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Abstract In this paper, a new method is proposed to pro-
mote the efficiency and accuracy of nonlinear interval-based
programming (NIP) based on approximation models and
a local-densifying method. In conventional NIP methods,
searching for the response bounds of objective and con-
straints are required at each iteration step, which forms a
nested optimization and leads to extremely low efficiency.
In order to reduce the computational cost, approxima-
tion models based on radial basis functions (RBF) are
used to replace the actual computational models. A local-
densifying method is suggested to guarantee the accuracy
of the approximation models by reconstructing them with
densified samples in iterations. Thus, through a sequence of
optimization processes, an optimal result with fine accuracy
can be finally achieved. Two numerical examples are used
to test the effectiveness of the present method, and it is then
applied to a practical engineering problem.

Keywords Uncertain optimization · Nonlinear interval-
based programming · Approximation model · Radial basis
functions · Local-densifying

1 Introduction

Parameter uncertainty widely exists in engineering opti-
mization problems. Typical uncertainties can be found
in geometric dimensions, material properties, loads and
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boundary conditions, etc. Various methods have been devel-
oped for design optimization under uncertainty based on
probabilistic method known as reliability-based optimiza-
tion or robust optimization, and works in this field include:
first/second order reliability method (Zhao and Ono 1999),
first order second moment (Jung and Lee 2002), adap-
tive importance sampling technique (Au and Beck 1999),
advanced mean value (Wu et al. 1990) and its hybrid variant
(Youn et al. 2003), sequential optimization and reliability
assessment (Du and Chen 2004), and single-loop design
method (Liang et al. 2004), etc. Lee and Chen (2009) con-
duct an in-depth examination of several widely used proba-
bilistic techniques. In these methods, uncertain parameters
are treated as random variables, and their precise proba-
bility distribution functions should be predefined based on
a large amount of information. However, the fact is that
the process of getting adequate uncertainty information is
generally expensive and time-consuming, and sometimes
even impossible. Additionally, the literature (Ben-Haim and
Elishakoff 1990) has shown that small deviations of the
parameter probability distributions from the real distribu-
tions may cause large errors. Therefore, for many engineer-
ing problems without enough uncertainty information, the
probabilistic methods will encounter difficulty inevitably.

Different strategies have been studied to overcome the
aforementioned limitations of the probabilistic models. For
many practical design problems, the bounds of the uncertain
parameters can be much more easily identified compared
with creating the precise probability distributions. Thus,
non-probabilistic models have been considered as attrac-
tive supplements to the conventional probabilistic mod-
els in practical engineering design problems (Möller and
Beer 2008). The uncertain-but-bounded parameters can be
treated as convex models such as ellipsoid and interval set
(Ben-Haim and Elishakoff 1990). This concept of convex
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model has been applied to reliability-based design opti-
mization (Ben-Haim 1994; Elishakoff 1995). Since then,
optimization under uncertainty using interval models has
been addressed by a number of studies, which include:
interval arithmetic (Rao and Cao 2002), tolerance box
(Parkinson 1995), multi-point approximation (Penmetsa
and Grandhi 2002), anti-optimization (Lombardi and Haftka
1998), sensitivity region (Gunawan and Azarm 2005) and
multi-ellipsoid convex model (Luo et al. 2008).

Interval models are applicable to problems with incom-
plete information. It considers only the lower and upper
bounds of the uncertain parameters without assuming their
precise probability distribution functions. For a specific
design point, the responses of objective function and con-
straints construct intervals due to the interval uncertainty.
The bounds of these intervals are the minimal and maximal
responses of objective and constraints under the uncertainty.
Combined with perturbation technique, interval mathemat-
ics was used by Qiu and Elishakoff (1998), Elishakoff et al.
(1994) to treat uncertain-but-bounded parameters in the siz-
ing optimization of truss structures. Jiang et al. (2007a) pro-
posed an efficient nonlinear interval number programming
method using interval analysis based on the Taylor expan-
sion. These local expansion-based methods, such as Taylor
series expansion and perturbation method are difficult to
work well when the large variation of uncertain parameters
and high nonlinearity of the system are involved. Recently,
progresses (Ma 2002) have been made in NIP problem.
Attempt has been done to integrate the probabilistic model
and interval model together to describe the uncertainties
in reliability based design (Du and Sudjianto 2005). Jiang
et al. (2008) proposed a general NIP method in which not
only the uncertain objective function but also the uncertain
constraints are nonlinear, and the variation of the uncertain
parameters can be relatively large. In that method, search-
ing for minimal and maximal responses of the objective and
constraints is integrated with the main optimization, thus a
nested optimization is formed. Besides, most of practical
design problems are based on time-consuming simulation
models such as FEM, and hence such a nested optimization
using actual simulation model will lead to extremely low
efficiency.

