robustness-based
design optimization with interval data, using the formu-
lations in (7) and (8). In this case, the only information
available for one or more input random variables is in the
form of single interval or multiple interval data. A discus-
sion on the source and the nature of both single and multiple
interval data can be found in Zaman et al. (2011).

The methodology for robustness-based design optimiza-
tion with interval data is similar to sparse point data as
described in Section 2.3.1. However, the estimation of mean
values and variances for interval data is not straightforward.
For interval data, the moments (e.g., mean and variance) are
not single-valued, rather only bounds can be given (Zaman
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Table 1 Methods for calculating moment bounds for single interval data

Moment Condition Formula

Lower bound Upper bound

1 PMF = 1 at lower endpoint PMF = 1 at upper endpoint M1 = E (x)

= 0 elsewhere = 0 elsewhere

2 PMF = 1 at any point PMF = 0.5 at each endpoint M2 = E
(
x2

) − (E (x))2

= 0 elsewhere

Note: E (x) =
2∑

i=1
xi p (xi ) E

(
x2

) 2∑

i=1
x2

i p (xi ) where p(xi ) = Probability Mass Function (PMF)

et al. 2011). The authors have proposed methods to com-
pute the bounds of moments with both single and multiple
interval data in Zaman et al. (2011). The methods for com-
puting bounds of the first two moments for interval data are
given later in this section. Once the bounds on the mean and
variance of interval data are estimated, we use the upper
bounds of sample variance to solve the formulations of
robust design under uncertainty represented through single
interval or multiple interval data. Therefore, the resulting
solution becomes least sensitive to the variations in the
uncertain variables.

For non-design epistemic variables described by inter-
val data, the constraints on the decision variables in (8) are
implemented through estimating the bounds of the means
by the methods as described later in this section.

The following discussions briefly summarize the meth-
ods to estimate the bounds on the first two moments for
single interval and multiple interval data, respectively.

Bounds on moments with single interval data The meth-
ods for calculating bounds on the first two moments for
single interval data are summarized in Table 1 below.

In Table 1, the formulas lead to the lower and upper end-
points of the interval as the lower and upper bounds for the
first moment, respectively. The formulas also imply that the
lower bound for the second moments is zero.

Table 2 Methods for calculating moment bounds for multiple interval
data

Moment Formula

1
[

M M
]

=
[

1
n

n∑

i
lbi ,

1
n

n∑

i
ubi

]

2
min / max

x1,...,xn

M2 = 1
n

n∑

i=1

(

xi − 1
n

n∑

j=1
x j

)2

s.t. lbi ≤ xi ≤ ubi i = {1, ..., n}

Note: [lbi ubi ] = Set of intervals n = Number of intervals

Bounds on moments with multiple interval data The
methods for calculating bounds on the first two moments
for multiple interval data are summarized in Table 2 below.

Once the bounds on the mean and variance of inter-
val data are estimated by the methods described above,
we can now use these bounds to solve the formulations
of robustness-based design optimization under uncertainty
represented through single interval or multiple interval data.
In the following section, we illustrate our proposed formu-
lations for robustness-based design optimization with both
sparse point and interval data.

3 Example problem

In this section, the proposed methods are illustrated for
the conceptual level design process of a TSTO vehicle.
The multidisciplinary system analysis consists of geomet-
ric modeling, aerodynamics, aerothermodynamics, engine
performance analysis, trajectory analysis, mass property
analysis and cost modeling (Stevenson et al. 2002). In this
paper, a simplified version of the upper stage design pro-
cess of a TSTO vehicle is used to illustrate the proposed
methods. High fidelity codes of individual disciplinary anal-
ysis are replaced by inexpensive surrogate models. Figure 2
illustrates the analysis process of a TSTO vehicle.

