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Abstract The purpose of this paper is to propose a size-
dependent topology optimization formulation of periodic
cellular material microstructures, based on the effective
couple-stress continuum model. The present formulation
consists of finding the optimal layout of material that min-
imizes the mean compliance of the macrostructure subject
to the constraint of permitted material volume fraction.
We determine the effective macroscopic couple-stress con-
stitutive constants by analyzing a unit cell with specified
boundary conditions with the representative volume ele-
ment (RVE) method, based on equivalence of strain energy.
The computational model is established by the finite ele-
ment (FE) method, and the design density and FE stiffness
of the RVE are related by the solid isotropic material with
penalization power (SIMP) law. The required sensitivity for-
mulation for gradient-based optimization algorithm is also
derived. Numerical examples demonstrate that this present
formulation can express the size effect during the opti-
mization procedure and provide precise topologies without
increase in computational cost.
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1 Introduction

An interesting feature of structural optimization is that
the optimal solution to the problem involves microstruc-
tures in certain cases. The purpose of the topology opti-
mization technique is to propose an approach of fulfilling
the efficient layout of limited material in the design of
different settings (Bendsøe and Kikuchi 1988; Bendsøe
1989; Bendsøe and Sigmund 2004). For optimization pur-
pose it is usually sufficient to consider only composites with
periodic microstructures. And for composite with peri-
odic microstructures, its effective properties may be fully
described by an analysis of the smallest repetitive unit, i.e.
the base cell. The optimal microstructures with required
macroscopic properties, including prescribed effective
properties (Sigmund 1994), extreme mechanical and ther-
mal properties (Sigmund and Torquato 1997), and max-
imum structural stiffness (Neves et al. 2000; Fujii et al.
2001) have already been found for periodical composites.
Besides, the microstructural optimization formulation is
also the basis of the concurrent optimization formulation
of material and structures (Rodrigues et al. 2002; Coelho
et al. 2008, 2009; Liu et al. 2008; Niu et al. 2009).

Among the aforementioned work, the inverse homoge-
nization method proposed by Sigmund (1994) has become
the most popular method till now. The homogenization
method that is based on periodicity assumption and asymp-
totic expansion technique is originally used to predict
the macroscopic properties of heterogeneous materials
(Bensoussan et al. 1978; Guedes and Kikuchi 1990) and to
design structures on the macro level (Bendsøe and Kikuchi
1988). Recently, Zhang et al. (2007) offered an alterna-
tive method, based on the equivalence of strain energy and
addressed that the results agreed well with those from the
inverse homogenization method.
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It should be pointed out that the above two mentioned
methods are both based on the classical continuum mechan-
ics theory. This theory lacks any intrinsic length scales, and
hence, effectively presents just a first-order approximation
to a number of problems with microstructures (Jasiuk and
Ostoja-Starzewski 1995). The above fact implies that the
referred methods are valid only if the micro-structure’s size
is much smaller than that of the macro-structure or, more
precisely, than the wavelength of the mechanical loading.
In other words, remarkable size effect is observed when the
macroscopic dimension of specimen becomes close to the
order of the micro-structural length scale. For example, in
the analysis of periodic multilayered cellular solid beams,
the flexural rigidity cannot be obtained correctly by the clas-
sical homogenization method when the number of the plies
is small. However, the size effect decreased rapidly as the
increase of the macrostructures (Burgueno et al. 2005; Dai
and Zhang 2008).

There are usually two approaches to deal with this type
of size effects. One way is to explicitly model the dis-
crete microstructures morphology that is referred to as the
direct method. This discrete model agrees well with the
experiments results; however, is very costly due to com-
putational expense for complex micro-structures. The other
method, the generalized continuum method, is to homoge-
nize or smear the heterogeneity of cellular material and to
replace the cellular material by some generalized contin-
uum, such as micropolar continuum or couple-stress contin-
uum (Mindlin 1963; Anderson and Lakes 1994; Fleck et al.
1994). The micropolar type theory, first proposed by broth-
ers Cosserat at 1909, further developed by Mindlin (1963),
Toupin (1964) etc., was finally extended to the micropolar
theory by Eringen (1966, 1999). The couple-stress theory is
more preferable since it is currently considered as the sim-
plest form of micropolar theory, and is more accurate with
size effect of cellular materials (Tekoglu 2007; Tekoglu and
Onck 2008).