How to quantify the uncertainty correctly is only one side
of the problem, and how to solve the corresponding uncer-
tain optimization efficiently seems a more important side
of the problem (Beyer and Sendhoff 2007). Most of the
current works focus on modeling the interval-based opti-
mization problems, while this paper places emphasis on
solving the NIP problem efficiently and accurately. Cur-
rently, approximation models are often used in the com-
putationally intensive optimization problems, which can
provide fast estimations of the objective and constraints at
new design points. The NIP methods using approximation

techniques, named approximation nonlinear interval-based
programming (ANIP), are capable to deal with complex
engineering problems (Jiang et al. 2007b). The commonly
used approximation techniques are: polynomial response
surface methodology (Myers and Montgomery 2002), krig-
ing (Sacks et al. 1989; Martin and Simpson 2005), neural
networks (Smith 1993), radial basis function (Dyn et al.
1986; Mullur and Messac 2004) and support vector regres-
sion (Clarke et al. 2005). In general, there are no clear con-
clusions on which approximation model is superior among
others for every problem (Jin 2005; Acar and Solanki 2009).
In this work, RBF approximation model is used because of
its fine performance on computational efficiency, numerical
stability and capacity of capturing nonlinear behavior (Jin
et al. 2001). The accuracy of the approximation is one of the
most important issues in all kinds of approximation assisted
optimization methods, but in ANIP methods, we only
care about the accuracy of approximations in some local
regions which have key effects on optimal results. However,
design of experiment (DOE) methods such as Latin hyper-
cube design and orthogonal design generate samples using
uniform distributions in the entire sampled space. Conse-
quently, if we want to obtain more precise approximations
at the concerned regions, we have to increase sample size
over the whole sampled space. In fact, the approximation
requirement in unconcerned regions can be relaxed for the
sake of saving computational cost.

To realize the abovementioned concept, a local-
densifying method combined with RBF approximation
model is proposed. In the local-densifying method, the cur-
rent best combinations consisted of the current best design
and its corresponding boundary uncertain parameters are
sequentially added to the local regions where the minimal
and maximal responses of current approximation models
take place. Then the RBF approximation models are recon-
structed using these densified samples for next iteration
until the stop criteria are reached. From the view point
of DOE techniques, this proposed local-densifying method
is an adaptive DOE method or an on-line approximation
method since the new design points are selected accord-
ing to some specific criteria. However, most of the adaptive
DOE methods are developed for deterministic optimization
problems (Wang 2003; Li et al. 2007, 2008; Jin 2005). The
research works on developing adaptive approximation opti-
mization techniques for NIP is still sparse. In this paper, we
attempt to address this topic.

The rest of this paper is organized as follows. A gen-
eral NIP model is firstly given and the conventional ANIP
method is introduced. A new ANIP method with local-
densifying method based on RBF models is then proposed,
which is the core of this paper. Finally, two numerical exam-
ples and a practical engineering application are provided to
demonstrate the effectiveness of the present method.
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2 Statement of the problem

A NIP problem is given as follows:

min
X

f (X, U)

subject to

gi (X, U) ≤mw V I
i = [

V L
i , V R

i

]
, i = 1, ..., l

U∈UI =[
UL , UR

]
,Ui ∈ U I

i =[
U L

i , U R
i

]
, i = 1, 2, ..., q

Xl ≤ X ≤ Xr

(1)

where X is an n-dimensional design vector, and Xl and Xr

denote the allowable lower and upper boundary vectors of
X, respectively. U is a q-dimensional uncertain vector which
contains all the uncertain parameters in the system and the
uncertain interval vector UI denotes their uncertainty. The
superscript I indicates an interval, and L and R denote
the lower and upper bounds of the interval, respectively.
Uncertainty space is defined as all U ∈ R

q that satisfy
UL ≤ U ≤ UR . V I

i represents an allowable interval of
the i th constraint. l is the number of the constraints. f and
gi represent the objective function and the i th constraint,
respectively. f and gi are usually obtained from the sim-
ulation models in practical applications. They are required
to be both nonlinear functions of X and U, and continuous
with respect to U in our formulation. Note that the symbol
≤mw represents that an interval is better than another but not
that one is less than another (Ishibuchi and Tanaka 1990).

3 Treatment of the conventional ANIPs

Using the order relation in interval mathematics (Chanas
and Kuchta 1996), the uncertain objective function can be
transformed into two deterministic objective functions as
follows (Ishibuchi and Tanaka 1990):

min
X

[
m ( f (X, U)) , w ( f (X, U))

]

m ( f (X, U)) = 1

2

(
f L (X) + f R (X)

)

w ( f (X, U)) = 1

2

(
f R (X) − f L (X)

)
(2)

where m( f (X, U)) and w( f (X, U)) are middle point and
radius of the response interval of the objective function,
respectively. For a specific design vector X′, the possible
values of f caused by the uncertainty will form an interval:

f
(
X′, U

) ∈
[

f L (
X′) , f R (

X′)] (3)

the lower bound and upper bound can be obtained using
optimization methods:

f L (
X′) = min

U
f
(
X′, U

)
, f R (

X′) = max
U

f
(
X′, U

)

UL ≤ U ≤ UR (4)

Jiang proposed a modified satisfaction degree of interval
number which represents a certain degree that one interval
number is better (or worse) than another.