The analysis outputs (performance functions) are Gross
Weight (GW), Engine Weight (EW), Propellant Fraction
Required (PFR), Vehicle Length (VL), Vehicle Volume
(VV) and Body Wetted Area (BWA). Each of the anal-
ysis outputs is approximated by a second-order response
surface and is a function of the random design variables
Nozzle Expansion Ratio (ExpRatio), Payload Weight (Pay-
load), Separation Mach (SepMach), Separation Dynamic
Pressure (SepQ), Separation Flight Path Angle (SepAngle),
and Body Fineness Ratio (Fineness). Each of the random
variables is described by either sparse point data or interval
data.
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Fig. 2 TSTO vehicle concept
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The objective is to optimize an individual analysis out-
put (e.g., Gross Weight) while satisfying the constraints
imposed by each of the design variables as well as all the
analysis outputs. We note here that we have assumed inde-
pendence among the uncertain input variables and thereby
ignored the covariance terms in (5) to estimate the variance
of the performance function in each of the following exam-
ples. The numerical values of the design bounds for the
design variables and analysis outputs are given in Tables 3
and 4, respectively.

3.1 Robustness-based design optimization
with sparse point data

The methodology proposed in Section 2.3.1 is illustrated
here for the TSTO problem. It is assumed that all the input
variables x are described by sparse point data as given

Table 3 Design bounds for the design variables

Design variable lb Ub

ExpRatio 40 150

Payload 8,000 40,000

SepMach 7 12

SepQ 40 200

SepAngle 7 12

Fineness 4 6

in Table 5. For this example, the input variable SepQ is
assumed to be a non-design epistemic variable and all the
remaining variables are assumed to be design variables. The
design bounds for the respective design variables and
the analysis outputs are given in Tables 3 and 4.

The design problem becomes:

d∗ = arg min
d

(w ∗ E(GW ) + (1 − w) ∗ σ(GW ))

s.t. L B1 + kσ(GW ) ≤ E(GW ) ≤ U B1 − kσ(GW )

L B2 + kσ(EW ) ≤ E(EW ) ≤ U B2 − kσ(EW )

L B3 + kσ(P F R) ≤ E(P F R) ≤ U B3 − kσ(P F R)

L B4 + kσ(V L) ≤ E(V L) ≤ U B4 − kσ(V L)

L B5 + kσ(V V ) ≤ E(V V ) ≤ U B5 − kσ(V V )

L B6 + kσ(BW A) ≤ E(BW A) ≤ U B6 − kσ(BW A)

lbi + kσ(x) ≤ di ≤ ubi − kσ(x)

for i = 1, 2, ..., 5 (13)

μ∗
z = arg max

μz

(w ∗ E (GW ) + (1 − w) ∗ σ (GW ))

s.t. Zl ≤ μzi ≤ Zu for i = 1 (14)

where the bounds Zl and Zu for the mean of the non-design
epistemic variable SepQ are calculated by (9) as given in
Section 2.3.1 using α = 0.05. Note that this significance
level is chosen arbitrarily for the sake of illustration. Note
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Table 4 Design bounds for the analysis outputs

Analysis output LB UB

GW 0 100e+005

EW 0 100e+005

PFR 0.4 0.95

VL 0 100e+002

VV 0 100e+003

BWA 0 100e+005

that in (14), we do not use the robust design constraints,
since the objective function in this case is a function of all
non-design epistemic variables.

As mentioned earlier in Section 2, w ≥ 0 is the weight
parameter that represents the relative importance of the
objectives and k is a constant that adjusts the robustness of
the method against the level of conservatism of the solution.
In this paper, k is assumed to be unity.

Variances of the random variables x and z are estimated
as single point values. Confidence intervals for the variances
are estimated for each random variable described by the
sparse point data. The weight parameter w is varied (from
0 to 1) and the optimization problem in (13) and (14) are
solved iteratively until convergence by the Matlab solver
‘fmincon’ for different sample sizes (n) of the sparse point
data. The formulations are relaxed by assuming that stan-
dard deviations estimates of the variables do not change
significantly as the sample size changes. Therefore, the
same standard deviations as estimated from the data given
in Table 5 are used in each case. As the sample size (n)

changes, the confidence bounds on the variance also change
(see (10)). Note that we have solved the proposed design
optimization formulations for different sample sizes (5, 10,
15, 20, 25, and 30) of sparse point data. However, we have
used only 10 data points for each input random variable in
this paper in order to avoid listing a large amount of data.
The use of confidence bounds on the variance demonstrates
the presence of epistemic uncertainty in the formulations
and reduces the effect resulting from the assumed constant
standard deviations. However, the proposed formulations
can be easily solved using the standard deviations calculated
from the real data i.e., using 5, 10, 15, 20, 25, 30 data points.

