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Abstract A multi-objective topology optimization formu-
lation for the design of dynamically tunable fluidic devices
is presented. The flow is manipulated via external and inter-
nal mechanical actuation, leading to elastic deformations of
flow channels. The design objectives characterize the per-
formance in the undeformed and deformed configurations.
The layout of fluid channels is determined by material
topology optimization. In addition, the thickness distribu-
tion, the distribution of active material for internal actuation,
and the support conditions are optimized. The coupled
fluid-structure response is predicted by a non-linear finite
element model and a hydrodynamic lattice Boltzmann
method. Focusing on applications with low flow veloci-
ties and pressures, structural deformations due to fluid-
forces are neglected. A mapping scheme is presented that
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couples the material distributions in the structural and fluid
mesh. The governing and the adjoint equations of the result-
ing fluid-structure interaction problem are derived. The
proposed method is illustrated with the design of tunable
manifolds.
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1 Introduction

This study focuses on topology optimization of dynami-
cally tunable fluidic devices. The basic idea of the proposed
design concept is to embed flow channels into a flexible
structure that deforms in response to externally or internally
applied mechanical loads. The primary goal is to optimize
the layout of the elastically deforming fluid channels with
respect to multiple objectives, characterizing the device in
the deformed and undeformed configurations. To further
enhance the device performance, the stiffness distribution,
the layout of the actuation system, as well as the support
conditions of the device are also optimized.

Topology optimization is a well established method for
designing structural systems (Bendsøe and Sigmund 2003;
Ramm et al. 1998a, b). For an overview of structural topol-
ogy optimization the reader is referred to the manuscript
by Bendsøe and Sigmund (2003). Topology optimization
of flow problems was pioneered by Borrvall and Peters-
son (2003). In their initial study a Stokes flow model was
employed. This approach has further been generalized in a
number of ways (Andreasen et al. 2009; Gersborg-Hansen
et al. 2005; Evgrafov 2006; Aage et al. 2008; Klimetzek



496 S. Kreissl et al.

et al. 2006; Moos et al. 2004; Othmer et al. 2006; Oth-
mer 2008). As an alternative to the Navier–Stokes flow
model, Pingen et al. used the lattice Boltzmann method
(LBM) to solve fluid topology optimization problems
(Pingen 2008; Pingen et al. 2007a, b, 2009a, b).

Topology optimization of fluid-structure systems has
hardly been studied so far. Guest and Prévost (2006) max-
imized the stiffness while simultaneously maximizing the
fluid permeability of periodic materials. Although a fluid-
structure interaction system was considered, no interaction
between fluid and solid was taken into account in this
study. Maute and Allen (2004) and Maute and Reich (2006)
optimized the internal layout of structures accounting for
coupling between flow and structural deformation. How-
ever, this approach only allows for changes of the shape but
not the topology of the fluid–solid interface. Yoon (2009)
recently introduced a monolithic formulation for topology
optimization of fluid-structure interaction (FSI) problems.
While this approach considers a fully coupled FSI system,
it is limited to small structural deformations.

In this study we present a topology optimization method
for FSI problems undergoing large elastic deformations. We
focus on micro-fluidic devices with flow channels sand-
wiched between two elastically deforming structural layers.
Owing to the low flow velocity in micro channels, the fluid
pressure exerted on the structure is typically negligible in
comparison to the stiffness of the structure. However, large
deformations are needed to noticeably alter the flow due
to mechanical actuation. Therefore, we consider only the
effect of finite structural deformations on the flow field and
disregard the influence of the fluid forces on the structural
deformations, leading to a one-way structure-fluid coupling.
We will show quantitatively with a numerical example that
the fluid forces only have a negligible effect on the structural
solution for the class of micro-fluidic devices considered in
this study.

Following a standard material topology optimization
approach, the geometry of the flow channels is described
by a material distribution function. Additional optimization
parameters are used to control the thickness distribution,
the distribution of active material for internal actuation,
and the support conditions of the device. The structural
response is described by a non-linear finite element model
using a total Lagrangian formulation. The flow is pre-
dicted by a hydrodynamic LBM operating on a fixed grid.
The material distributions in the deforming structural mesh
and fixed fluid mesh are coupled by a geometric mapping
approach, as shown in Fig. 1. Contrary to a monolithic
approach (Yoon 2009), the separate treatment of the fluid
and structural domain allows to employ existing analysis
modules: in the current study, an LBM fluid solver and a geo-
metrically non-linear FEM structural solver. We consider
optimization problems involving the fluid and structural

geometric
mapping

density
distribution of

structural domain
(Lagrangian mesh)

im-
permeability
distribution

of fluid domain
(Eulerian mesh)

solid (density =1)ρ

void (density =0)ρ

solid (impermeability =1)p

fluid ( =0)pimpermeability

Fig. 1 Separate meshes for structural and fluid domain

behavior in the undeformed and deformed configuration at
steady-state. These problems are cast into a multi-objective
formulation and solved by a gradient based optimization
algorithm computing the design sensitivities by an adjoint
method.

In this paper we present an optimization method for a
one-way coupled FSI problem using a material distribution
approach to describe the geometry of the fluid and struc-
tural domains. We present details of the geometric mapping
method that couples the material distribution in the fluid
and structural meshes. We derive the adjoint of this sys-
tem and discuss its computational complexity. The utility
of the proposed approach is illustrated with three numeri-
cal examples. The remainder of the paper is organized as
follows. In Sections 2 and 3 we describe the design and
structural model. Section 4 outlines the basics of the LBM.
This is followed by a description of the geometrical map-
ping from the structural domain into the fluid domain in
Section 5. Section 6 describes the overall computational
optimization procedure along with the sensitivity analysis.
Finally, we demonstrate the key features of our approach
with three 2-D numerical examples in Section 7. The results
are summarized in Section 8.

2 Design models

Focusing on micro-fluidic devices, which are typically fab-
ricated by micro-surface, bulk machining or layer depo-
sition techniques, we consider structures that consist of
multiple layers. In this paper, we focus on a three-layer
design (see Fig. 2): the center layer houses the embedded
fluid channels and is sandwiched between two structural
layers, which provide structural support for the center layer
and prevent evaporation and leakage.

To manipulate the design we consider four sets of opti-
mization variables: (1) The layout of the flow channels
in the center layer is described by a material distribution
function. The material properties are defined via smooth
interpolation functions depending on the optimization



Topology optimization of flexible micro-fluidic devices 497

Fig. 2 Structural system

structural layer
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structural layer

fluid
channel center layer

variables si
m ∈ [0, 1]. (2) The thickness distribution of the

structural layers is defined by the optimization variables
si

t ∈ [0, 1]. (3) The locations where the structural layers
are attached to a ground structure are described by the dis-
tribution of the support stiffness which is defined by the
optimization variables si

s ∈ [0, 1]. (4) The layout of active
material embedded into the structural layers is described via
the distribution of eigenstrains. In this study only isotropic
eigenstrains εe are considered which are defined by the
independent optimization variables si

e ∈ [−1, 1]. The four
sets of optimization variables are combined into the design
vector s = [sm st ss se].