P
(

AI
i

≤mw B I
i

)
≥ λi (P, λi ∈ [0, 1])

AI
i

= gi (X, U) =
[
gL

i (X) , gR
i (X)

]
, B I

i
=

[
vL

i , vR
i

]

gL (X) = min
U

g (X, U) , gR (X) = max
U

g (X, U) (5)

where the satisfaction degree P(AI ≤mw B I ) can be
computed through the following formula (Jiang et al. 2008):

P
(

AI ≤mw B I
)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, AL ≥ B R

0.5 · B R − AL

AR − AL
· B R − AL

B R − BL
, BL ≤ AL < B R ≤ AR

BL − AL

AR − AL
+ 0.5 · B R − BL

AR − AL
, AL < BL < B R ≤ AR

BL − AL

AR − AL
+ AR − BL

AR − AL
· B R − AR

B R − BL
AL < BL ≤ AR < B R

+ 0.5 · AR − BL

AR − AL
· AR − BL

B R − BL
,

B R − AR

B R − BL
+ 0.5 · AR − AL

B R − BL
, BL ≤ AL < AR < B R

1, AR < BL

where AI
i is the interval of the i th constraint at X and B I

i
is the i th allowable interval. P represents the satisfaction
degree that the constraint is satisfied. λi is a predetermined
satisfaction level. The feasible field of the constraints (5)
can be controlled by adjusting the value of λi , namely a
greater λi indicates a smaller feasible field.

Linear combination method is then employed to integrate
the deterministic two objective functions, and the penalty
function method is used to deal with the constraints. Thus a
single-objective optimization problem in terms of a penalty
function is finally constructed:

min
X

f p = (1 − β)
(m ( f (X, U)) + ξ)

φ

+ β
(w ( f (X, U)) + ξ)

ψ

+ σ

l∑

i=1

ϕ (P (Ai ≤mw Bi ) − λi )
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Subject to

Xl ≤ X ≤ Xr (6)

where 0 ≤ β ≤ 1 is a weighting factor of the two objec-
tive functions. ξ is a number making m( f (X, U)) + ξ and
w( f (X, U)) + ξ non-negative. φ and ψ are two normaliza-
tion factors. σ is a penalty factor which is usually specified
as a large value. ϕ is a function in the following form:

ϕ (P (Ai ≤mw Bi ) − λi )

= max [0, − (P (Ai ≤mw Bi ) − λi )]
2 (7)

Equation 6 can be solved by traditional optimization meth-
ods. It can be found from (4) and (5) that the inner opti-
mizations are involved in each main optimization step. The
computational cost will be very expensive when the simu-
lation models are time-consuming. Approximation models
thus can be used to improve the computation efficiency, and

then the general NIP problem (1) can be transformed into
the following ANIP problem:

min
X

f̃ (X, U)

subject to

g̃i (X, U) ≤mw V I
i =

[
V L

i , V R
i

]
, i = 1, ..., l

U∈UI =
[
UL , UR

]
,Ui ∈ U I

i =
[
U L

i , U R
i

]
, i =1, 2, ..., q

Xl ≤ X ≤ Xr (8)

where f̃ and g̃i represent the approximate objective func-
tion and constraints, respectively. A conventional solving
process for the ANIP optimization can be outlined in Fig. 1.
At each iteration, uncertain parameters are treated the same
as design variables, thus a n + q dimensional hybrid space
is formed. DOE methods are used to select the samples
within the hybrid space. Then the approximation models
can be built using these samples. Consequently, the compu-
tational efficiency can be greatly improved, but the accuracy

Fig. 1 Optimization process of
a NIP problem based on
approximation models

Main optimization
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of the optimal results obtained by ANIP methods cannot be
guaranteed through this one-step approximation.

4 Local-densifying method based on RBF
approximation models

4.1 Radial basis functions approximation

Radial basis functions have been developed for the inter-
polation of scattered multivariate data (Queipo et al. 2005).
The method uses linear combinations of radially symmetric
functions based on Euclidean distance or other such metric.
A RBF model can be expressed as:

f̃
(
xp

) =
m∑

i

wi h p (ri ) (9)

where wi represents the coefficient of the linear combina-
tions. m is the number of samples. xp represents the vector
of estimation point p. h p(ri ) is the radial basis function
with respect to the Euclidean distance between the estima-
tion point p and i th sample where ri = ∥∥xp − xi

∥∥
2. The

main feature of radial basis functions is that their response
decreases or increases monotonically with the variable r .
Some commonly used radial basis functions are multi-
quadratics, thin plate spline and Gaussian. In our work, the
Gaussian radial basis function is adopted:

h p (ri ) = exp
(
−r2

i /c2
)

(10)

The parameter c is the average spacing of all the samples. It
controls the decay rate of the function. A set of m samples
are needed to define the coefficients of RBF model which
can be expressed in matrix form as:

f = Hw (11)

where H is a matrix:

H =

⎛

⎜⎜
⎜
⎝

h1 (r1) h1 (r2) · · · h1 (rm)

h2 (r1) h2 (r2) · · · h2 (rm)
...