In each case, the optimization problems converged in
less than 5 iterations. Here, ‘fmincon’ uses a sequen-
tial quadratic programming (SQP) algorithm. The estimate
of the Hessian of the Lagrangian is updated using the
BFGS formula at each iteration. The convergence proper-
ties of SQP have been discussed by many authors including
Fletcher (1987) and Panier and Tits (1993).

The solutions are obtained by solving the problem using
the upper confidence bound for the variances of the random
variables x and z. The solutions are presented in Fig. 3.

It is seen in Fig. 3 that the solutions become more conser-
vative (i.e., the mean and standard deviation of GW assume
higher values) as we add uncertainty to the design prob-
lem. It is also seen from Fig. 3 that as the sample size
(n) increases, both the standard deviation and mean of GW
decrease. As gathering more data reduces data uncertainty,
the solutions become less sensitive (i.e., the standard devi-
ation of GW assumes lower value) to the variations of the
input random variables as the sample size (n) increases.
Also, looking at the mean of GW, it is seen that as the uncer-
tainty decreases with sample size, the optimum mean weight
required is less.

Table 5 Sparse point data for
the random input variables Sample ExpRatio Payload SepMach SepQ SepAngle Fineness

01 85.23 2.8952e+004 10.85 115.38 9.12 4.07

02 82.25 2.9747e+004 10.56 111.63 9.49 4.02

03 88.79 2.6638e+004 10.93 118.57 9.85 4.47

04 83.93 2.8356e+004 10.70 111.60 9.87 4.15

05 80.67 2.7193e+004 10.58 100.34 9.27 4.15

06 91.32 2.9168e+004 10.82 102.42 9.21 4.17

07 83.64 2.8844e+004 10.88 117.25 9.57 4.23

08 86.64 2.5836e+004 10.99 109.69 9.64 4.32

09 90.32 2.9310e+004 10.00 116.90 9.42 4.01

10 85.39 2.9949e+004 10.87 104.19 9.21 4.42
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Fig. 3 Robustness-based design
optimization with sparse data
for different sample sizes (n)
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3.2 Determination of optimal sample size
for sparse point data

The optimal sample size formulations are illustrated here for
the TSTO design problem. The formulations are relaxed by
assuming that standard deviations of the data do not change
significantly as sample size changes. As in Section 3.1,
the use of confidence bounds on the variance demonstrates
the presence of epistemic uncertainty in the formulations
and reduces the effect resulting from the assumed constant
standard deviations. However, a more general problem can
be solved using the proposed method by considering the
standard deviations for each input random variable as opti-
mization decision variables. This will eliminate the need for
any further assumption.

To make the problem simpler, we first relax the integer
requirement on the optimal sample size n and then round off
the solution for n to the nearest integer value. The input vari-
able SepQ is assumed to be a non-design epistemic variable
and all the remaining variables are assumed to be design
variables. The design bounds for the respective design vari-
ables and the analysis outputs remain the same as in Tables 3
and 4 respectively.

Therefore, the design problem becomes as follows:

[
d∗, n∗

d

] = arg min
d,nd

(
w ∗ E (GW ) + v ∗ σ (GW )

+ (1 − w − v) ∗ (
5nd1 + 10nd2 + 5nd3 + 5nd4

+ 4nd5 + 6n∗
e

))

s.t. L B1 + σ(GW ) ≤ E(GW ) ≤ U B1 − σ(GW )

LB2 + σ(EW) ≤ E(EW) ≤ UB2 − σ(EW)

LB3 + σ(PFR) ≤ E(PFR) ≤ UB3 − σ(PFR)

LB4 + σ(VL) ≤ E(VL) ≤ UB4 − σ(VL)

LB5 + σ(VV) ≤ E(VV) ≤ UB5 − σ(V V )

LB6 + σ(BWA) ≤ E(BWA) ≤ UB6 − σ(BWA)

lbi + kσ(xi ) ≤ di ≤ ubi − kσ(xi )

for all i = 1, 2, . . . , 5

5nd1 + 10nd2 + 5nd3 + 5nd4 + 4nd5 + 6n∗
e ≤1050

nd j ≤ 30 for j = 1, 2, . . . , 5 (15)