By controlling the thickness of the structural layers via
si

t we can tailor the stiffness independently from the lay-
out of the layer that houses the fluid channels. This allows,
for example, to stiffen areas beneath a flow channel or to
soften areas beneath a solid center layer. To illustrate this
issue, Fig. 3 shows the structural layout of a simple chan-
nel subject to a compressive load. The structure is fixed
along the left and right edges. As the stiffness in the cen-
ter layer along the channel is negligible, the pressure drop
across the channel in the deformed configuration depends
only on the stiffness of the structural layers, which can

be controlled conveniently by the thickness. For practical
applications, these thickness variations could be fabricated
via layer deposition techniques (Kim et al. 2009) or 3D
printing methods (Dimitrov et al. 2006).

The basic concept of varying the support stiffness is
illustrated in Fig. 4. Imposing a large value for the sup-
port stiffness at a point, the structural displacements vanish
and the point can be considered fixed (Babuška 1973).
Manipulating the support stiffness has a similar but more
pronounced effect compared to varying the thickness of the
structural layers. While both alter the stiffness of the struc-
ture, their effect on the overall displacement field differs,
as illustrated in Fig. 5. For example, increasing the value
of the thickness variable st primarily reduces the defor-
mation locally, within the stiffened region (bd ≈ bu in
Fig. 5b). Increasing the support stiffness has a global effect
and shields the left part of the structure from deforming
(ad ≈ au and bd ≈ bu in Fig. 5c). In practice this could be
realized, for example via adhesive bonding techniques
(Niklaus et al. 2006). Depending on the fabrication approach
used to vary the thickness of the structural layers, the sur-
face topography of the substrate may also have to be altered
to allow bonding of the structural layer to the substrate.

(a) Undeformed (b) Deformed: thin structural layer (c) Deformed: thick structural layer

solid channel: void

fS

fS

fS

fS

Fig. 3 Influence of thickness of the structural layers on the stiffness (for visualization only the bottom structural layer is shown)
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Fig. 4 Support layout (cp. Buhl 2002)

In particular in micro-fluidic applications, forces are con-
veniently generated by active materials embedded into the
structural layers, such as piezo-ceramic or electro-active
polymers (Bar-Cohen 2004; Zhang et al. 2005). Optimizing
the layout of active materials in concert with the thick-
ness of the structural layers and the distribution of the
support stiffness allows fine-tuning of the structural defor-
mations. The effect of active materials on the overall device
is modeled by introducing eigenstrains into the constitutive
equations of the structural layers.

3 Structural model

To alter low-speed flows, large changes of the channel
geometry and thus large deformations of the structure are

required. Therefore, the structural response is described
by a geometrically non-linear finite element (FE) model.
For the sake of simplicity, we assume a linear stress–strain
relationship in this study. However, for a more realistic mod-
eling of the structural response, especially when dealing
with large strains, a non-linear stress–strain model would
be more appropriate. We further assume that the thickness
is much smaller than the in-plane dimensions of the struc-
ture and the structural response can be approximated by a
plane-stress model.

The four sets of optimization variables defined previ-
ously are introduced into the structural FE model via inter-
polation functions, the corresponding interpolation param-
eters are summarized in Table 1. Following the standard
notation in topology optimization, the density ρi and
Young’s modulus Ei

C of the center layer of the i-th element
are defined by:

ρi = si
m ρsolid (1)

Ei
C = si

m Emax
C (2)

The total Young’s modulus of the layered structure is com-
puted by weighting the Young’s moduli of the layers with
their thickness fractions:

E = EC

(
tC
t

)
+ ES

(
tS

t

)
with t = tC + tS (3)

where tC , tS and ES define thicknesses of the center layer,
the structural layers and Young’s modulus of the structural

Fig. 5 Effect of thickness
variation vs. support variation
on structural displacement field

u x

L u
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(b) Deformed: thickness variation
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(c) Deformed: support stiffness variation
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s t=1
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Table 1 Parameters for structural interpolation functions

Interpolated quantity Parameter Meaning

Density ρi Elemental density

ρsolid Density of completely solid

bulk material

Young’s modulus Ei
C Elemental Young’s modulus

of center layer

Emax
C Maximum Young’s modulus

of center layer

Thickness t i
S Elemental thickness of

structural layers

tmin
S Minimum elemental thickness

of structural layers

tmax
S Maximum elemental thickness

of structural layers

Support stiffness kmin
s Minimum support stiffness

kmax
s Maximum support stiffness

Eigenstrain εmin
eig Minimum eigenstrain

εmax
eig Maximum eigenstrain

layers, respectively. The thickness of the structural layers
for the i-th element is given by:

t i
S = tmin

S + si
t

(
tmax
S − tmin

S

)
(4)

where tmin
S and tmax

S are the minimum and maximum
elemental thicknesses of the structural layer.

Following the work of Buhl (2002), a spring model with
variable stiffness is used to smoothly vary the support con-
ditions from ‘moving freely’ to ‘fully clamped’. The spring
stiffness ki

s associated with the nodes of the i-th element are
defined as:

ki
s = kmin

s + si
s

(
kmax

s − kmin
s

)
. (5)

where kmin
s and kmax

s are the minimum and maximum sup-
port stiffnesses, respectively. A minimum support stiffness
larger than zero is chosen to prevent rigid body motions
and numerical ill-conditioning. For a value of si

s = 1 the
support stiffness leads to negligible nodal displacements.
Note that this approach acts only as a vehicle for determin-
ing the optimal locations for the supports and therefore the
linear springs pose no inconsistency with the geometrically
non-linear structural description.

The eigenstrains are interpolated linearly as follows:

εi
e = si

e εmax
eig (6)

The elemental eigenstrain εi
e enters the non-linear plane-

stress formulation via the constitutive model assuming a

linear elastic material behavior and an additive decompo-
sition of the elastic and inelastic strains. The total nominal
stress is defined e.g. in Belytschko et al. (2005):

P = S · FT with S = C :
(

E − Eeig
)

(7)

where F is the deformation gradient and S denotes the sec-
ond Piola–Kirchhoff stress tensor. The stress depends on the
material tensor C, the total Green-Lagrange strain E and the
inelastic isotropic eigenstrains Eeig . The latter are defined
as an explicit function of the optimization variables se via
the interpolation (6):

Eeig =
[

εe 0
0 εe

]
. (8)

From the total nominal stress we obtain the internal force
f int
S , for example see Belytschko et al. (2005):

f int
S =

∫
A0

BT
0 P t d A0, (9)

where A0 is the area and B0 is the differential operator in
the undeformed configuration.

The support stiffness leads to an additional force f k
S :

f k
S = Ksu, with Ks = ki

sI (10)

where Ks is the stiffness matrix associated with the support
layout, u are the displacements, and I is an identity matrix.

Given the internal forces, f int
S + fk

S and the external loads,
f ex t
S , the structural residual RS governing the static response

is written as:

RS(u, s) = f int
S (u, s) + fk

S(u, s) − f ex t
S = 0, (11)

The above system of non-linear equations, (11), is solved by
Newton’s method.