...
. . .

...

hm (r1) hm (r2) · · · hm (rm)

⎞

⎟⎟
⎟
⎠

(12)

If the inverse of H exists, the coefficient vector can be
obtained:

w = H−1f (13)

It has been proved that the matrix H is always invertible for
arbitrary scattered samples (Liu 2003).

In conventional ANIP method, large approximate errors
in the bounds of response intervals will make the results
untrustworthy. To improve the precision, a large sample size
is needed to construct high-fidelity approximation models.
There is a trade-off between accuracy and efficiency. To
pursue high efficiency, sometimes we have to sacrifice the
high accuracy. In conventional ANIP methods, the samples
are uniformly selected by DOE methods. It is necessary to
arrange the samples more appropriately because the result
of NIP method is only significantly affected by some key
local regions.

4.2 Iterative mechanism

Local-densifying method is an updating strategy of sam-
pling method focusing the limited sample resources on the
concerned local regions. The RBF approximation models
are reconstructed using the local densified samples in each
iteration step. Therefore, it ensures that the approximations
have small approximate errors on the bounds of response
intervals so that the result can be more reliable. However,
local-densifying may lead to overlap of some samples, and
thus the matrix H would be singular or ill-conditioned.
Therefore, a treatment is needed to exclude the added points
which are too close to the previous samples.

The iterative process of local-densifying method based
on RBF approximation models for ANIP is outlined as
follows:

(a) Obtain initial samples by Latin hypercube design
method within the hybrid space, and give allowable
errors ε1 > 0 and ε2 > 0, and make j = 1.

(b) Create RBF approximation models with the samples,
and construct the ANIP problem by replacing the
objective function and constraints with the approxima-
tion models. Then, the current best design vector X( j)

is obtained by solving the ANIP problem.

(c) The response interval
[

f̃ L
(
X( j)

)
, f̃ R

(
X( j)

)]
of

approximate objective and corresponding uncertain
parameters UL

f and UR
f can be obtained:

f̃ L
(

X( j)
)

= f̃
(

X( j), UL
f

)
,

f̃ R
(

X( j)
)

= f̃
(

X( j), UR
f

)
(14)

That means the approximate objective function
achieves the minimum and maximum at the com-
binations

(
X( j), UL

f

)
and

(
X( j), UR

f

)
, respectively.

Similarly, the response intervals of the approximate
constraints

[
g̃L

z

(
X( j)

)
, g̃R

z

(
X( j)

)]
, z = 1 · · · l and cor-
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responding uncertain parameters UL
gz

, UR
gz

, z = 1 · · · l
are obtained:

g̃L
z

(
X( j)

)
= g̃z

(
X( j), UL

gz

)
,

g̃R
z

(
X( j)

)
= g̃z

(
X( j), UR

gz

)
, z = 1 · · · l. (15)

The zth approximate constraint achieves the lower and

upper bounds at the combinations
(

X( j), UL
gz

)
and

(
X( j), UR

gz

)
, respectively.

(d) Compute the responses of actual objective
[

f L (X( j)),
f R(X( j))

]
and actual constraint

[
gL

z

(
X( j)

)
, gR

z

(
X( j)

)]
,

z = 1 · · · l at the combinations obtained from step (c).

(e) Compute the deviation emax:

emax = max

{∣
∣∣
∣
∣

f L − f̃ L

f L

∣
∣∣
∣
∣
+

∣
∣∣
∣
∣

f R − f̃ R

f R

∣
∣∣
∣
∣
,

∣
∣∣
∣
∣
gL

z − g̃L
z

gL
z

∣
∣∣
∣
∣

+
∣∣
∣
∣∣
gR

z − g̃R
z

gR
z

∣∣
∣
∣∣
, z = 1 · · · l

}

(16)

If emax < ε1, then X( j) is selected as the final optimal
design vector and the iteration terminates, otherwise,
turn to step (f).

(f) Calculate the distances between
(

X( j), UL
f

)
and all the

other samples and obtain the minimal distance dmin. If

dmin > ε2, add
(

X( j), UL
f

)
to the sample set; calculate

the distances between the combination
(

X( j), UR
f

)
and

all the samples and obtain the minimal distance dmin. If

Fig. 2 Uncertain optimization
method combined A-NIP with
local-densifying method
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dmin > ε2, then add
(

X( j), UR
f

)
to the samples. Simi-

larly, the boundary combinations of each constraint are
all treated with the above process, and the combina-
tions, which do not satisfy dmin > ε2, are excluded. If
all the boundary combinations fail to satisfy dmin > ε2,
the iteration terminates, and X( j) is selected as the final
optimal design vector; otherwise, set j = j + 1 and
turn to step (b).