Similar to the analysis, the optimization procedure also
contains the size effect. The fundamental feature of the size
effect of the microstructural optimization is that the opti-
mal topology changes as the size ratio of macrostructure to
microstructure changes (Zhang and Sun 2006). In short, the
optimal topology is size-dependent. There are also two ways
to simulate the size effect, i.e. the direct method and the gen-
eralized continuum method. Though size effect may have
great influence on the topology design solution, not many
studies have been done so far. Bendsøe and Triantafyllidis
(1990) studied the elastic bucking design in terms of cell
size. Zhang and Sun (2006) investigated the size effect on
the optimal configuration of core material microstructure in
the rigidity optimization of sandwich structures. In these

two researches, the microstructures are explicitly modeled
morphology while the analytical solution and the variable
linking technique are performed, respectively, to decrease
the computational expense. For complicated structures, this
direct method will be more time consuming compared to
general continuum model, and makes the latter more suit-
able for these structures. However, seeking the optimal
topology based on the generalized continuum model is a
total recent subject. Rovati and Veber (2007) discussed the
optimal topologies of micropolar solids; but it is just on the
macroscopic level. Owing to the success on the research
of size effect in cellular materials (Tekoglu 2007; Tekoglu
and Onck 2008), we discuss the size effect in the optimiza-
tion of microstructures of cellular material in terms of the
couple-stress theory in this paper.

Although capable of grasping the information of
microstructures, the couple-stress continuum model faces
two main challenges going into wide application. The first
one is the constitutive constants are exceptionally hard to
measure by experiments (Lakes 1986). Fortunately, for
periodic heterogeneous composite materials, an alterna-
tive way to obtain these parameters is through the analysis
of the microstructures of a base cell. It has been shown
that some kinds of materials, such as the cellular mate-
rials, the lattice materials and, the multi-phase compos-
ites can all be homogenized as couple-stress continuum
(Bouyge et al. 2001; Bigoni and Drugan 2007; Tekoglu
2007; Tekoglu and Onck 2008). The other challenge lies
in the FE analysis. In fact, C1 continuity of element is
required in the FE construction of couple-stress theory (Soh
and Chen 2004; Zheng et al. 2004). Compared with the
classical elasticity theory, the couple-stress theory is more
complicated and, the FE method is still the most useful
technique for the implementation of the theory. It is a pop-
ular topic for computational mechanics researchers to con-
struct effective FE formulations on couple-stress theory all
along.

In this paper, we propose an optimization formulation
for the optimal layout of periodic material unit cell, based
on the couple-stress theory. The formulation can simulate
the size effect emerged during the optimization procedure
since the couple-stress theory contains high order informa-
tion of material microstructures. An equivalent strain energy
based RVE method is established to derive the effect couple-
stress constitutive constants, by the analysis of a base cell
with designed boundary conditions. The SIMP power law
is adopted to relate the densities, i.e. the design variables
and the element stiffness matrix of RVE. The numerical
examples we got indicate that our method is superior to
the conventional one in the size-dependent microstructure
design.
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2 Introduction to couple-stress theory

The remarkable feature of the Cosserat theory lies in the
fact that each point has six degrees of freedom of a rigid
body, i.e. it is made of interconnected material particles.
Each particle is capable of displacements and rotations,
which are, in general, independent functions of position
and time. Couple-stress theory, also called reduced-Cosserat
theory (Toupin 1964) or Cosserat pseudo-continuum theory
(Nowacki 1986), is the simplest special case of Cosserat
theory. In couple-stress theory, the rotations are not inde-
pendent but, rather, fully described by the displacements
vectors. Taking the planar problem with displacement with
u = [u,v,0]T and φ = [0,0,φ]T as an example, the relation-
ship (1) should be satisfied.

φ = (
∂v
/
∂x − ∂u

/
∂y
)/

2 (1)

Consequently, the strain components εx , εy and γ xy , as
well as the curvature components κ xz and κ yz are defined as
follows.

