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Abstract By means of continuous topology optimization,
this paper discusses the influence of material gradation
and layout in the overall stiffness behavior of functionally
graded structures. The formulation is associated to symme-
try and pattern repetition constraints, including material gra-
dation effects at both global and local levels. For instance,
constraints associated with pattern repetition are applied by
considering material gradation either on the global structure
or locally over the specific pattern. By means of pattern rep-
etition, we recover previous results in the literature which
were obtained using homogenization and optimization of
cellular materials.
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1 Introduction

Functionally graded materials (FGMs) are special compos-
ites characterized by gradual variation of material proper-
ties, which produce property gradients aimed at optimizing
structural response (e.g., Suresh and Mortensen 1998;
Miyamoto et al. 1999; Paulino et al. 2008). Desirable prop-
erties such as heat and corrosion resistance, typical of
ceramics, can be achieved in combination with mechani-
cal strength and toughness, typical of metals, by means of a
smooth and continuous change of microstructure. The
smooth gradation of material properties may offer some
advantages in comparison with classical composites such
as reduction/redistribution of residual stresses, increased
bond strength, and reduction/redistribution of stress
concentration.

Advances in the manufacturing of FGMs motivated
development of modeling techniques for such materials
(e.g., Markworth et al. 1995). In the last decade, several
numerical models have been applied to FGMs including,
for example, integral equations (e.g., Ozturk and Erdogan
1999), the higher order model (e.g., Pindera and Dunn
1997), boundary elements (e.g., Sutradhar et al. 2002), and
finite elements (e.g., Giannakopoulos et al. 1995). In regard
to the finite element method (FEM), we mention the graded
finite elements by Santare and Lambros (2000), and by
Kim and Paulino (2002)—while the former authors sam-
ple the material properties directly at the Gauss points of
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the element, the later adopt a generalized isoparametric
formulation.

The development of suitable computational models con-
tributed to practical application of FGMs to engineering
problems. The improvement of the process of design-
ing graded structures using optimization techniques is,
therefore, natural and opens new avenues for further inves-
tigations. Among optimization techniques, topology opti-
mization has emerged as a promising field of investigation
(see for example, Strang and Kohn 1986; Rozvany 1991;
Bendsøe and Soares 1992). This method seeks the optimal
layout of a fixed amount of material in a design domain.
The concept of continuous material distribution, present
in the Solid Isotropic Material with Penalization (SIMP)
model (e.g. Bendsøe 1989; Zhou and Rozvany 1991), is
largely adopted in topology optimization applications and
is closely related to the concept of FGM, which essentially
considers a continuous transition of material properties.
Recently, by extending the generalized isoparametric for-
mulation by Kim and Paulino (2002), Paulino and Silva
(2005) developed the FGM-SIMP model, which allows
direct application of topology optimization techniques to
graded structures. Further applications of the FGM-SIMP
model to multiphysics problems can be found in the work
by Carbonari et al. (2007, 2009).

Despite the relative maturity of the field, topol-
ogy optimization is still considered a preliminary design
tool because the process can produce non-manufacturable
results. Techniques developed to avoid numerical instabil-
ities in the topology optimization process also provide an
indirect control over the resulting structural member sizes,
which is essential in manufacturing processes. The weighted
average over element densities adopted in most density
filters (Bourdin 2001; Guo and Gu 2004; Wang and Wang

2005), the weighted average over sensitivities adopted in
the sensitivity filters (Sigmund 1997, 2001; Borrvall and
Petersson 2001), and the morphology-based operators
“dilate” and “close” (Sigmund 2007) increase the struc-
tural member size as the dimension of the filter/operator
is increased. However, the control provided by those tech-
niques does not offer a direct relation between the operator
parameter and the actual structural member. A more direct
control over member size is provided by means of mesh-
independent projection schemes (Guest et al. 2004; Almeida
et al. 2009). Indirect control over the size of the holes in
the resultant layout can be achieved by the morphology-
based operators “erode” and “open” (Sigmund 2007). Direct
control can be achieved by the inverse projection scheme
proposed by the authors (Almeida et al. 2009). A combina-
tion of both direct and inverse schemes without additional
constraints, filters or penalty functions, has also been eval-
uated (Almeida et al. 2009). An alternative scheme was
presented by Guest (2009), who used a penalty function to
enforce maximum length scale while imposing at the same
time minimum length scale to structural members through a
projection scheme.