In step (a), the initial sample size can be relatively small
because the initial approximation models, which are used
as guides for the subsequent densifying, do not need to be
highly accurate. The aim of this step is to construct approx-
imation models capturing the major characteristics of the
actual objective function and constraints. They can help to
identify the regions that should be densified. However, the
sample size can not be too small. A too small sample size
may result in the loss of key information. For such case, the
optimization may converge to the local optimum. In step (c),
the main optimization and the inner optimizations are both
solved by intergeneration projection genetic algorithm (IP-
GA; Xu et al. 2001), which is a modification based on micro
GA (Krishnakumar 1989).

In step (e), the stop criterion emax < ε1 is used,
whose satisfaction indicates that the approximation models
of objective and constraints have a fine approximate accu-
racy at the neighborhoods of the lower and upper bounds.
That can ensure the trustworthiness of the optimal result,
since the computation of ANIP method greatly depends on
these response bounds.

Step (f) is the process of sample densifying. Current best
combinations are added to the samples at each iteration
step, and then the approximation accuracy in the boundary
regions can be improved gradually. From (12), we can find
that if two samples overlap or locate too close, the H matrix
will be singular or ill-conditioned and the RBF approxima-
tion models will fail to be constructed. Additionally, we can
see from the decreasing feature of Gaussian radial function
that the estimations within the neighborhood of a sample
have high approximate accuracy. In other words, it does
not help to promote the approximate accuracy when the dis-
tance between two samples becomes very close. They will,
in contrast, make the computation unstable. Therefore, an
allowable error ε2 is set to determine which boundary com-
binations should be excluded. A high approximate accuracy
in the key regions are considered to be attained when all the
boundary points satisfy the condition dmin < ε2, and then
the iteration terminates.

The flowchart of the present method is shown in Fig. 2.
It can be found that the computation time is spent in three
parts. The first part is to compute the samples for construct-
ing the approximation models. For complex simulation
models, it would dominate the process. The second one is

to search the bounds of objective and constraints. As the
approximation models are used, the optimization efficiency
can be very high. The third one is to validate the approx-
imation responses, in which the actual responses of the
objective and constraints need to be computed.

5 Numerical examples and discussions

Two numerical examples are given to test the proposed
method. The first simply numerical test is given for the
purpose of intuitively understanding how this method pro-
cesses. The second complex numerical test is present to
compare the proposed method with the conventional method
with respect to the computational efficiency and accuracy.
Finally, a practical engineering application is provided to
demonstrate the effectiveness of the present method in
real-world engineering.

5.1 Numerical test 1

A numerical test problem is given as:

min
x

f (x, u)

= −24 sin

⎛

⎝

√(
x − 40

2

)2

+ (u − 5)2

⎞

⎠

/

√(
x − 40

2

)2

+ (u − 5)2 + 46

subject to

24 ≤ x ≤ 43

u ∈ U I = [3.5, 16.5] (17)

x 
u 

Fig. 3 Actual response of test function 1
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Table 1 Results with different
initial sample number (test
function 1)

ISN x*
[

f L , f R
]

uL , u R f p NI Nobj

5 24.00 [43.03, 48.19] 4.96, 12.41 5.67 8 21

10 39.99 [22.00, 51.20] 4.99, 9.57 5.56 13 36

20 40.03 [22.01, 51.21] 4.95, 9.50 5.56 8 36

30 39.92 [22.01, 51.21] 5.03, 9.49 5.56 2 34

This is a simple unidimensional optimization problem. The
uncertainty level is given as a relatively large value ±65%
off from the midpoint. The normalization factors φ and
ψ are set to 5.0, respectively. The weighting factor β is
specified as 0.4. ξ and σ are set to 0.0 and 100,000, respec-
tively. The allowable errors ε1 and ε2 are set to 0.003
and 0.15, respectively. The number of objective function
evaluations is used to examine the efficiency of this method.

Additionally, the actual response of the objective func-
tion is showed in Fig. 3. The optimal design variable 39.99
is obtained from the NIP method with the actual model, in
which IP-GA is employed to solve the nested optimization.
The maximal generations for IP-GA are both specified as
100. The optimal interval of objective function is [22.00,
51.21], and the corresponding boundary combinations are
(39.99, 5.00) and (39.99, 9.50), respectively. The value of
penalty function is 5.562. This result is used as an accurate
solution to test the accuracy of the present method.

Four cases with 4 different initial sample sizes are inves-
tigated, and the optimization results are listed in Table 1,
where ISN stands for the initial sample size, and x* is
the optimal design value. NI and Nobj stand for the total
number of iterations and the number of objective function
evaluations, respectively.