4 Flow model

In this study we approximate the flow in the channels by a
two-dimensional model assuming a uniform flow across the
channel thickness. This approach neglects friction effects
along the bottom of the channels and leads to approxi-
mations in predicting drag and pressure drop values. To
capture the influence of no-slip conditions at the top and
bottom layers, Borrvall and Petersson (2003) introduced an
explicit approximation of the flow in thickness direction. As
previous work by the authors on fluid topology optimiza-
tion (Pingen et al. 2007a, b) has shown, the 2-D flow model
leads to optimization results equivalent to the ones presented
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in Borrvall and Petersson (2003). Therefore, the 2-D model
is considered sufficient for the present study. However, it
should be noted that in general the friction at the bottom/top
of the channel may influence the flow solution.

Motivated by previous theoretical and numerical stud-
ies (Pingen 2008; Pingen et al. 2007a; Evgrafov et al. 2008),
we choose a hydrodynamic LBM to predict the channel
flow. The hydrodynamic LBM approximates the Navier–
Stokes equations for low Mach number flows (Chen and
Doolen 1998; Succi 2001; Yu et al. 2003). It can be derived
from the Boltzmann transport equation which is typically
discretized by an explicit finite difference scheme in space
and time, constituting a two step time-marching process:

Collision: f̃α
(
xi , t

) = fα
(
xi , t

)

− 1

τ

[
fα
(
xi , t

)− f eq
α

(
xi , t

)]
, (12)

Propagation: fα
(
xi + δteα, t + δt

) = f̃α
(
xi , t

)
, (13)

where eα is the velocity vector, fα is the distribution
function associated with the corresponding velocity eα , xi

represents the location in physical space, eαδt is the lattice
spacing, δt is the time step, τ = λ/δt is the dimension-
less relaxation time, and f eq = f eq(ρ̄, w) is a Taylor series
approximation of the Maxwell–Boltzmann equilibrium dis-
tribution. The macroscopic parameters (fluid density ρ̄,
velocity w, pressure, and viscosity) can be evaluated via
statistical moments of the distribution function f . Approx-
imating the channel flows by a two-dimensional model, we
use the D2Q9 lattice scheme (see e.g. Yu et al. 2003) in the
current study.

To solve the topology optimization problem by gradient-
based schemes, the LBM is augmented with the porosity
model introduced by Spaid and Phelan (1997), providing
a continuous transition from fluid to solid and vice versa.
The macroscopic velocity w is rescaled during the collision
step (12), leading to:

w̃ j (t, x) =
(

1 − p j (x)κ
)

w j (t, x), (14)

where p j (x) is the impermeability that is related to the
porosity in the domain. The vector w̃(t, x) defines the scaled
velocity through porous media, which is substituted into
the equilibrium distribution function f eq(ρ̄, w̃) in place of
w. Note, that the interpolation of the impermeability p j

is defined analogously to the interpolation of the structural
density ρi : p j , ρi = 1 corresponds to solid and p j , ρi = 0
corresponds to f luid, respectively void for the structure.
The impermeability distribution p(x) in the flow model is
a function of the material distribution ρ(x) in the structural
domain and the structural displacements, u.

Numerical studies show that this porosity approach con-
verges to a 0–1 distribution; best results were obtained for
an exponent κ ≈ 3 (Pingen et al. 2009a). Due to the ele-
ment wise constant impermeability values, this approach
results in stair-step boundaries. However, Pingen et al.
(2009a) have shown in numerical studies that this poros-
ity approach captures the flow characteristics—e.g. pressure
drop, drag, etc.—sufficiently well, especially for the low
Reynolds numbers considered in the current study.

In the current study we focus on steady-state flows which
are described by the solution of the following fixed-point
problem:

RF (f, s) = M(f, s) − f = 0, (15)

where RF denotes the fluid residual vector and f describes
the fluid state. The operator M performs one collision (12)
and one propagation (13), which corresponds to advancing
the flow solution one time step by an explicit time inte-
gration scheme. We solve the fixed-point problem (15) by
an explicit time-marching scheme advancing the flow until
convergence toward steady-state. While this approach is
memory efficient, it requires a relatively large number of
time-steps to reach steady-state convergence.

5 Coupling structural and fluid domains

To couple the structural domain with the fluid domain a sim-
ple geometric mapping that transforms structural densities
into fluid impermeabilities is employed. The basic concept
is illustrated in Figs. 1 and 6. The structural densities, ρi ,
are defined on a deforming mesh using a Lagrangian for-
mulation, whereas the impermeabilities, p j , of the fluid are
defined on a fixed mesh in an Eulerian formulation. The
mapping is given by:

p j
(
ρi , ui

)
= 1

A j
F

n j∑
i=1

(
ρi

ρsolid
Ai j

int

(
ui
))

. (16)

The index i describes the structural elements that intersect
with the j-th fluid element, Ai j

int is the intersection area
between the i-th structural and the j-th fluid element, and
A j

F defines the area of the fluid element.
The impermeability of a fluid element p j , (16), depends

on (I) the densities of the underlying structural mesh, ρi ,
and (II) the deformation ui of the Lagrangian mesh, as the
mesh-geometry of the structural mesh affects the intersec-
tion areas Ai j

int . Note, that ρi defines the elemental structural
density, cp. (1), in the undeformed configuration and is
therefore, unlike the impermeability p j , independent of the
displacements ui .
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Fig. 6 Geometric mapping

6 Topology optimization of fluid-structure system

In this study we consider optimization problems of the
following form:

min
s

z = z
(
s, uu(s), fu(s), ud(s), fd(s)

)
,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s, satisfy the design constraints,

uu,d , solve (11) for given s,

fu,d , solve (15) for given s,

h
(
s, fu,d) = 0, the equality constraints,

g
(
s, fu,d) ≤ 0, the inequality constraints,

(17)

where z is a scalar performance functional constructed from
a multi-objective formulation of the design problem; s is
the vector of design variables, u is the displacement vec-
tor, f is the fluid state vector (cf. (12) and (13)) and h/g
are equality/inequality constraints, respectively. The super-
scripts ‘u’ and ‘d’ indicate the undeformed and deformed
structural configuration. Typical objectives and constraints
include pressure drop, drag, flow rate, energy loss, and
mass.