This paper discusses the influence of material gradation
and layout in the overall stiffness behavior of function-
ally graded structures by using a topology optimization
formulation associated to symmetry and pattern repetition
constraints to implement either global or local gradation.
Global gradation means that, although the geometrical lay-
out (Bojczuk and Szteleblak 2008; Kang and Tong 2008;
Kumar and Gossard 1996; Zhu et al. 2008) is symmetric, the
material gradation is not symmetric (Fig. 1a); thus, the over-
all resultant structure is not symmetric. By means of local
gradation, a completely symmetric structure is achieved by
imposing symmetry in the geometrical layout as well as

Fig. 1 Symmetry: (a) global
gradation (layout) and (b) local
gradation (layout and material)
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Fig. 2 Pattern repetition: (a)
global gradation (layout) and
(b) local gradation (layout and
material)
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in the material gradation (Fig. 1b). A similar discussion is
proposed regarding pattern repetition. In the global grada-
tion approach (Fig. 2a), there is repetition only of a layout
pattern, but not a material gradation pattern. The local gra-
dation approach (Fig. 2b) includes the repetition of material
layout and gradation patterns together. The latter makes the
manufacturing and assembly processes easier and the pat-
tern repetition (identical from the geometric and material
points of view) can reduce costs by manufacturing just one
kind of sub-structure.

In summary, the contribution of this work is to study
the influence of material gradation and layout in the overall
stiffness behavior of functionally graded structures designed
using topology optimization. We consider symmetry or pat-
tern repetition constraints locally and globally with respect
to material gradation. To illustrate the broader scope of
the present work, we illustrate the use of pattern repeti-
tion to represent microstructures of graded cellular material
systems.

The remainder of this paper is organized as follows.
Section 2 presents some concepts involving topology opti-
mization design of graded structures, such as the FGM-
SIMP method and projection schemes. Section 3 introduces
the formulation regarding symmetry and pattern repetition
constraints. Section 4 introduces details of the implementa-
tion and the sensitivity analysis. The numerical results are
provided in Section 5. Section 6 outlines the conclusions of
the present work. The nomenclature used in this paper is
presented in the Appendix.

2 Topology optimization applied to FGMs

The optimization of topology design is traditionally formu-
lated as a material distribution problem in which material
and void regions are represented by density values 1 (solid)
and 0 (void). It is well known that such problem is ill-posed

and lacks solution in the continuous setting (Sigmund and
Petersson 1998). The SIMP model (Bendsøe 1989; Zhou
and Rozvany 1991) sets a relaxation of the solid-void for-
mulation considering a continuous variation of density in
the interval [ρmin , 1]. The design problem is formulated
as a sizing problem by making material properties contin-
uously dependent on the amount of material at each point.
The discrete nature of the design is recovered by introducing
a power-law relation to penalize the intermediate densities.
At any point of the design domain �:

E H (x) = Es ρ (x) p , p > 1 (1)

where x denotes the coordinates of the point; E H (x) the
Young’s modulus at coordinates x; ρ(x) the material den-
sity at coordinates x; Es the Young’s modulus of the solid
material; and p the penalization factor.

The standard minimum compliance problem in discrete
form can, hence, be formulated considering the density
parameter ρ as design variable:

min :
ρ

c (ρ, u)

s.t : Equilibrium equations∫
�

ρ dV ≤ Vs

(2)

Here, c(ρ, u) is the objective function representing the mean
compliance of the structure; f is the global nodal force vec-
tor; u is the global displacement vector; K is the global
stiffness matrix, which is dependent on the density dis-
tribution ρ; and Vs is the specified maximum volume of
structural material.

A commonly used nodal-based approach is the so-
called Continuous Approximation of Material Distribution
(CAMD) technique (Kumar and Gossard 1996; Matsui and
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Terada 2004) which evaluates the shape functions of the
element within each element and subsequently throughout
the design domain to obtain the densities, i.e.