εx = ∂u
/
∂x, εy = ∂v

/
∂y, γxy = ∂u

/
∂y + ∂v

/
∂x

κxz = ∂φ
/
∂x, κyz = ∂φ

/
∂y,

(2)

Two equations of compatibility of curvatures and strains
should be satisfied.
{

κxz = 1
2

∂γxy
∂x − ∂εx

∂y

κyz = ∂εy
∂x − 1

2
∂γxy
∂y

(3)

From (1∼3), one may find that the second order deriva-
tives of displacements exist in the total potential functional
of a structure. That indicates that the FE formulation of
couple-stress continuum requires C1 continuity of elements.
In Appendix 1, we show some FE formulation to overcome
this difficulty.

The force field is specified by the stress tensors (which is
a symmetric tensor in classical elasticity but is asymmetric
here) and couple-stress tensor (or moment per unit area).
The stress tensor has four components as in σ x , σ y , τ xy ,
τ yx , and the couple-stress tensor has two components as in
mxz , myz (Fig. 1).

Ignoring body forces and body moments, the equations
of equilibrium are given as

∂σx
/
∂x + ∂τyx

/
∂y = 0, ∂τxy

/
∂x + ∂σy

/
∂y = 0

∂mxz
/
∂x + ∂myz

/
∂y + τxy − τyx = 0

(4)

(4) implies that shear stress τ xy need not be equal to τ yx

in couple-stress theory. Mindlin (1963) suggested resolving

Fig. 1 Rectangular components
of stress and couple-stress
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τ xy and τ yx into a symmetric part τ S and an anti-symmetric
part τ A.

τS = (
τxy + τyx

)/
2, τA = (

τxy − τyx
)/

2 (5)

The symmetric part of the stress produces the usual shear
strain while the anti-symmetric part tends to produce a
local rigid rotation. Thus, the constitutive equation can be
expressed as follows.

[
σx , σy, τS, mxz, myz

]T

=
[

C F
FT D

]
[
εx , εy, γxy, κxz, κyz

]T (6)

where, the stiffness matrix C is the same as that of the clas-
sical material and matrix D denotes the bending stiffness
of couple-stress continuum. Especially, for the orthotropic
material, the coupling term F vanishes. For simplicity, the
uniform periodic cell structures considered here are cen-
trally symmetric and hence, the component of the coupling
term F is identically zero. Thus, the constitutive equations
can be expressed in the following form.

⎧
⎨

⎩

σx

σy

τS

⎫
⎬

⎭
=
⎡

⎣
C11 C12 0
C12 C22 0

0 0 C66

⎤

⎦

⎧
⎨

⎩

εx

εy

γxy

⎫
⎬

⎭
,

{
mxz

myz

}
=
[

D11 0
0 D22

]{
κxz

κyz

}
(7)

3 Procedure of topology optimization

The purpose of this paper is to find the layout of material
in the micro-domain that minimizes the mean compliance
(or maximizes the global stiffness) of the macrostructure,
subject to the constraint of the permitted material volume
fraction, within a unit cell of microstructures (Fig. 2). In
other words, we want to design microstructural topologies
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Fig. 2 Sketch of a structure with material microstructure

that give us some desirable overall properties. In order
to reveal the size effect in the optimization procedure,
the heterogeneous material with periodic microstructures
is homogenized as couple-stress continuum with effective
macroscopic properties by the RVE method. On the micro-
level, the SIMP law is used to relate the design vari-
ables with the FE stiffness. Without loss of generality, the
researched model is assumed to be in a state of plane stress.

Thus the optimization problem can be established as:

find ρ = [ρ1, ρ2, . . . , ρn]T

min{
C H DH

} l
(
ũ
)

s.t. :a (ũ, ṽ
) = l

(
ṽ
)

g (ρ) =
n∑

e=1

∫


e
1

ρed
1 − V ∗ ≤ 0

0 < ρmin ≤ ρe ≤ 1, e = 1, . . . , n

(8)

where the energy bilinear form a
(
ũ, ṽ

)
and the load linear

form l
(
ũ
)

are defined as

a
(
ũ, ṽ

) =
∫


0

[
εT (ũ

)
C H (ρ) ε

(
ṽ
)

+ κT (ũ
)

DH (ρ) κ
(
ṽ
)]

d
0

l
(
ũ
) =

∫

�t +�m

t̃
T

ũd S (9)

in which ρ denotes the design variables, i.e. the “densi-
ties”, V ∗ denotes the permitted material volume fractions,
the superscript “H” denotes the effective properties of
the heterogeneous material, ũ denotes the generalized dis-
placement vector (including the transition and the rotation
degrees of freedom), t̃ denotes the generalized surface trac-
tion vector (including the traction force and the traction
moment), ṽ is the arbitrary generalized virtual displace-

ment vector, 
0 denotes the macroscopic domain while 
1

denotes the microscopic domain.