It can be found from Table 1 that the results obtained
from the present method are almost the same as the accurate
solution when the initial sample sizes are 10, 20 and 30. We
can also see that the total number of iterations decreases
as the number of initial samples increases. It needs only
two iterations when the initial sample size is 30, which
implies that 30 initial samples are sufficient to construct
a high quality approximation model for this simple prob-
lem and there is no need to densify more samples. In the

fourth case, the number of objective function evaluations
is less than the second and third cases even though the
largest initial sample size is used. The results indicate that
blindly decreasing the initial sample size would not help to
reduce the computational cost, since fewer initial samples
may lose the key information of the objective function. In
the first case, five initial samples are used and the optimiza-
tion process converges after eight iterations. The optimal
design point is far from the accurate solution. The penalty
function value, however, is very close to the accurate one.
Two reasons lead to this result: Firstly, the NIP problem is
solved by transforming the single-objective uncertain prob-
lem into two-objective deterministic problem. One objective
minimizes the midpoint of the response interval and another
minimizes the radius of the response interval. In such case,
either the design point that causes the minimal midpoint
or the one causes the minimal radius could be the optimal
design. Secondly, if the key characteristics of the objec-
tive function are missed because of insufficiency of initial
samples, the optimization will be hard to find the global
optimum, and the local-densifying method is also difficult
to refine the approximation model.

In order to interpret the details of this process better,
Table 2 lists each iterative results of the third case. From
the table, we can see that the approximate response inter-
val

[
f̃ L , f̃ R

]
is far from the accurate response interval

[
f L ,

f R
]

under the same design variable at the beginning. The
difference of

[
f̃ L , f̃ R

]
and

[
f L , f R

]
is getting smaller

and smaller as the iteration proceeds. It shows that the ini-
tial approximation model has a globally low accuracy, and
approximations in the boundary regions could achieve a
high accuracy after several local-densifying steps. Figure 4
shows the transformation of the approximation model. The

Table 2 Optimization results of
the third case Iteration x* uL , u R

[
f̃ L , f̃ R

] [
f L , f R

]

1 39.14 3.50, 16.50 [20.63, 50.28] [30.63, 47.82]

2 38.06 4.62, 9.59 [26.49, 50.20] [26.12, 51.12]

3 43.00 5.61, 11.46 [21.33, 49.25] [31.19, 44.78]

4 42.65 5.00, 16.50 [29.08, 47.69] [28.42, 47.73]

5 42.89 4.94, 9.61 [29.49, 48.74] [29.53, 50.93]

6 40.86 4.97, 9.85 [23.23, 50.94] [22.74, 50.86]

7 40.33 4.91, 9.61 [22.13, 51.07] [22.14, 51.18]

8 40.03 4.95, 9.50 [22.04, 51.21] [22.01, 51.21]



A nonlinear interval-based optimization method with local-densifying approximation technique 567

x
u 

x=40.33

Step 7

R
es

po
ns

e 
va

lu
e 

Uncertain interval 

x
u 

x=38.06

Step 2

R
es

po
ns

e 
va

lu
e 

Uncertain interval 

x
u 

x=39.14

Step 1

R
es

po
ns

e 
va

lu
e 

Uncertain interval 

Fig. 4 Approximation models and section comparisons
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Fig. 4 (continued)

section curves of approximation model and actual model
under the current best design in each iteration step can be
compared visually.

We can learn from Fig. 4 that the section curves of
approximation model and actual model are prone to coin-
cidence on the lower and upper bounds as the iteration
processes. At the final step, the two curves nearly overlap in
the key regions marked with circles. As the lower and upper
bounds of objective are only needed for the transforma-
tion of the uncertain optimization problem in (2), the poor
approximation accuracy in the region marked with rectan-
gle does not affect the optimal result. This feature shows

the advantage of local-densifying method that focuses the
approximation accuracy only on the key regions and alle-
viates the requirement of approximation in the rest space.
The distributions of samples at initial step and final step
are shown in Fig. 5. We can see that the added points are
densified in the local regions marked with circles, where
the function has minimal and maximal responses under the
optimal design variable, namely the neighborhoods of com-
binations (39.99, 5.00) and (39.99, 9.50). If the conventional
ANIP method is used, the entire space should have the same
sample density as these two local regions for constructing a
high quality approximation model.

Fig. 5 Sample distributions of initial and last steps
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Table 3 Results of different initial sample numbers (test function 2)

ISN Optimal design vector X* Objective
[

f L , f R
]

Constraint 1
[
gL

1 , gR
1

]
Constraint 2

[
gL

2 , gR
2

]
Satisfaction degree f p NI Nobj

30 (4.01, 0.57, −3.00) [−3.47, 5.71] [2.35, 26.43] [7.50, 44.96] 0.82, 0.87 3.98 21 72

40 (4.07, 0.76, −2.78) [−2.94, 5.65] [2.64, 24.75] [6.61, 40.49] 0.81, 0.83 3.99 20 80

50 (4.01, 0.63, −3.00) [−3.49, 5.51] [2.20, 24.72] [6.96, 43.93] 0.80, 0.85 3.92 19 88

60 (4.02, 0.48, −3.00) [−3.35, 5.95] [2.61, 22.78] [6.89, 43.46] 0.80, 0.85 4.03 16 92

5.2 Numerical test 2

A more complex three-dimensional testing problem with
two inequality constraints is given as follows:

min
X

f (X, U) = U1 (X1 − 2)2 + U2 (X2 − 1)2 + U3 X3

subject to

U1 X2
1 − U 2

2 X2 + U3 X3 ≥mw [6.5, 7.0]

U1 X1 + U2 X2 + U 2
3 X2

3 + 1 ≥mw [10.0, 15.0]