Table 6 Objective function values at optimal solutions and optimal sample sizes

Weights Objective function value Final objective Optimal sample sizes

w v 1 − w − v Mean GW Std GW Total cost value nd1 nd2 nd3 nd4 nd5 ne

0 0 1 1.6118e+005 6.3732e+004 455.3008 455.3008 5 10 15 8 9 30

0.6 0.2 0.2 1.4684e+005 5.3219e+004 539.8948 9.8856e+004 6 10 30 8 10 30

0.5 0.4 0.1 1.4878e+005 5.0526e+004 593.6961 9.4660e+004 7 10 30 14 15 30

0.5 0.5 0 1.5143e+005 4.7604e+004 886.9363 99517 25 25 30 30 30 15
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[
μ∗

z , n∗
e

] = arg max
μz ,ne

(
w ∗ E (GW ) + v ∗ σ (GW )

+ (1 − w − v) ∗ (
5n∗

d1 + 10n∗
d2 + 5n∗

d3+5n∗
d4

+ 4n∗
d5 + 6n∗

e

))

s.t. Zl (ne) ≤ μz ≤ Zu (ne)

5n∗
d1 + 10n∗

d2 + 5n∗
d3 + 5n∗

d4 + 4n∗
d5

+ 6ne ≤ 1050

nd j ≤ 30 for j = 1 (16)

where nd1, nd2, nd3, nd4, and nd5 correspond to random
design variables ExpRatio, Payload, SepMach, SepAngle,
and Fineness, respectively and ne corresponds to non-design
epistemic variable SepQ. Note that the cost of obtaining
a sample to each random variable and the total cost allo-
cated for sampling are chosen arbitrarily for the sake of
illustration.

We have solved this problem for different combinations
of weights w and v and the optimal solutions are presented
in Table 6. In each case, the optimization problems con-
verged in less than 4 iterations. Note that in Table 6, the
Final Objective Value is the weighted summation of each
objective function value.

It is seen in Table 6 that the total cost incurred in obtain-
ing samples is the minimum when we solve the problem
giving the maximum importance on the total cost. In this
case, we get the most conservative robust design i.e., the
mean and the standard deviation of GW assume the max-
imum of all possible values. Note that the optimal sample
size required is also the minimum in this case. As we give
more importance on the mean and standard deviation of
GW, the total cost and also the optimal sample size increase
with a decrease in both the mean and standard deviation
of GW. Note that setting of weights is an open part of
multi-objective optimization. Like any multi-objective opti-
mization, the proposed formulation should be used with care
in selecting the weights.

We mention here that the issue of sampling scheme is not
relevant here, because our calculations only use the stan-
dard deviation estimates. We do not use sampling schemes
to simulate the real world data for each sample size. Instead,
we have made the assumption that the estimate of standard
deviation of the variable does not change with sample size.
That is, we randomly generated samples for n = 10 (using
a normal distribution for illustration), and simply used the
same standard deviation estimate for other values of n. Thus
the optimization result is affected by the standard devia-
tion, and not the actual samples. However, the calculation
of confidence bounds on variances takes the sample size n
into account. The assumption of constant standard deviation

Table 7 Multiple interval data for the random input variables

Payload [25000, 28000], [26000, 29000], [25000, 29000],

[26000, 30000], [25000, 30000]

for different sample sizes can be avoided if desired, but this
does not change the proposed formulation. In that case, we
will need to generate multiple sets of samples for each sam-
ple size n, and then use the averaged estimates of standard
deviations in the formulation.

3.3 Robustness-based design optimization with sparse
point and interval data

The methodology proposed in Section 2.1 is illustrated here
for the same TSTO problem. Here, it is assumed that the
design variable ExpRatio is described by sparse point data
as given in Table 5, the design variable Payload is described
by multiple interval data as given in Table 7 and the design
variables SepMach and SepQ are described by single inter-
val data as given in Table 8. The non-design epistemic
variables SepAngle and Fineness are described by the sparse
point data (as given in Table 5) and the single interval data
(as given in Table 8), respectively. The design bounds for the
respective design variables and the analysis outputs remain
the same as in Tables 3 and 4.