ε = [
εx , εy, γxy

]T
, κ = [

κ xz, κyz
]T

, ũ = [u, v, φ]T (10)

It should be noted that the body force and body moment
are ignored in (9).

The flowchart of present optimization procedure is
shown as Fig. 3. The two key points of this problem are
the determination of the effective couple-stress constitutive
constants C H and DH as well as the sensitivity analysis.

3.1 Effective couple-stress model of heterogeneous
materials

This section discusses the determination of the effective
couple-stress continuum constitutive constants from the
RVE of the designing material. In fact, this issue has been
shown by the authors (Liu and Su 2009) before. To make
this paper self-contained, we will repeat the proposition
briefly. Since the considered materials are of periodic rep-
etitions of a basic cell, only one basic cell is taken as the
RVE. We consider different boundary conditions for deter-
mination of the different components of the constitutive
constants for a RVE domain 
1 with the boundary ∂
1.
For simplicity sake, the thickness in z-axis is set to 1 in
all cases. In each case we force the unit cell to bear the
designed specific deformation with

[
εx , εy, γxy, κxz, κyz

]T ,
and compute, with the FE method, the total elastic strain
energy Udisc stored in the unit cell with the correspond-
ing boundary conditions. The strain energy Ucont stored
in the effective homogeneous couple-stress continuum can
be obtained by the prescribed strain/stress fields. Thus the

Initialization
(starting guess)

Calculation of CH and DH

Sensitivity analysis

Optimization step

Converged?

stop

Calculation of the mean compliance

No

Yes

Fig. 3 Flowchart of the optimization procedure
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components of the effective constitutive constants can be
produced through Udisc = Ucont .

To determine the components of stiffness matrix C H , we
conduct the following four tests.

Test 1 (Horizontal uniaxial extension test for C H
11): by

applying the unit strain to the unit cell

εx = 1, εy = γxy = 0, κxz = κyz = 0, in 
1 (11)

The corresponding boundary conditions are

u = x, v = 0, on ∂
1 (12)

Then it follows that

C H
11 = 2U (1)

disc

/
V (13)

where V is the volume of the RVE.

Test 2 (Vertical uniaxial extension test for C H
22): by apply-

ing the unit strain to the unit cell

εx = γxy = 0, εy = 1, κxz = κyz = 0, in 
1 (14)

The corresponding boundary conditions are

u = 0, v = y, on ∂
1 (15)

Then it follows that

C H
22 = 2U (2)

disc

/
V (16)

Test 3 (Biaxial extension test for C H
12): by applying the

unit strain to the RVE

εx = εy = 1, γxy = 0, κxz = κyz = 0, in 
1 (17)

The corresponding boundary conditions are

u = x, v = y, on ∂
1 (18)

which follows that

C H
12 =

(
2U (3)

disc

/
V − C H

11 − C H
22

)/
2 (19)

Test 4 (Shearing test for C H
66): by applying the unit strain

to the RVE

εx = εy = 0, γxy = 1, κxz = κyz = 0, in 
1 (20)

The corresponding boundary conditions are

u = y
/

2, v = x
/

2, on ∂
1 (21)

It yields that

C H
66 = 2U (4)

disc

/
V (22)

To determine the components of stiffness matrix DH , we
need to conduct the following two bending tests.