6.1 Sensitivity analysis

The following discussion focuses on the sensitivity analysis
of the design objective z, but can be applied analogously

to design constraints. The derivative of the objective with
respect to the design variables can be written as:

dz

ds
= ∂z

∂s
+
(

∂z

∂u

)T du
ds

+
(

∂z

∂f

)T df
ds

. (18)

The derivative of the displacements with respect to the
design variables is computed from the derivative of the
structural residual equation (11):

dRS

ds
= ∂RS

∂s
+ ∂RS

∂u
du
ds

= 0. (19)

Solving (19) for du/ds yields:

du
ds

= −
(

∂RS

∂u

)
︸ ︷︷ ︸

KT

−1
∂RS

∂s

= −KT
−1

⎛
⎜⎜⎝∂f int

S

∂s
+ ∂fk

S

∂s
− ∂f ex t

S

∂s︸ ︷︷ ︸
=0

⎞
⎟⎟⎠ , (20)

where KT is the tangential stiffness matrix. Assuming that
the external forces do not depend on the design variables,
the term ∂f ex t

S /∂s vanishes. The partial derivative of the
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Fig. 7 Intersection of structure and fluid mesh

internal force with respect to the design variables, ∂f int
S /∂s,

is computed as (cp. (9)):

∂f int
S

∂s
=
[

∂f int
S

∂sm
,
∂f int

S

∂st
,
∂f int

S

∂ss
,
∂f int

S

∂se

]

=
[∫

A
BT ∂P

∂sm
t d A,

∫
A

BT
(

∂P
∂st

t + P
∂t
∂st

)
d A,

0,

∫
A

BT ∂P
∂se

t d A

]
. (21)

For the term ∂fk
S/∂s only the derivative with respect to the

support design variables, ss , does not vanish (cp. (10)):

∂fk
S

∂ss
= ∂KS

∂ss
u, (22)

where KS is the global support-stiffness matrix.
Owing to the large number of optimization variables

needed to resolve the geometry via a material distribution

Table 2 Parameters for the interpolated quantities

Parameter Value

Maximum Young’s modulus of center layer (Emax
C ) 5·108

Young’s modulus of structural layers (ES) 5·1010

Thickness of center layer (tC ) 0.5

Minimum thickness of structural layer (tmin
S ) 0.1

Maximum thickness of structural layer (tmax
S ) 2

Exponent for support stiffness interpolation (ns ) 3

Minimum support stiffness (kmin
s ) 1·10−4

Maximum support stiffness (kmax
s ) 1·1010

Maximum eigenstrain (εmax
e ) 0.1

approach, we solve the above optimization problem using
gradient based methods and compute the design sensitivities
via an adjoint approach.

The derivative of the fluid state with respect to the
design variables, df/ds, is computed from the fluid residual
equation (15):

dRF

ds
= ∂RF

∂s
+ ∂RF

∂f
df
ds

+ ∂RF

∂u
du
ds

= 0. (23)

Substituting (20) into (23) yields:

df
ds

= −
(

∂RF

∂f

)
︸ ︷︷ ︸

JF

−1
(

∂RF

∂s
− ∂RF

∂u
KT

−1

(
∂f int

S

∂s
+ ∂f k

S

∂s

))

with p = p(u, s),

= −J−1
F

∂RF

∂p

(
∂p
∂s

− ∂p
∂u

KT
−1

(
∂f int

S

∂s
+ ∂f k

S

∂s

))
, (24)

where the matrix JF is the Jacobian of the fluid problem
and the vector p defines the impermeabilities. Due to the
large number of design variables, we employ the adjoint
method in the following. Substituting (20) and (24) into the
sensitivity equation (18) results in:

dz

ds
= ∂z

∂s
−
(

∂z

∂u

)T

KT
−1

(
∂f int

S

∂s
+ ∂f k

S

∂s

)

− a1× ∂RF

∂p

(
∂p
∂s

+ ∂p
∂u

KT
−1

(
∂f int

S

∂s
+ ∂f k

S

∂s

))
,(25)

where a1 is the solution of the following adjoint equation:

a1 =
(

dz

df

)T

JF
−1. (26)
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Fig. 8 Lumping two structural
layers into one
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The evaluation of ∂RF/∂p and dz/df in (25) and (26)
has been described in Pingen et al. (2009a), the partial
derivatives of the impermeabilities, ∂p/∂s and ∂p/∂u, are
discussed in Section 6.1.1. Rearranging (25) we get:

dz

ds
= ∂z

∂s
− a1

∂RF

∂p
∂p
∂s

+ a2

(
∂f int

S

∂s
+ ∂f k

S

∂s

)
, (27)

where a2 is the solution to the second adjoint problem
defined by:

a2 =
(

a1
∂RF

∂p
∂p
∂u

−
(

∂z

∂u

)T
)

KT
−1. (28)

In the current study we do not consider objectives that
depend directly on the design variables or the displace-
ments. Therefore, the terms ∂z/∂s in (27) and ∂z/∂u in (28)
vanish.

6.1.1 Sensitivities of the fluid porosities

As outlined in (16), the impermeabilities depend explic-
itly on variations in the structural density distribution, ρi ,
and the structural deformations, as the displacements u
affect the intersection areas Ai j

int . The derivative of the

impermeabilities with respect to the design variables is
given by:

∂p j

∂si
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ai j
int

A j
Fρsolid

dρi

dsi if j-th fluid element

and i-th structural

element intersect,

0 otherwise,

(29)

where for the term dρi/dsi only the derivatives with respect
to the material design variables, si

m , do not vanish:

dρi

dsi
m

= ρsolid . (30)

The derivative of the impermeability with respect to the
displacements is defined as follows:

∂p j

∂ui
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρi

A j
Fρsolid

d Ai j
int

dui
if j-th fluid element

and i-th structural

element intersect,

0 otherwise.

(31)

Fig. 9 Boundary conditions for
the three-port manifold
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Fig. 10 Initial structural
density distribution for the
three-port manifold
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The term d Ai j
int/dui can be expanded in the following way

(cp. Fig. 7):

d Ai j
int

dui
= d Ai j

int

dvk︸ ︷︷ ︸
T1

dvk

d x̂l︸︷︷︸
T2

d x̂l

dui︸︷︷︸
T3

, (32)

where T1 defines the dependency of the intersection area
Ai j

int on the vertices vk of the polygon determining Ai j
int ; T2

characterizes the dependency of the polygon vertices on the
position of the structural nodes x̂l ; T3 describes the depen-
dency of the nodes x̂l on the displacements ui of the i-th
structural element. Due to the definition of x̂l , T3 is simply
a unity matrix in the deformed case and a zero-matrix in the
undeformed case, respectively.

The adjoint sensitivity analysis has been validated
through comparison with finite difference results.

7 Numerical examples

To illustrate the utility of the current approach we study
the design of three tunable manifolds. The optimization
problems are solved by the Globally-Convergent Method of
Moving Asymptotes (GCMMA) of Svanberg (1995).