ρe (x) =
4∑

i=1

ρe
i N e

i (x) (3)

Here, ρe
i denotes the nodal density of element e at node

i and N e
i denotes linear or bi-linear shape functions of

element e related to node i at coordinate x.
Most applications in the topology optimization field use

the Q4 element. If higher order elements are employed with
CAMD, the nodal densities are defined only at the corner
nodes and bi-linear shape functions are used to interpolate
density values inside the element (3). This procedure is nec-
essary to avoid negative density values due to the fact that
higher order Lagrangian shape functions are not always pos-
itive (see Matsui and Terada 2004). The CAMD approach
is suitable for topology optimization of graded structures
because, by allowing density variation within the element, it
can also include the gradation of stiffness. The next section
presents the FGM-SIMP model (Paulino and Silva 2005).
Checkerboarding is avoided by using projection schemes
(described later), which also provide the benefit of impos-
ing constraints that address manufacturing issues such as the
control of actual member size and also hole size.

2.1 The FGM-SIMP model

The concept of isoparametric graded elements, introduced
by Kim and Paulino (2002) to perform FE analysis of graded
structures, allows sampling of material properties at any
point of the domain. The approach is natural to the FEM
because it embraces the important isoparametric concept by
using the same shape functions to interpolate the unknown
displacements, the geometry and also the material parame-
ters. The Young’s modulus, Ee

s (x), within each element is:

Ee
s (x) =

4∑

i=1

Ei N e
i (x) (4)

where N e
i (x) denotes the shape function of element e related

to node i at coordinates x; Ei the Young’s modulus of
element e at node i .

Material gradation of properties can be evaluated either
experimentally, using micromechanics models, or using
pre-defined functions. Equation (4) is general and can be
applied with any of these approaches. In the topology
optimization field, pre-defined functions are convenient to
represent material gradation and simplify the procedure of
obtaining the material property at desired points of the
design domain. For the sake of simplicity, in this work,

we adopt an exponential function to represent the grada-
tion of the material property for the solid material. For
two-dimensional problems such function is:

Es (x) = E0 e(α X+β Y ) (5)

where α and β are coefficients that define the change of
material property (1/α and 1/β are the length scales of
nonhomogeneity in each Cartesian direction, respectively);
Es(x) is the Young’s modulus at location x; E0 is the refer-
ence Young’s modulus (see Figs. 1 and 2); and X and Y are
the Cartesian coordinates of position x.

The FGM-SIMP model (Paulino and Silva 2005) adapts
the original expression of the SIMP model (1) to include the
gradation of properties (5).

E H (x) = E0 e(α X+β Y ) ρ (x) p , p > 1 (6)

The density within the element is evaluated using CAMD
(3) and the element stiffness matrix is therefore given by:

Ke =
∫

�e

(
4∑

i=1

ρe
i N e

i (x)

)p

e(α X+β Y ) BT C0 B d� (7)

where C0 is the constitutive matrix of the solid phase
of the reference material and B denotes the usual strain-
displacement matrix. Conceptually, other material gradation
functions can be employed in the FGM-SIMP model (the
corresponding framework is described in this paper).

2.2 Projection

Projection schemes are regularization techniques that sep-
arate the concepts of the design variable and density
field, and provide mesh-independent solutions by project-
ing design variables onto density space. We call attention
to the fact that the idea of separating these concepts is
also present in CAMD, however, the mesh-independency
requisite is not. Each shape function used in this “local” pro-
jection influences only the elements connected to the node
related to the function and the region of the domain under its
influence becomes smaller as the mesh is refined. Numeri-
cally, mesh-independent schemes are achieved with mesh-
independent projection regions. In general, techniques used
to achieve mesh independent solutions, such as filters and
projection schemes, also tend to overcome the checkerboard
problem (Zhou et al. 2001).

This work explores the projection technique (Guest et al.
2004) in conjunction with the CAMD and the FGM-SIMP
models. Nodal densities, d, associated to the design vari-
ables are modified using a weighted average over the nodal
densities inside a circular region in the neighborhood of the



Layout and material gradation in topology optimization of functionally graded structures 859

node of reference n (Fig. 3a). The set of nodes Sn
w, which

defines the projection region �n
w, is given by:

x j ∈ Sn
w if rn

j = ∣
∣x j − xn

∣
∣ ≤ rmin (8)

where x j are the coordinates of the node j , xn are the
coordinates of the reference node n, and rn

j is the dis-
tance between the reference node n and the node j in the
projection region.

The projected nodal density ρn is given by the weighted
average of the nodal densities within radius rmin from the
reference node:

ρn =

∑

j∈Sn
w

d j w
(
x j − xn

)

∑

j∈Sn
w

w
(
x j − xn

) (9)

Here, the nodal densities d j are weighted to evaluate the
nodal volume fraction ρn of node n.