Test 5 (Bending test for DH
11): by applying the prescribed

strain/stress

εx = −y, σy = 0, γxy = 0, κxz = 1, κyz = 0, in 
1

(23)

The corresponding boundary conditions are

u
∣∣
∣∂
1 = −xy, v

∣∣
∣y=0 = x2

/
2 (24)

It follows that

DH
11 = 2

(
U (5)

disc −
∫


1

1

2
E H

x · y2dV

)/
V (25)

Test 6 (Bending test for DH
22): by applying the prescribed

strain/stress

σy = 0, εy = x, γxy = 0, κxz = 0, κyz = 1, in 
1

(26)

The corresponding boundary conditions are

u
∣
∣
∣x=0 = −y2

/
2, v

∣
∣
∣∂
1 = xy (27)

It follows that

DH
22 = 2

(
U (6)

disc −
∫


1

1

2
E H

y · x2dV

)/
V (28)

It should be noted that the following relations are implied
in the above derivations.

E H
x = C H

11

(
1 − C H2

12

/
C H

11C H
22

)

E H
y = C H

22

(
1 − C H2

12

/
C H

11C H
22

)
(29)

Till now we have constructed the effective couple-stress
model of heterogeneous materials. The authors have to
stress that this method will sometimes slightly overestimate
the effective stiffness properties since the present method
is based on the analysis of RVE with prescribed displace-
ment boundary conditions. However, the effective couple-
stress material constants are accurate enough for most cases
(Liu and Su 2009).

3.2 Sensitivity analysis

When solving structural optimization problems through the
gradient based numerical algorithms, one usually needs
to differentiate the objective function and constraint func-
tions with respect to the design variables. The procedure to
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obtain these derivatives, or sensitivities, is called sensitivity
analysis. This section performs this procedure.

For most cases, the compliance of macrostructures
should be computed by the FE method. Recalling (9), the
compliance can be expressed in the discrete form

c (ρ) = Ũ
T

0 K 0Ũ
T

(30)

where Ũ0 is the generalized nodal displacements of the
macrostructure and, K 0 is the macrostructural global
stiffness. From the procedure of classical FE method:

K 0 =
m∑

i=1

ki
0 (ρ) (31)

where ki
0 has been extended to global level. If the load is

design independent, the sensitivity can be shown as:

∂c(ρ)

∂ρe
= −Ũ T

0

[
m∑

i=1

∂ki
0(ρ)

∂ρe

]

Ũ0, e = 1, . . . , n (32)

Since

ki
0 (ρ) =

∫


i
0

BT
i D̃

H
(ρ) Bi d
i

0 (33)

where D̃
H

is defined as

D̃
H ≡

[
C H BH

(BH )T DH

]
(34)

Then the sensitivity of the objective function is finally
expressed as

∂c (ρ)

∂ρe
= −Ũ

T
0

[
m∑

i=1

∫


i
0

BT
i

∂ D̃
H

(ρ)

∂ρe
Bi d
i

0

]

Ũ0,

e = 1, . . . , n (35)

From Section 3.1, the components of D̃
H

can be deter-
mined by six different loading cases. In each case, we need
to calculate the strain energy stored in the RVE under the
specified displacements boundary conditions. Zhang et al.
(2007) have shown the derivatives of classical effective con-
stitutive constants with respect to the design variables. To
make the paper self-contained, we derive the corresponding

derivatives in the Appendix 2 in detail. Only the results are
shown here as (36).

∂C H
11

/
∂ρe = 2pU (1)

e

/
ρeV

∂C H
22

/
∂ρe = 2pU (2)

e

/
ρeV

∂C H
12

/
∂ρe = 2p

(
U (3)

e − U (1)
e − U (2)

e

)/
ρeV

∂C H
66

/
∂ρe = 2pU (4)

e

/
ρeV

∂C H
11

/
∂ρe = 2pU (5)

e

/
ρeV −

(
∂ E H

x

/
∂ρe

) ∫


1

y2dV

/
V

∂C H
22

/
∂ρe = 2pU (6)

e

/
ρeV −

(
∂ E H

y

/
∂ρe

) ∫


1

x2dV

/
V

(36)

where U ( j)
e denotes the strain energy stored in the eth ele-

ment of the RVE under loading case j . Substituting (36)
into (35), one can determine the sensitivity of the objective
function to the design variables.

The sensitivity of the constraint function with respect
to the design variables can be acquired straightforward
(37), where Ae denotes the area or volume of the element
corresponding to the eth design variable.