At each iteration in the optimization process we first
solve the structural equilibrium equations for the deformed
configuration. Then both, undeformed and deformed, mate-
rial distributions are mapped onto the fluid mesh, lead-
ing to an undeformed and deformed fluid impermeability

Table 3 Objectives for the three-port manifold problem

Structural Outlet 1 Outlet 2

state

Undeformed Maximize the mass Minimize the mass

flow, qu
1 flow, qu

2

Deformed Minimize the mass Maximize the mass

flow, qd
1 flow, qd

2

distribution. The flow solutions for both impermeability
distributions are computed by advancing the flow in time
until steady state convergence. The design criteria in the
undeformed and deformed configurations are evaluated to
obtain values of the objective function and constraints. The
sensitivities are evaluated by the adjoint method using a
direct solver for the linear systems, (26) and (28). The

Table 4 Parameters for the three-port manifold

Parameter type Parameter Value

Physical Length (L) 36

Height (H ) 30

Reynolds number (RE) 10

Critical length (Lc) 9

Dimensionless relaxation 1/1.9

time (τ )

Viscosity (νF )
1

6
(2τ − 1)

Inlet velocity (vin) RE · νF/Lc

Outlet pressure (pout ) 1/3

Prescribed external L/6

displacement (ux )

Poisson ratio (ν) 0.4

Discretization Fluid-domain mesh 45×31

(nx × ny)

Fluid-domain grid size L/(nx − 1)

Structural-domain mesh 37×31

(mx × my)

Structural-domain grid size L/(mx − 1)

Algorithmic Lower, upper limit for si 0, 1

(smin, smax )

Step size (�s) 0.1(smax − smin)

Number of GCMMA 2

subcycles

Convergence Tolerance for KKT 1 · 10−2

conditions (εkkt )

Tolerance for design change (εs ) 2 · 10−4

Tolerance for constraint 5 · 10−3

violation (εc)
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Fig. 11 Optimized impermeability distribution for the three-port manifold

convergence of the optimization process is monitored via
the residual of the Karush–Kuhn–Tucker conditions Rkkt ,
the design change ‖�s‖, and the constraint violations. The
following convergence criteria are defined:

‖Rkkt‖ < εkkt‖Rkkt‖0, (33)

‖�s‖ < εs Ns, (34)

g j < εc, (35)

where ‖Rkkt‖0 is the norm of the residual of the initial
design and Ns is the number of optimization variables. The
tolerances εkkt , εs and εc for the three examples are defined
in Tables 4, 8, and 9. For all three examples, we use the same
interpolations linking abstract and physical design variables.
The interpolation parameters are listed in Table 2. All values
related to the flow solution in the following examples are in
dimensionless lattice-units.

Using a 2-D approximation for the structural response
and the flow allows us to simplify the three-layer model
and lump the two structural layers into one. For this sim-
plified model the center layer that houses the fluid channels
becomes the top layer, which is connected to a single
lumped structural layer. Figure 8 illustrates this simplified
model.

7.1 Three-port manifold

In the first example, we consider a manifold that routes
the flow from one inlet into two outlet ports. The goal of
the design problem is to find the layout of the fluid chan-
nels and the thickness distribution of the structural layers
such that the mass flow through the outlet ports can be
controlled through an elastic deformation in response to a
prescribed external displacement. In this example, internal
actuation via eigenstrains is not considered and the supports
are not altered in the optimization process. The boundary

conditions for both the structural and the fluid problems are
depicted in Fig. 9. The gridded circles illustrate the struc-
tural and fluid mesh, respectively. The structure is clamped
along all edges except for the right one. The center of the
latter is subjected to horizontal displacements ux = L/6.
The boundary conditions for the fluid model, Fig. 9b, are a
parabolic inlet velocity distribution and a prescribed static
pressure at both outlets. Note, that the fluid domain is 20%
longer than the structural mesh. This ensures that the fixed
fluid mesh covers the entire structural domain when the
structure expands during deformation.

The initial density distributions in the undeformed and
deformed configuration are illustrated in Fig. 10. We initial-
ize the density distribution with ρ = 1 at the boundaries
that are neither inlet nor outlet and ρ = 0 elsewhere. The
thickness of the structural layer is uniformly initialized with
si

t = 0.5 ∀ i .
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Fig. 12 Comparison between initial and optimized dynamic pressures
at outlet 1 and 2 for the three-port manifold
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Fig. 14 Smearing effects due to mismatching meshes (Eulerian fluid mesh on Lagrangian density distribution)
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Fig. 15 Material layout after 274 iterations for refined fluid mesh
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The design of a tunable manifold is formulated as a
multi-criteria optimization problem. The goal is to find the
layout of a flow-switch that guides the flow to one outlet
in the undeformed configuration and to a second outlet in
the deformed configuration. Specifically, the objective is
to maximize the mass flow at the lower outlet in the unde-
formed state and minimize it in the deformed configuration.
For the outlet at the top the goal is opposite: minimize the
mass flow in the undeformed state and maximize it in the
deformed configuration. These four objectives are listed in
Table 3. The multiple objectives are treated via a bound
formulation (Stadler 1988), which seeks a compromise
between all objectives while avoiding that one objective
is improved whereas another objective deteriorates signifi-
cantly. The optimization problem can be written as follows:

min
s

z = α − β,

s.t. g1 = qu
1 − β ≥ 0,

g2 = α − qu
2 ≥ 0,

g3 = α − qd
1 ≥ 0,

g4 = qd
2 − β ≥ 0,

g5 = 1.005 − (pin)u(
p0

in

)u ≥ 0,

g6 = 1.005 − (pin)d

(
p0

in

)d ≥ 0,

g7 = 1

Ne

Ne∑
i

ρi

ρsolid
− 0.75 ≥ 0,

smin
m ≤ si

m ≤ smax
m ,

smin
t ≤ si

t ≤ smax
t .

(36)

where α and β are auxiliary variables. The mass flow is
denoted by q . The subscripts indicate the outlet ports: ‘1’

for the lower port and ‘2’ for the upper port. The super-
scripts ‘u’ and ‘d’ refer to the undeformed and deformed
configurations. The constraints g5, g6 ensure that the total
inlet pressure is equal or less than 100.5% of the inlet pres-
sure of the initial design (cf. Fig. 10). The mass constraint
g7 requires that at least 75% of the design domain is solid
where Ne is the number of structural elements. The parame-
ters for the three-port manifold example are summarized in
Table 4. Due to the structure of (36), at every locally optimal
solution the following equalities are satisfied:

α = max
(

qu
2 , qd

1

)
, (37)

β = min
(

qu
1 , qd

2

)
, (38)

The optimization process converged in 418 iterations. While
the thickness distribution converged rather fast, the den-
sity distribution showed a much slower convergence rate
and hence required a large number of optimization steps.
Figure 11 shows the optimized fluid channel. In the unde-
formed configuration, the bulk of the fluid flows through
the lower outlet, as this flow path has a smaller pres-
sure drop than the flow path to the upper port. In the
deformed configuration the channel to the lower outlet port
is stretched significantly. The additional length and cur-
vature increases the pressure drop of the lower channel,

Table 5 Flow rates and objective for design with and without plug
(cp. (37) and (38))

With island Without island

qu
1 2.58 × 10−5 2.33 × 10−5 ≈ β

qu
2 1.27 × 10−5 ≈ α 1.74 × 10−5 ≈ α

qd
1 9.34 × 10−6 7.79 × 10−6

qd
2 2.48 × 10−5 ≈ β 3.15 × 10−5

z = α − β −1.21 × 10−5 −0.59 × 10−5
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Table 6 Norm of fluid forces, relative errors for solution with and
without fluid forces

Norm of fluid forces
∥∥fn

L

∥∥ = 9.3 · 10−3

Relative error in displacements eu = 3.7 · 10−12%

Relative error in impermeabilities ep = 1.7 · 10−12%

Relative error in dynamic pressure ez = −1.7 · 10−9%

reducing the mass flow, qd
1 , at the lower outlet. More-

over, Fig. 11b illustrates that the channel to the upper outlet
widens under the structural deformation, increasing qd

2 .
A quantitative comparison between initial and optimized

mass flows is shown in Fig. 12: three of the four mass
flow rates are improved significantly compared to the ini-
tial design (cf. Table 3). However, the mass flow through
the upper outlet in the undeformed configuration, qu

2 , hardly
changed during the optimization.