The authors (Almeida et al. 2009) suggested a polyno-
mial weight-function (Fig. 3b) which consists essentially of
a parabolic cone of base 2 rmin and unit height (Almeida
et al. 2009), centered at the reference node, n. The pro-
jected nodal density ρn is given by the weighted average
of the nodal densities within radius rmin from the reference
node (9), i.e.

w
(
x j − xn) =

⎧
⎨

⎩

(
rmin−rn

j
rmin

) 2

if x j ∈ �n
w

0 if x j /∈ �n
w

(10)

The weight function leads to mesh-independent results in
the sense that rmin is an invariant length scale. However, the
number of nodes evaluated in the weight function increases
as the mesh is refined. The radius rmin is a physical length
scale, meaning that the minimum allowable member size
corresponds to 2 rmin , the basis of the projection cone.

r minn

Ωw
n

r j
n

a b

r min r min

r j
n

1

w(r j
n)

w(r)

Fig. 3 Direct projection scheme: (a) domain �n
w and (b) parabolic

weight function

3 Symmetry and pattern repetition constraints

This section describes the formulation of symmetry and
pattern repetition constraints applied to graded structures.
These constraints allow the implementation of different
material layout and gradation in the structure. Figure 4 illus-
trates the material distribution rule for pattern repetition.

3.1 Symmetric layout and symmetric material distribution

Symmetric material distribution is achieved by mapping the
design variables y onto the set of nodal densities d. The
set of nodal densities is divided in two subsets: the primary
nodal densities d1 and the secondary densities d2, obtained
from d1 by forming a symmetric layout. For implementa-
tion purposes, Fig. 5 shows a schematic example relating
the set of design variables y, to the sets of nodal densities
d1 and d2 considering double symmetry. The design vari-
ables (Fig. 5a) are mapped onto primary densities d1 (green
points in Fig. 5b). The secondary mapping is built taking
into account the intended symmetry layout. The coordinates
of the nodes of the secondary set of nodal densities d2 are
tested to determine the symmetry conditions from the pri-
mary set of nodal densities d1. Once the symmetric node
is identified, the same design variable is assigned to both
nodes.

To impose symmetry with respect to the X axis, we
establish that:

if Xi = X j and Yi = H − Y j then di = d j = yk (11)

Similarly, to impose symmetry with respect to the Y axis,
we have:

if Xi = L − X j and Yi = Y j then di = d j = yk (12)

di dj=di

a a a a

a a a a a

b

b

b

b

b

Fig. 4 Pattern repetition
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Fig. 5 Symmetry constraint: (a) set of design variables y, (b) sets of
nodal densities d, and (c) symmetric assembly of design variables onto
nodal densities

Here, index i identifies a node from the subset d2; index j
identifies a node from the subset d1; index k identifies the
design variable y to be assigned to densities of nodes i and
j ; X and Y identify the Cartesian coordinates of nodes i
and j ; and L and H are length and height of the structure,
respectively. To impose double symmetry, both conditions
expressed in (11) and (12) shall be applied.

We call attention to the fact that, with respect to graded
structures, mapping design variables into nodal densities
symmetrically just leads to a symmetric layout and not to
a symmetric material distribution. Symmetry constraints
applied with gradation along the whole structure, here
referred to as global (Figs. 1a and 2a), leads to a symmet-
ric layout with non-symmetric material properties. When
material gradation is defined locally (Figs. 1b and 2b), the
resultant structure is entirely symmetric. Table 1 illustrates
the resultant layout and material distribution depending
on the material gradation and symmetry constraints.

Table 1 Symmetry constraints, material model, resultant layout and
material gradation

Symmetry cases Layout Material gradation

No constraint Not symmetric Not symmetric

Symmetry constraints with Symmetric Symmetric

homogeneous material

Symmetry constraints with Symmetric Not symmetric

global gradation

Symmetry constraints with Symmetric Symmetric

local gradation

Local gradation with symmetry constraints is achieved by
means of a simple transformation to evaluate the coordinates
at (5), (6) and (7) at the symmetric part of the structure.