The design problem is now formulated as follows:

d∗ = arg min
d

(w ∗ E (GW ) + (1 − w) ∗ σ (GW ))

s.t. L B1 + kσ(GW) ≤ E(GW) ≤ U B1 − kσ(GW)

L B2 + kσ(EW) ≤ E(EW) ≤ U B2 − kσ(EW)

L B3 + kσ(PFR) ≤ E(PFR) ≤ U B3 − kσ(PFR)

L B4 + kσ(VL) ≤ E(VL) ≤ U B4 − kσ(VL)

L B5 + kσ(VV) ≤ E(VV) ≤ U B5 − kσ(VV)

L B6 + kσ(BWA) ≤ E(BWA) ≤ U B6 − kσ(BWA)

lbi + kσ (xi ) ≤ di ≤ ubi − kσ (xi )

for i = 1, 2, 3, 4 (17)

μ∗
z = arg max

μz

(w ∗ E (GW ) + (1 − w) ∗ σ (GW ))

s.t. Zl ≤ μzi ≤ Zu for i = 1, 2 (18)

Table 8 Single interval data for the random input variables

SepMach [9, 10]

SepQ [100, 120]

Fineness [4, 4.5]
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Fig. 4 Robustness-based design
optimization with sparse point
and interval data
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where the bounds Zl and Zu for the mean value of the non-
design epistemic variable SepAngle are calculated by (9) as
given in Section 2.3.1 using α = 0.05 and those for the
epistemic variable Fineness are calculated by the method
described in Section 2.3.3. Note that in (18), we do not use
the robust design constraints, since the objective function in
this case is a function of all non-design epistemic variables.

Variances of the random variables ExpRatio and Sep-
Angle are estimated as single point values. Confidence
intervals for the variances are estimated for each random
variable described by sparse point data. Bounds on the
variances of the random variables SepMach, SepQ, Fine-
ness, and Payload are estimated by the methods described
in Sections 2.3.3. The free parameter w is varied (from 0
to 1) and the optimization problems in (17) and (18) are
solved iteratively until convergence. In each case, the opti-
mization problems converged in less than 5 iterations. The
solutions are obtained by solving the problems using the
upper confidence bound on sample variance for the random
variables ExpRatio and SepAngle, and the upper bound on
sample variances for the random variables Payload, Sep-
Mach, SepQ and Fineness. The solutions are presented in
Fig. 4.

Figure 4 shows the solutions of the conservative robust
design in presence of uncontrollable epistemic uncertainty
described through mixed data i.e., both sparse point data and
interval data, which is seen frequently in many engineering
applications.

4 Summary and conclusion

This paper proposed several formulations for robustness-
based design optimization under data uncertainty. Two types
of data uncertainty—sparse point data and interval data—
are considered. The proposed formulations are illustrated
for the upper stage design problem of a TSTO space vehicle.

A decoupled approach is proposed in this paper to un-nest
the robustness-based design from the analysis of non-design
epistemic variables to achieve computational efficiency. As
gathering more data reduces uncertainty but increases cost,
the effect of sample size on the optimality and the robust-
ness of the solution is also studied. This is demonstrated
by numerical examples, which suggest that as the uncer-
tainty decreases with sample size, the resulting solutions
become more robust. We have also proposed a formulation
to determine the optimal sample size for sparse point data
that leads to the solution of the design problem that is least
sensitive (i.e., robust) to the variations of design variables.
In this paper, we have used the weighted sum approach for
the aggregation of multiple objectives and to examine the
trade-offs among multiple objectives. Other multi-objective
optimization techniques can also be explored within the
proposed formulations.

The major advantage of the proposed methodology is
that unlike existing methods, it does not use separate rep-
resentations for aleatory and epistemic uncertainties and
does not require nested analysis. Both types of uncertainty
are treated in a unified manner using a probabilistic for-
mat, thus reducing the computational effort and simplifying
the optimization problem. The results regarding robustness
of the design versus data size are valuable to the decision
maker. The design optimization procedure also optimizes
the sample size, thus facilitating resource allocation for data
collection efforts. Due to the use of a probabilistic for-
mat to represent all the uncertain variables, the proposed
robustness-based design optimization methodology facili-
tates the implementation of multidisciplinary robustness-
based design optimization, which is a challenging problem
in presence of epistemic uncertainty.
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