Figure 13 displays the relative thickness of the struc-
tural layer. It shows that there are two regions in which
the thickness of the structural layer is maximized, resulting
in a stiffening of the corresponding structure. One is in the
top left corner of the design domain (Region A), effectively
stiffening the left edge of the channel to outlet 2. The region
of the channel to outlet 2 (Region B) on the other hand has
a minimum thickness. This thickness layout amplifies the
widening of the channel to outlet 2 under deformation. The
second region of high thickness values (Region C) connects
the point of load incidence with the apex of the channel to
outlet 1. Since the lower left of the design domain is weak-
ened, this allows to further increase the length and curvature
of this channel.

7.1.1 Inf luence of small features on the performance

The undeformed material distribution shows a small solid
feature in front of the upper outlet, Fig. 11a. In the deformed
configuration this feature is stretched. However, in the fluid
model, the stretched feature is represented by intermediate
impermeabilities. This brings up two questions: (I) is this
feature an artifact that occurs owing to the chosen numerical
representation? and (II) what are its benefits?

To answer (I) the mapping procedure is examined: in the
undeformed configuration, the fluid and solid meshes are
almost aligned, resulting in a mapping p j ≈ ρi , which
leads to a mostly black and white impermeability distri-
bution, see Fig. 11a. However, as the structure stretches,
the Lagrangian solid mesh deforms while the Eulerian fluid
mesh stays fixed, leading to a mismatch between the two
meshes. This results in smeared-out and thus lower interface
impermeabilities in the deformed state, Fig. 11b. Figure 14
illustrates this issue. The magnification depicts the density
distribution on the Lagrangian mesh overlaid with the Eule-
rian fluid mesh. Figure 11b shows that in the deformed case
two ‘solid’ densities, i.e. ρ ≈ 1, get distributed over six
fluid elements, hence the smearing.

In order to mitigate the smearing effect, the same prob-
lem was optimized using a twice as fine fluid mesh. Figure
15 shows both the density as well as the impermeabil-
ity distribution for the refined fluid mesh after 274 itera-
tions. As can be seen from Fig. 15, the finer fluid mesh
effectively reduces the smearing effect, but does not prevent
the formation of a solid feature in front of outlet 2.

To analyze the effect of the smeared out impermeabilities
in the deformed configuration we lumped the intermediate
impermeabilities into a discrete 0–1 distribution which is
shown in Fig. 16. The intermediate impermeability distribu-
tion in Fig. 16a is compared with a lumped one, where the
values for lumped impermeabilities, pl , are obtained from
the following:

p j
l =

⎧⎪⎨
⎪⎩

0 if p j ≤ p∗ ∀ j ∈ L ,

1 if p j > p∗ ∀ j ∈ L ,

p j ∀ j /∈ L ,

(39)

where L is the list of 18 elements to be lumped. The relative
change of the flow rate, �qd

2 due to the lumping is defined
as:

�qd
2 = qd

2 (pl) − qd
2 (p)

qd
2 (p)

, (40)

where p and pl define regular and the lumped imper-
meability distribution, respectively. Figure 16b shows the

Fig. 17 Fluid forces acting of
structure fn

L

10 N-3~=
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Fig. 18 Boundary conditions for the four-port manifold with external actuation

underlying density distribution (ellipse) as well as the cor-
responding lumped impermeabilities for different threshold
values p∗ (rectangles). As can be seen in the figure, an
intermediate impermeability threshold of 0.3 ≤ p∗ ≤ 0.5
leads to a small, ≈ 7%, change in the flow rate qd

2 . The
lumped impermeability distribution for thresholds 0.3 ≤
p∗ ≤ 0.4 resemble the underlying densities the closest
(two solid elements). Since the smeared impermeability
distribution only differs by ≈ 7% from the discrete, and
thus physically more meaningful distribution, we conclude
that the geometric mapping produces physically consistent
flow solutions/results for fluid problems with low Reynolds
numbers as considered in this work.

After having demonstrated that the island is not an arti-
fact, we analyze the benefits of this small feature. We
compare the results from the original optimized design, as
depicted in Fig. 11, with a design where the solid feature is
removed, i.e. a lumped impermeability with a threshold of
p∗ ≥ 0.6, cp. Fig. 16b. The quantitative results are listed in
Table 5. The values show that the design without the island
has twice as large of an objective value compared to the one
with the island. The reason for this lies in the fact that with-
out island, the flow rate for outlet 2 increases while at the
same time the flow rate for outlet 1 decreases. This results
in qu

1 < qd
2 → β = qu

1 . Additionally, α ≈ qu
2 is increased

significantly due to the lower pressure drop when the island
is removed. The combination of these effects results in an

Table 7 Constraints for the four-port manifold problem

Structural state @ Outlet 1 @ Outlet 2 @ Outlet 3

Undeformed qu
1 = qu

in/2 qu
2 = qu

in/4 qu
3 = qu

in/4

Deformed qd
1 = qd

in/3 qd
2 = qd

in/3 qd
3 = qd

in/3

overall worsened objective when the feature is not present.
This analysis shows that the performance of the optimized
topology is due to both the geometry of the flow channels
and the feature in front of the upper outlet.

7.1.2 Inf luence of the fluid forces on the structure

The current study neglects the effect of the fluid forces on
the structure, leading to a one-way structure-fluid coupling.
In this subsection we demonstrate that the error resulting
from this simplification is negligible for problems in which
the structural displacements due to the fluid pressure are
sufficiently small such that they do not affect the flow. This
assumption holds for flows with low velocities and pres-
sures and for bulky structures. As topology optimization
methods may lead to slender features that might deform sig-
nificantly even under low fluid pressures, this assumption
needs to be verified for the resulting optimized design.

To analyze the influence of the fluid pressure on the
structural deformation, we extend our approach described
previously. Following a staggered coupling scheme, we
compute the fluid pressure in the fluid model and map it
onto the structural model leading to an additional exter-
nal force term. The resulting structural deformations are
imposed onto the fluid model as described in Section 5.
To ensure proper convergence to steady state, the staggered
scheme is repeated until the relative error in displacements,
ek

u , satisfies the following condition:

ek
u =

∥∥uk − uk−1
∥∥∥∥uk

∥∥ ≤ 10−11. (41)

where k is the iteration index of the staggered scheme.
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Fig. 19 Initial structural density distribution for the four-port manifold (material and thickness optimization)

Table 6 lists the relative errors of the fluid-structure
response when the influence of the fluid forces on the struc-
tural deformations is ignored. The relative errors arising
from the omission of the fluid forces is negligible as in the
present example the fluid forces are insignificant in com-
parison to the structural stiffness. However, in cases where
the structure is more flexible (e.g. long slender components)
and/or the fluid velocities are higher, i.e. larger fluid forces,
the effect of the fluid pressure on the structure may have to
be considered.