To impose local gradation while accounting for the sym-
metry with respect to the X axis, we establish that:

Y ∗ = H − Y if Y > Ym (13)

Similarly, to impose local gradation accounting for symme-
try with respect to the Y axis, we have:

X ∗ = L − X if X > Xm (14)

Here, X and Y identify the Cartesian coordinates of the inte-
gration points; X∗ and Y ∗ identify the coordinates of the
integration points in the local system; Xm and Ym identify
the coordinates of symmetry axes; and L and H are length
and height of the structure, respectively.

To impose local gradation considering symmetry with
respect to both axes, the transformations expressed in both
(13) and (14) shall be applied. No transformation is needed
when symmetry constraints are applied with global grada-
tion and the Cartesian coordinates are directly applied to (5),
(6) and (7).

3.2 Pattern repetition: local versus global gradation

Patterns are applied by mapping the design variables y onto
the set of nodal densities d. The mapping scheme follows
the same idea developed to impose symmetry constraints
and the set of nodal densities d is divided into two subsets:
the primary nodal densities d1 and the secondary densities
d2, obtained from d1 by forming a pattern. For implementa-
tion purposes, Fig. 6 shows a schematic example relating the
set of design variables y, to the sets of nodal densities d1 and
d2 considering pattern in the direction of both X and Y axes.
The design variables (Fig. 6a) are mapped onto primary den-
sities d1 (green points in Fig. 6b). The secondary mapping
is built taking into account the intended pattern. The coor-
dinates of the nodes of the secondary set of nodal densities
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Fig. 6 Pattern repetition constraint: (a) set of design variables (y), (b)
sets of nodal densities (d), and (c) assembly of design variables onto
nodal densities forming a pattern

d2 are tested to determine the pattern condition from the
primary set of nodal densities d1. Once the corresponding
nodes are identified, the same design variable is assigned to
all nodes following the pattern.

To impose pattern repetition in the direction of the X
axis, we establish that:

if Xi = X j + a and Yi = Y j , then di = d j = yk (15)

Similarly, to impose pattern repetition in the direction of the
Y axis, we have:

if Xi = X j and Yi = Y j − b, then di = d j = yk (16)

Here, index i identifies a node from the subset d2; index j
identifies a node from the subset d1; index k identifies the
design variable y to be assigned to densities of nodes i and
j ; X and Y identify the Cartesian coordinates of nodes i and
j ; and a and b are the length of the pattern in the direction
of axes X and Y (see Fig. 4). To impose pattern repetition in
the directions of both axes, the conditions expressed in (15)
and (16) shall be applied.

The concept of local and global gradation is present
with pattern repetition as well. Local gradation with pat-
tern repetition constraints is achieved by means of a simple
transformation to evaluate the coordinates at (5), (6) and (7)
at the repetitive part of the structure.

To impose local gradation with pattern repetition in the
direction of the X axis, we establish that:

X ∗ = X − m a if X > a (17)

Similarly, to impose local gradation with pattern repetition
in the direction of the Y axis, we have:

Y ∗ = Y − n b if Y > b (18)

Here, X and Y identify the Cartesian coordinates of the inte-
gration points; X∗ and Y ∗ identify the coordinates of the
integration points in the local pattern system; a and b iden-
tify the length of the path in X and Y directions, respectively
(Fig. 4); and n and m are the number of patterns in X and Y
directions, respectively.

To impose local gradation considering pattern repetition
in the direction of both axes, the transformations expressed
in both (17) and (18) shall be applied. No transformation is
needed when pattern repetition constraints are applied with
global gradation and the Cartesian coordinates are directly
applied to (5), (6) and (7).

4 Numerical implementation

Application of symmetry and pattern repetition constraints
to graded structures in topology optimization using the
FGM-SIMP model and projection schemes involves three
sets of variables: the design variables y; the nodal densities
d; and the projected densities ρ. The set of nodal densities
d is obtained from the design variables y through a map-
ping system and the projected densities ρ are obtained from
the nodal densities through a projection scheme. The mini-
mum compliance problem, in discrete form can, hence, be
reformulated from (2) as:

min :
y

c (y, u)

s.t : K(y) u = f
nnodes∑

i=1
ρi (y)�Vi ≤ Vs

(19)

Here, c(y, u) is the objective function representing the com-
pliance of the structure; f is the global nodal force vector; u
is the global displacement vector; K is the global stiffness
matrix, which depends on the design variables y; di are
the nodal densities, which depend on the design variables
y; �Vi is the volume around node i (equal to finite ele-
ment volume) inside the design domain; nnodes is the total
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number of nodes; and Vs is the upper bound value of the
constraint.