− 2 ≤ X1 ≤ 6, −4 ≤ X2 ≤ 7, −3 ≤ X3 ≤ 8

U1 ∈ [0.6, 1.8] , U2 ∈ [0.5, 1.5] , U3 ∈ [0.6, 2.0] (18)

X is the design variable vector and U represents the uncer-
tain parameter vector. The uncertainty level are given to
relatively large values of 50%, 50% and 53.8%, respec-
tively. The normalization factors φ and ψ are set to 1.4 and
2.0 respectively. The weighting factor β is specified as 0.5.
ξ and σ are set to 4.0 and 100000, respectively. The sat-
isfaction levels of the two constraints λ1 and λ2 are both
specified as 0.8. The allowable errors ε1 and ε2 are set to
0.05 and 0.15, respectively. The approximation models of

objective and constraints are built simultaneously, and the
present method is applied.

Firstly, the accurate solution X = (4.01, 0.87, −3.00)T is
obtained from the NIP method with actual models, in which
IP-GA is employed to solve the nested optimization. The
maximal number of generations for outer IP-GA is specified
as 1,000 and the inner is specified as 300. The optimal
response interval of objective function is [−3.49, 5.49]. The
value of penalty function is 3.91.

Four cases with different initial sample sizes are investi-
gated. The initial sample sizes are 30, 40, 50 and 60, and
the results are listed in Table 3. As the initial sample size
increases, the total iterations decrease gradually and the
number of objective evaluations tends to increase. All the
satisfaction degree at the optimal design points are satisfied
(great than or equal to the satisfaction levels λ1 = 0.8 and
λ2 = 0.8). Besides, the optimal results of the four cases
slightly differ from the accurate solution X = (4.01, 0.87,
−3.00)T, though all the penalty function values are close to
the accurate one f p = 3.91. It means that almost the same
objective value is achieved with different optimal design
variables, and all of them are acceptable for optimal design.

In the above four cases, the total numbers of the sam-
ples are 70, 78, 86 and 90, respectively. The conventional

Table 4 Results of uniform distributional samples (test function 2)

Sample Optimal
[

f̃ L , f̃ R
] [

g̃L
z , g̃R

z

]
,

[
f L , f R

] [
gL

z , gR
z

]
, Satisfaction f̃ p f p

number design z = 1, 2 z = 1, 2 degree

70 (2.69, 0.42, 8.00) [−6.02, 24.98] [5.26, 17.37] 1.00, 1.00 9.69 7.98

[ 0.86, 30.50] [8.20, 28.94]

[6.94, 231.80] [25.87, 262.47]

78 (2.53, 0.68, 8.00) [−9.96, 24.81] [5.02, 16.66] 1.00, 1.00 9.43 7.75

[1.83, 27.92] [7.11, 27.33]

[7.66, 246.91] [25.90, 262.57]

86 (2.48, 0.44, 8.00) [−8.57, 24.76] [5.10, 16.89] 1.00, 1.00 9.48 7.83

[1.49, 27.81] [7.50, 26.97]

[5.11, 236.17] [25.75, 262.13]

90 (2.50, 0.69, 8.00) [−7.25, 23.95] [5.00, 16.60] 1.00, 1.00 9.31 7.74

[2.05, 27.67] [7.01, 27.12]

[7.65, 248.98] [25.89, 262.54]
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Fig. 6 A closed-hat beam impacting the rigid wall and its cross-section (millimeter)

ANIP method is applied to solve this problem with the same
sample size as the four cases finally use. The samples are
distributed uniformly in the entire hybrid space by Latin
hypercube design method. The outer and inner optimiza-
tions are both solved by IP-GA algorithm, and Table 4 lists
the results. We can see that the errors on the bounds of
response intervals between the approximation models and
the actual models are large. In addition, the penalty func-
tion values at the optimal design are 7.98, 7.75, 7.83 and
7.74, while the optimal values are 3.98, 3.99, 3.92 and
4.03 in Table 3. It demonstrates the effectiveness of the
present method and also indicates that a much more reliable
and accurate result could be found with the same sample
size compared to the conventional ANIP method. In such a
six dimensional hybrid space, high accuracy approximation
models are very difficult to be constructed by using limited
samples with uniform distribution; nevertheless a fine result
can be obtained by supplementing with local-densifying
method.

5.3 Application for structural crashworthiness

An automobile thin-walled beam model as shown in Fig. 6 is
investigated. Closed-hat beam, a typical thin-walled beam,
is constructed by a hat-shaped part and a plate, connected
by spot welds. It is one of the important structures of a
vehicle body for load-support and energy-absorption for
crashworthiness. Optimizing the thin-walled beam struc-
tures to improve their crashworthiness performance is very
important to the vehicle security design. The application of
structural optimization for a closed-hat beam impacting a
rigid wall is investigated. Based on the reference (Kurtaran
et al. 2002), the closed-hat beam will be optimized to max-
imize the absorbed energy subjected to an average normal
impact force on the rigid wall. The research (Wang 2002)
indicated that the plate thickness t , round radius R of the
hat beam, and the space length d of each two neighboring

spot-welding points have prominent effects on the crash-
worthiness performance of a closed-hat beam, and hence
these three parameters are used as design variables in this
application.