Remark 1 The porosity model described in Section 4 can
be employed to predict fluid forces fE (where the subscript
‘E’ indicates that the force vector is defined on the Eule-
rian mesh). However, this approach results in forces not
only at the fluid–solid interface but also within the solid
domain. These non-physical forces occur due to the fact
that porous material permits pressure gradients throughout
the material. These pressure gradients in the porous mate-
rial are still allowed to develop when p = 1 (solid), thus
leading to forces within solid regions. To ensure that fluid
forces only occur in the vicinity of the fluid–solid interface
a scaled bounce-back boundary method is employed. For
details on this method, the reader is referred to the work by
Pingen et al. (2006).

Remark 2 Given the fluid forces, fE , the mapping described
in Section 5 is used to transform fE from the Eulerian mesh
onto the Lagrangian mesh. This results in a fluid force vec-
tor fL , where the force acting on the i-th structural element
is defined as:

f i
L = 1

Ai
S

ni∑
j=1

(
f j
E A ji

int

)
. (42)

This force is equally distributed to the nodes of the i-th
structural element, which finally results in the vector of

Table 8 Parameters for the four-port manifold (material and thickness
optimization)

Parameter type Parameter Value

Physical Length (L) 48

Height of fluid domain (HF ) 31

Height of structural 24

domain (HS)

Reynolds number (RE) 10

Critical length (Lc) 9

Dimensionless relaxation 1/1.9

time (τ )

Viscosity (νF )
1

6
(2τ − 1)

Inlet velocity (vin) RE · νF/Lc

Outlet pressure (pout ) 1/3

Prescribed external 0.25HS

displacement (uy)

Poisson ratio (ν) 0.4

Discretization Fluid-domain mesh (nx × ny) 49×32

Fluid-domain grid size L/(nx − 1)

Structural-domain mesh 53×27

(mx × my)

Structural-domain grid size L/(mx − 1)

Algorithmic Lower, upper limit for si 0, 1

(smin, smax )

Step size (�s) 0.05(smax − smin)

Number of GCMMA 1

subcycles

Convergence Tolerance for KKT 1 · 10−7

conditions (εkkt )

Tolerance for design 5 · 10−3

change (εs )

Tolerance for constraint 5 · 10−4

violation (εc)
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Fig. 20 Optimized impermeability distribution for the four-port manifold with external actuation

nodal fluid forces fn
L . This force vector fn

L leads to structural
deformations. The latter in return affects the intersection
areas A ji

int (cp. (42)), resulting in slightly different fluid
forces f i

L . Figure 17 shows the fluid forces, fn
L , in the struc-

tural domain. Note that the forces within the structural solid
domain occur due to the mapping in (42).

7.2 Four-port manifold with external actuation

In the second example we optimize a system with one inlet
and three outlet ports. As before, the goal of the design
problem is to find the layout of the fluid channels and
the thickness distribution of the structural layer such that
the mass flow through the outlet ports can be controlled
through an elastic deformation in response to an external
prescribed displacement. Again, internal actuation and vary-
ing the support stiffness are not considered. The boundary
conditions for both the structural and the fluid problem are
depicted in Fig. 18. The gridded circles illustrate the struc-
tural and fluid mesh, respectively. The height of the fluid

domain is approximately 25% higher than that of the struc-
tural domain. This ensures that the fixed fluid mesh covers
the entire structural domain, even when the latter expands
during deformation.

We minimize the difference in total pressure between the
inlet and the outlets. Furthermore, we require for the unde-
formed configuration that the flow rate through outlet 1 (qu

1 )
is 1/2 of the inlet flow rate, qu

in . The flow rates through
the remaining two outlets, qu

2 and qu
3 , are required to be

1/4 of the inlet flow rate. In the deformed configuration all
three outlets, qd

j , for j = 1, . . . , 3, should have the same
flow rate, i.e. 1/3 of the inlet flow rate in the deformed
configuration, qd

in . Table 7 lists the flow rate constraints for
the four-port manifold.

The structure is clamped on the left and lower edges. The
upper edge is subjected to a prescribed displacement uy =
0.25HS in the vertical direction. The boundary conditions
for the fluid model, Fig. 18b, are a parabolic inlet velocity
and a prescribed static pressure of pout = 1/3 at all three
outlets.

(b) Deformed state

s t = 1

s t = 0.5

s t = 0

s t = 1

s t = 0.5

s t = 0

(a) Undeformed state

Outlet 1

In
le

t

Outlet 2 Outlet 3 Outlet 1 Outlet 2 Outlet 3

In
le

t

Fig. 21 Optimized relative substrate thickness for the four-port manifold with external actuation
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The initial density distributions in the undeformed and
deformed configurations are illustrated in Fig. 19. We ini-
tialize the density distribution with ρ = 1 at the boundary
that is neither inlet nor outlet and ρ = 0 elsewhere. The
substrate thickness is uniformly initialized with si

t = 0.5 ∀ i .
The optimization problem is defined by the following set

of equations:

min
s

z = pu
in + pd

in −
3∑

j=1

(
pu

j + pd
j

)
,

s.t. g1 = 0.005 −
(

qu
in − 1

2
qu

1

)2

−
(

qu
in − 1

4
qu

2

)2

≥ 0,

g2 = 0.005 −
(

qd
in − 1

3
qd

1

)2

−
(

qd
in − 1

3
qd

2

)2

≥ 0,

g3 = 1

Ne

Ne∑
i

ρi

ρsolid
− 0.6 ≥ 0,

smin
m ≤ si

m ≤ smax
m ,

smin
t ≤ si

t ≤ smax
t ,

(43)

where, g1 and g2 describe the flow rate constraints and g3

requires that at least 60% of the design domain has to be
solid. Table 8 lists the parameters used for the four-port
manifold example.

Figure 20 shows the optimized fluid channel, converged
after 137 iterations. All three constraints are satisfied. In the
undeformed configuration, the mass flow to the output ports
2 and 3 is limited by height of the horizontal main channel.
When the structure undergoes deformation, the main chan-
nel widens, increasing the mass flow through outlet ports 2
and 3. Furthermore, the fin between outlet 2 and 3 deforms
such that the channel to outlet 2 is widened and more flow is
directed toward outlet 2. The increased mass flow through
outlet 2 and 3 simultaneously leads to a decrease of the mass
flow through outlet port 1.

Figure 21 illustrates the optimized relative substrate
thickness. The thickness is mostly minimized in areas where
the channel is located (cp. Fig. 20). This weakens the struc-
ture, allowing for a greater widening of the channel when
deformed. The link slightly to the right of the center of the
design domain stiffens the connection between the upper
half of the design domain and the fin between outlet 2 and
3. When the structure is deformed, this link pulls the tip of
the fin up and to the right, redirection the flow.