Continuation is applied to the penalization factor p of
(6) and (7) using the relative change of compliance to guide
the continuation criterion (e.g. if relative change in com-
pliance between consecutive iterations is less than 2% then
p is incremented by 0.5). The optimization problem is
solved by using the optimality criteria method (Bendsøe and
Sigmund 2003). Numerically, convergence of the topology
optimization is considered satisfactory when the relative
change of the norm of the design variable vector between
consecutive iterations is less than a specified value (e.g.
1%). Figure 7 provides a flowchart of the computational
procedure for the implementation of symmetry and pattern
repetition constraints.

4.1 Sensitivity analysis

The sensitivities with respect to the densities used in the
FE analysis are evaluated using the adjoint method (see
Bendsøe and Sigmund 2003):

∂c

∂ρ
= − uT ∂ K

∂ρ
u (20)

The design parameters adopted in the FGM-SIMP model
are the nodal densities ρe

i , which are interpolated within
each element as prescribed in CAMD (3). Each nodal den-
sity contributes to the stiffness of the elements sharing the

Initialize

Projection mapping with manufacturing constraints

Element densities at the integration points

FEA

Compliance

Update design variables

| yn
new – yn

old | / | yn
old | < tol ?

Sensitivities w.r.t. design variables

End

Y

N

Sensitivities w.r.t. element densities

Product BT C0 B for solid reference material at the 
integration points

Nodal densities using projection function

Fig. 7 Topology optimization scheme

node, thus, the sensitivity with respect to the nodal densities
can be computed as follows:

∂c

∂ρe
i

= −
∑

e∈Si

uT
e

∂ Ke

∂ρe
i

ue (21)

Here, Si is the set of elements sharing node i ; ue is the dis-
placement vector of element e; and Ke is the stiffness matrix
of element e; and ρe

i is the projected density at node i of
element e.

By means of the relation presented in (7), we can com-
pute the derivative of the stiffness matrix with respect to the
nodal densities:

∂ Ke

∂ρe
i

=
∫

�e

p N e
i (x)

⎛

⎝
4∑

j=1

ρe
j N e

j (x)

⎞

⎠

p − 1

× e(α X+β Y ) BT C0 B d� (22)

Therefore, the sensitivities of the objective function with
respect to the nodal densities in the FGM-SIMP model can
be computed as:

∂c

∂ρe
i

= −
∑

e∈Si

∫

�e

p N e
i (x)

⎛

⎝
4∑

j=1

ρe
j N e

j (x)

⎞

⎠

p − 1

× e(α X+β Y ) uT
e

(
BT C0 B

)
ue d� (23)

Adoption of projection schemes associated with the
FGM-SIMP model sets an intermediate layer of nodal den-
sities d evaluated from the design variables y. The nodal
densities d are transformed by a projection function into the
nodal densities ρe

i used in the FE analysis. The sensitivities
of the objective function with respect to the nodal densities
d can be readily computed using the chain rule:

∂c

∂dn
=

4∑

i=1

∂c

∂ρe
i

∂ρe
i

∂dn
(24)

Moreover, considering the projection function presented in
(9), we obtain:

∂ρe
i

∂dn
= w

(
xn − xe

i

)

∑

j∈Sn
w

w
(
x j − xe

i

) (25)

Imposing symmetry and pattern repetition constraints
sets another layer of design parameters because the design
variables y are not directly equal to the nodal densities d.
Moreover, each design variable yi is assigned to a set of
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nodal densities dn . Because the assembly is a simple map-
ping, the sensitivity of the objective function with respect to
the design variables can be computed as follows:

∂c

∂yk
=

∑

n∈Sk
d

∂c

∂dn
(26)

Here, Sk
d is the set of nodal densities d assigned to the same

design variables y.

4.2 Remarks

The implementation of projection schemes requires a search
routine to identify the set of nodes Sn

w lying inside each
nodal projection region �n

w. Fine meshes and large values
of rmin involve a large set of nodes in Sn

w (increasing the
computational cost). However, such routines are performed
only once at the beginning of the algorithm.

The mapping routines, involving symmetry and pat-
tern repetition constraints, lead to extra computational cost.
However, a routine to evaluate a mapping matrix, executed
at the beginning of the algorithm, reduces such cost. The
same procedure can be adopted to evaluate the coordinates
to be used in the exponential function that represents the
material gradation.