The FEM model of the closed-hat beam impacting a rigid
wall with the initial velocity of 10 m/s is shown in Fig. 7.
The simulation duration of the impact process is set as
20 ms. An elasto-plasticity material model of bilinear kine-
matic hardening is used for the closed-hat beam, as given in
Table 5.

The Belytschko–Tsay shell element is used to generate
the FEM mesh, and the total number of the elements is
4,200. In order to achieve enough impact energy, a 250-
kg mass is attached to the end of the closed-hat beam. The
nominal values of the yield stress σs and tangent modulus
Et are 310 and 763 Mpa, respectively. σs and Et are treated
as the uncertain parameters because of the manufacturing
and measuring errors. The uncertain level is 5% off from
the normal values, namely σs ∈ [294.5 Mpa, 325.5 Mpa]
and Et ∈ [724.85 Mpa, 801.15 Mpa]. As a result, this

Fig. 7 FEM mesh of the closed-hat beam impacting a rigid wall
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Table 5 Material properties of the closed-hat beam

Young’s modulus Poisson’s Density Yield stress Tangent Modulus

E (Mpa) ratio ν ρ
(
kg/mm3

)
σs (Mpa) Et (Mpa)

2.0 × 105 0.27 7.85 × 10−3 310 763

optimization problem can be expressed as the following
form:

max
t,R,d

fe (t, R, d, σs, Et )

subject to

g f (t, R, d, σs, Et ) ≤mw [65KN, 70KN]

σs ∈ [
294.5 Mpa, 325.5 Mpa

]
,

Et ∈ [
724.85 Mpa, 801.15 Mpa

]

0.5 mm ≤ t ≤ 2.5 mm, 1mm ≤ R ≤ 8 mm,

10mm ≤ d ≤ 60 mm (19)

where the objective function fe and constraint g f repre-
sent the absorbed energy of the closed-hat beam and the
axial impact force respectively, and they are both obtained
through the FEM simulation. The maximal generation num-
bers for outer and inner IP-GA are both specified as 300.
The normalization factors φ and ψ are set to 1.9, 2.4 respec-
tively. The allowable errors ε1 = 0.5 and ε2 = 0.15. The
satisfaction degree level λ and the penalty factor σ are set to
0.8 and 100,000 respectively.

50 initial samples are used to create the approximation
models for the uncertain objective and constraint. The result
is listed in Table 6. It can be found that the optimal design
vector (2.00 mm, 2.75 mm, 34.98 mm)T is achieved with
the penalty function value f p = 2.32 after 23 iterations. The
interval for energy absorption due to the uncertain parame-
ters is [8.30 kJ, 9.28 kJ], and the interval for average normal
impact force is [51.10 kN, 69.74 kN]. Initial samples for
objective and constraints can be obtained simultaneously by
carrying out the same FEM model, while densified samples
during the process should be computed independently. The
total number of calling the FEM model is 96.

6 Remarks and conclusions

In this paper, a new ANIP method based on a local-
densifying method is suggested to promote the efficiency
and accuracy of the conventional ANIP method. Under the
same or even less computation cost, this new ANIP method
has higher accuracy than the conventional ANIP methods.
Consequently, high accuracy and low computational cost
can be achieved simultaneously. This superiority is more
prominent especially for complex problems. Besides, as we
only care about the accuracy of approximations in some
local regions influencing the solution, more samples are
expected to spend there to obtain precise approximations.
But on the other hand, if some main characteristics are out
of capturing due to the relaxation of approximation qual-
ity in the unconcerned regions, the proposed method will
reach the local optimum, which is also the main effect of
initial sample size, although the local optimal design is often
acceptable for practical engineering problems, especially
when the systems are complicated.

For large-scale problems, the approximation errors tend
to increase exponentially as the dimension increases. The
approximation quality can not be guaranteed with a limited
sample size. To pursue high accuracy of the approximation
for high dimensional problems, a relatively large sample
size should be used, which is sometimes unacceptable for
practical applications. Nevertheless, a significant improve-
ment of the efficiency and accuracy can still be achieved
by the proposed method. Furthermore, if the nonlinearity of
the function becomes too high, the local densifying method
may have difficulty to identify the key local regions and the
algorithm has to make great efforts to revise the approxi-
mation models. As a result, this makes this approach quite
low efficient. In order to improve the present algorithm, we
will consider these abovementioned problems in our future
work.

Table 6 Optimization results of closed-hat beam

Optimal design vector (t, R, d), mm
[

f L , f R
]
, kJ

[
gL , gR

]
, kN Satisfaction degree f p NI Nobj

(2.00, 2.75, 34.98) [8.30, 9.28] [51.10, 69.74] 0.88 2.32 23 96
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