Table 9 Parameters for the four-port manifold (material, eigenstrain
and support-layout optimization)

Parameter type Parameter Value

Physical Length (L) 48

Height of fluid domain (HF ) 24

Height of structural 24

domain (HS)

Reynolds number (RE) 10

Critical length (Lc) 9

Dimensionless relaxation 1/1.9

time (τ )

Viscosity (νF )
1

6
(2τ − 1)

Inlet velocity (vin) RE · νF/Lc

Outlet pressure (pout ) 1/3

Prescribed external 0

displacement

Poisson ratio (ν) 0.4

Discretization Fluid-domain mesh (nx × ny) 49×25

Fluid-domain grid size L/(nx − 1)

Structural-domain mesh 53×27

(mx × my)

Structural-domain grid size L/(mx − 1)

Algorithmic Lower, upper limit for 0, 1

si
m , si

s (smin, smax )

Lower, upper limit for −1,1

si
e (smin

e , smax
e )

Step size (�s) 0.05(smax − smin)

Number of GCMMA 1

subcycles

Convergence Tolerance for KKT 1 · 10−5

conditions (εkkt )

Tolerance for design 1 · 10−2

change (εs )

Tolerance for constraint 1 · 10−5

violation (εc)

ρ = 1

ρ = 0.5

ρ = 0
Outlet 1

In
le

t

Outlet 2 Outlet 3

Fig. 22 Initial structural density distribution for the four-port manifold
(material with internal actuation)
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(b) Deformed state

p = 1

p = 0.5

p = 0

p = 1

p = 0.5

p = 0

(a) Undeformed state
Outlet 1
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t

Outlet 2 Outlet 3
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t

Outlet 1 Outlet 2 Outlet 3

Fig. 23 Optimized impermeability distribution for the four-port manifold with internal actuation

(a) Undeformed state (b) Deformed state
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Fig. 24 Optimized eigenstrain for the four-port manifold with internal actuation
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Fig. 25 Optimized support layout for the four-port manifold with internal actuation



514 S. Kreissl et al.

Outlet 1

In
le

t

Outlet 2 Outlet 3

ss = 1

ss = 0

Contraction ( ~ 1)se -

Expansion ( ~1)se

ss = 0.5

Fig. 26 Detail of optimized support layout in deformed configuration
(cf. Figs. 24b and 25b)

7.3 Four-port manifold with internal actuation

The third example considers the same problem as in Section
7.2. However in this example we consider internal instead
of external actuation and vary the eigenstrain distribution
along with the support stiffness. The thickness is not altered.
When employing eigenstrains, an adjustable support-layout
is crucial to achieve large local deformations without requir-
ing excessive eigenstrains. Since the system is no longer
subjected to an external displacement and the displacements
along the structural design domain are fixed, the dimen-
sions of the fluid mesh are chosen such that they match
the structural mesh. Table 9 lists the algorithmic parame-
ters. To demonstrate the robustness of the current approach
with respect to the initial design, we choose a different ini-
tialization for the density distribution, depicted in Fig. 22.
The optimization problem is identical to the one defined in
(43), but with box constraints on si

e and si
s instead of si

t .
The eigenstrain design variables are uniformly initialized
with si

e = 10−4 and the support design with si
s = 0.3. The

substrate thickness is fixed at t = 1.05, i.e. si
t = 0.5.

Figure 23 shows the optimized impermeability distribu-
tion after 179 iterations (converged) in the undeformed and
deformed configuration. As can be seen from these figures,
the channels to the outlet ports 2 and 3 (center and right)
expand significantly in the deformed configuration, increas-
ing the flow rates through these ports. On the other hand the
channel to outlet port 1 contracts, which reduces the flow for
outlet 1. The optimized eigenstrain distribution is illustrated
in Fig. 24. It shows positive strains (si

e = 1: expansion)
along the channels to the outlet ports 2 and 3 and negative
strains (si

e = −1: contraction) around these channels, lead-
ing to a significant widening of the channels to the outlet
ports 2 and 3. The area of the domain that coincides with the
channel to outlet 1 shows negative strains, i.e. the channel
to outlet 1 contracts.

The optimized support layout is depicted in Fig. 25. It
shows that mainly the boundaries on the right and top edges
are fixed, while the main bulk of the design space is unsup-
ported. The small areas of high support stiffness within the
interior of the domain are beneficial for the development of
local areas of contraction/expansion, as depicted in Fig. 26.
The elements with high support stiffness in between the
two ellipses help to separate the area of contraction and
expansion by bracing the structure.

8 Conclusions

An approach to topology optimization of FSI problems has
been presented and applied to the multi-objective design
optimization of dynamically tunable, elastically deforming
micro fluidic devices. The proposed design method allows
for optimizing the topology of the fluid channels in multi-
layered structures, the thickness distribution of the structural
layers, the layout of the active material, and the location of
supports.

It was shown that for the class of problems considered in
this paper, the structural deformations due to fluid forces are
negligible in comparison to the deformations due to exter-
nal and internal actuation. This allows considering only a
one-sided structure-fluid coupling. As topology optimiza-
tion gives only limited control over the resulting geometric
features, the validity of this simplification should be verified
for the resulting optimized design.

In order to alter the flow noticeably, large deformations
are needed. Therefore, the structural response was mod-
eled by a geometrically non-linear finite element model. To
avoid issues due to large compressive loading, such as buck-
ling, predominantly tensile loads have been considered in
this study. However, compressive external and internal loads
are expected to be particularly efficient in altering channel
flows and remain to be studied in the future. The current
study employs a linear stress–strain relation. To account
for large strains a non-linear constitutive model such as a
hyper-elastic model should be used. Due to the separate
treatment of fluid and structural domain this could be easily
incorporated in the existing framework.

In this study, a simple 2-D flow model has been consid-
ered. To capture the influence of bottom and top structural
layers on the flow, refined fluid models need to be applied.
Again this could be implemented without changing the
overall computational framework. The fluid–solid interfaces
are described via a porosity approach, which approximates
the flow characteristics sufficiently well for low Reynolds
number flows. However, for high Reynolds numbers, the
stair-step interface geometry will likely cause problems.

The proposed method describes the structural deforma-
tions on a Lagrangian mesh and the flow is predicted on a
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fixed Eulerian mesh. While in this paper a hydrodynamic
lattice Boltzmann method was used, any finite element or
finite volume flow solvers can be integrated into the pro-
posed computational framework. The separation of struc-
ture and flow solver allows the use of standard analysis
tools. In particular, it circumvents the need for fluid analysis
methods capable of operating on moving meshes. However,
a mapping method is needed to transform the structural den-
sity distribution into a impermeability distribution defining
the layout in the undeformed and deformed configurations.
In numerical studies the proposed simple geometric map-
ping approach was shown to be robust and computationally
inexpensive.

Three numerical studies on the design of tunable mani-
folds have demonstrated that the proposed method is well
suited for topology optimization of fluid-structure sys-
tems. While most micro-fluidic applications are dominated
by low Reynolds number flows allowing for a one-sided
FSI model, two-way coupling needs to be considered in
general.
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