The implementation used in this paper adopts unit-sized
elements. To achieve mesh-independency, the evaluation
of the coordinates at (5), (6) and (7) are normalized with
respect to the actual dimensions of the structure.

5 Numerical results

This section presents numerical results for symmetry and
pattern repetition for homogeneous and graded materi-
als. The results are verified using a cantilever beam and
a simply-supported beam with the parabolic projection
scheme to impose minimum length scale to structural
members.

All problems are solved using four-node quadrilateral
elements (Q4), and the prescribed volume of the structures

2

1

1

Fig. 8 Cantilever beam

a

b

c

d

Fig. 9 Topology of the homogeneous cantilever beam obtained using
parabolic projection with rmin = 4 and mesh discretization 100 × 50:
(a) no symmetry constraint, (b) symmetry with respect to X axis, (c)
symmetry with respect to Y axis, and (d) symmetry with respect to
both X and Y axes

are 50% of the domain volume �. Continuation is applied
to the penalization factor of the SIMP model by varying p
from 1.0 to 5.0 stepping 0.5. The Poisson’s ratio is v = 0.25
and the Young’s modulus E = 1. Consistent units are
employed. In all examples the horizontal axis is referred as
X and the vertical axis is referred as Y.

6

1

11.5

Fig. 10 Simply-supported beam
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Fig. 11 Topology of the
simply-supported beam
obtained using parabolic
projection with rmin = 6 and
mesh discretization 240 × 40:
(a) homogeneous material with
no symmetry constraint, (b)
homogeneous material
symmetry with respect to Y
axis, (c) global FGM
considering symmetry with
respect to Y axis (α = 0.04), (d)
local FGM considering
symmetry with respect to Y axis
from left to center (α = 0.08),
and (e) local FGM considering
symmetry with respect to Y axis
from center to left (α = 0.08)

a

b

c

E

E0
x

E1

d

E

E0

x

E1 E0

e

E

E1

x

E0
E1

5.1 Symmetry constraints

The cantilever beam problem shown in Fig. 8 is solved for
homogeneous material applying a symmetry constraint. The
extended domain, �, is fixed along the left edge and has the
aspect ratio of 2 to 1 and unit width. A point load P = −1 is
applied to the lower left free corner of the beam. The mesh
is discretized with 100 × 50 elements and the radius of the
projection is equal to 4. Figure 9 shows the results obtained
without applying a symmetry constraint (Fig. 9a) and with
applying symmetry with respect to the X axis (Fig. 9b),
Y axis (Fig. 9c) and both X and Y axes (Fig. 9d).

The simply-supported beam problem shown in Fig. 10 is
solved for graded material with a symmetry constraint. The
extended domain, �, is fixed along the left edge and has the
aspect ratio of 6/1 and unit width. A point load P = −1 is
applied to the node 1.5 units away from the left edge at the
top of the beam. The mesh is discretized with 240 × 40 ele-
ments and the radius of the projection is equal to 6 elements.
Figure 11 presents the results obtained for homogeneous
material with no symmetry constraint (Fig. 11a), homoge-
neous material with symmetry applied with respect to the Y
axis (Fig. 11b), graded material with global gradation con-
sidering symmetry with respect to the Y axis (Fig. 11c) and
graded material with local gradation considering symme-

try with respect to the Y axis (Fig. 11d and e). In order to
obtain the same upper and lower limits of material property
(E) for global and local gradation cases, different gradation
coefficients, α, were applied. Global gradation was applied
(Fig. 11c) with α = 0.04 and local gradation (Fig. 11d and
e) with α = 0.08. Those coefficients correspond (in this
example) to E1 = 15 × 103 E0.

5.2 Pattern repetition

The cantilever beam problem shown in Fig. 12 is solved
for homogeneous material with constraints on the pattern

1.6

1 1

Fig. 12 Second cantilever beam
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Fig. 13 Topology of the
homogeneous cantilever beam
obtained using parabolic
projection and mesh
discretization 128 × 80: (a)
pattern 1 × 1 and rmin = 10, (b)
pattern 2 × 1 and rmin = 6, (c)
pattern 4 × 1 and rmin = 4, and
(d) pattern 8 × 1 and rmin = 3

a b

c d

repetition. The extended domain, �, is fixed along the left
edge and has the aspect ratio of 1.6/1 and unit width. A uni-
form load q = −1 is applied to the left free edge of the
beam. Figure 13 shows the results for homogeneous mate-
rial obtained with mesh 128 × 80 elements applying pattern
constraint: 1 × 1 and rmin = 10 (Fig. 13a); 2 × 1 and
rmin = 6 (Fig. 13b); 4 × 1 and rmin = 4 (Fig. 13c); and
8 × 1 and rmin = 3 (Fig. 13d). Figure 14 shows that the

obtained results are similar to the ones obtained by Zhang
and Sun (2006) for cellular materials.

Figure 15 shows the results for graded material obtained
with a mesh of 128 × 80 elements by constraining the pat-
terns to a 2 × 1 layout with rmin = 6; global gradation from
left to right (Fig. 15a); local gradation from left to right
(Fig. 15b); global gradation from right to left (Fig. 15c);
and local gradation from right to left (Fig. 15d). Global

a b c

Fig. 14 Comparison between results obtained using pattern repetition (top row) with those of Zhang and Sun (2006), bottom row. The pattern
repetition parameters are the following: (a) pattern 2 × 1 and rmin = 6, (b) pattern 4 × 1 and rmin = 4, and (c) pattern 8 × 1 and rmin = 3
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Fig. 15 Topology of the graded
cantilever beam obtained using
parabolic projection and mesh
discretization 128 × 80: pattern
2 × 1 and rmin = 6: (a) global
gradation from left to right
(α = 0.05), (b) local gradation
from left to right (α = 0.10), (c)
global gradation from right to
left (α = 0.05), and (d) local
gradation from right to left
(α = 0.10)

a b

c d

gradation was applied (Fig. 15a and c) with α = 0.05
and local gradation (Fig. 15b and d) with α = 0.10. The
coefficients correspond in this example to E1 = 600E0.

6 Conclusions

This paper addresses the influence of material gradation
and layout in the overall stiffness behavior of function-
ally graded structures by using a topology optimization for-
mulation associated with symmetry and pattern repetition
constraints. In both constraint cases, the structure can be
designed by adopting either global or local gradation. Thus,
material layout and gradation effects are considered at both
global and local levels. In particular, constraints associated
to pattern repetition are applied considering material grada-
tion either on the global structure or locally over the specific
pattern. A noteworthy result is shown in Fig. 14, in which
the results obtained by Zhang and Sun (2006) using homog-
enization techniques to represent cellular materials were
reproduced by the present pattern repetition formulation.
Thus, this particular result suggests that the present formu-
lation is promising to represent microstructures of graded
cellular materials, however, further investigation is needed
in this promising area of research, which can be linked with
material design, e.g. meta-materials and hybrid materials.
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Appendix: Nomenclature

a length of the pattern in X direction
b length of the pattern in Y direction
B strain-displacement matrix
c objective function representing the compli-

ance of the structure
C0 constitutive matrix of the solid phase of the

reference material
d nodal density
d set of nodal densities
d1 primary nodal densities
d2 secondary densities
e index identifying the element
E H Young’s modulus of the homogeneous

material
Ee

i Young’s modulus of element e at node i
Es Young’s modulus of the solid material
E0 reference Young’s modulus
E1 Young’s modulus at the end of the gradation

curve
f global nodal force vector
H height of the structure
K global stiffness matrix
Ke element stiffness matrix
L length of the structure
m number of patterns in X direction
n number of patterns in Y direction
nnodes total number of nodes
N e

i shape function of element e related to node i
p penalization factor of the SIMP and the FGM-

SIMP models
P point load
q uniform load
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rn
j distance between the nodes n and j

rmin radius of the projection region
Si set of elements sharing node i
Sk

d set of nodal densities d assigned to the design
variable yk

Sn
w set of nodes included in the projection region

of node n
u global displacement vector
ue element displacement vector
Vs maximum volume of structural material
w weight-function
x coordinates of a point
X and Y Cartesian coordinates of position x
Xm and Ym coordinates of symmetry axes
X∗ and Y∗ coordinates of position x in the local pattern

system
y design variable
y set of design variables
α coefficient that defines the change of material

property in the direction of axis X
β coefficient that defines the change of material

property in the direction of axis Y
ρ material density
ρe

i nodal density and projected density at node i
of element e

ρn projected nodal density for node n
�Vi volume around node i
� extended domain
�e domain of element e
�n

w projection region of node n
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