∂g (ρ)

∂ρe
=
∫


e
1
d
1 = Ae; e = 1, . . . , n (37)

4 Examples and results

Two typical numerical examples are presented to demon-
strate the proposed optimization formulation within the
context of two-dimensional structures. The chosen base
solid material is aluminum alloy with Young’s modulus
E = 69 GPa, Poisson’s ratio v = 0.33. Each unit cell
is assumed to be central-symmetrical, thus only 1/4 of the
unit cell is investigated. In order to reveal the size effect in
the optimization procedure, we discuss the optimal couple-
stress based topologies of unit cell of different size as well
as the classical results.

Fig. 4 Sketch of cantilever beam with design domain
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Fig. 5 The optimal
microstructures of the
cantilever beam

a n=2 b n=8 c n=12

d n=14 e n=20 f classical continuum 

4.1 Example 1: periodic cellular cantilever beam design

Consider a periodic cellular multilayered cantilever beam
with length L = 600 mm, height H = 100 mm, and thick-
ness 1. The beam is subject to a central force P = 100 kN
on the right-lower corner (Fig. 4).

Since the macrostructure is a beam, we use the ana-
lytic solution to get the structural compliance. It may be
expressed in the form of (38). Consequently, the sensitivity
can be analytically solved by substituting the (36) into (38).

c = P

(
P L3

2D
+ k

P L

G A

)
(38)

where D denotes the flexural rigidity of couple-stress beam
(in Appendix 3, we show a brief derivation of this param-
eter), G (= C H

66) denotes the effective shear modulus of
cellular material, k denotes the shearing factors of beams
and, usually 0.8 ≤ k ≤ 1.2, in this example we set
k = 1. The second term in the bracket of (38) represents
the beam’s shearing deflection while it is neglected in the
case of slender beams.

In the optimization procedure, we fix the structural size
of the beam and change the size of the unit cell to seek the
optimal topologies of the microstructures. The index n(=
H/h) is used to describe the size ratio of the macrostruc-
ture to microstructure. In this case, n also denotes the layer
number of the periodic beam physically.

From Fig. 5, as n (i.e. the ratio of beam height to length
scale of the unit cell) increases, the optimal topology of
the microstructure, based on the couple-stress continuum
model, changes consequently. These findings indicate that
the couple-stress continuum model can express the size
effect during the optimization procedure which cannot be
simulated by the classical continuum model. In detail, when

n is small, the size of macrostructure and that of microstruc-
ture are in the same order, which makes the couple-stress
effect significant. Under that effect, the material tends to
stay on the boundaries of the unit cell design domain to
increase the bending-resistance properties. As n increases,
the couple-stress effect weakens gradually and when n is
large enough, the couple-stress effect can be ignored, in
which case, the couple-stress continuum turns into a clas-
sical continuum. Therefore, the couple-stress based optimal
topology is nearly the same as that of the classical model.

The size effect is also exhibited from the compliance of
the structure (Fig. 6). In the classical model, the compliance
keeps unchanged as n increases. However, the correspond-
ing results from the couple-stress model increases sharply
as n increases. In reality, due to the size decrease of the
unit cell, the design space of the macrostructure is reduced
so that the objective function increases and converges to
the classical results. The couple-stress continuum model

2 4 6 8 10 12 14 16 18 20

1.1x105

1.1x105

1.2x105

1.3x105

1.3x105

1.4x105

1.4x105
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C
om
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 /N
m

n

 couple-stress model
 classical model

Fig. 6 The optimal objective against the ply number
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Fig. 7 Sketch of the L-beam and the design unit cell domain

can grasp this tendency which cannot be expressed by the
classical continuum model.

It should be noted that the obtained results appear to be
similar to those reported earlier by Zhang and Sun (2006).
The difference is that they obtained the results by explic-
itly modeling the microstructures morphology while we
obtained our results by the effective continuum model.

4.2 Example 2: periodic cellular L-beam design

Consider an L-beam with H= 100 mm, bearing a central
shearing force P = 50kN at the right end (Fig. 7). The thick-
ness of the L-beam is set to be 1. The optimal microstruc-
tures with different length h are sought. The length ratio
n = H/h is also defined to relate the macro-size with the
micro-one.

The FE method is used to get the structural compliance
since it is hard to get an analytical solution for this problem.

We present a four-node discrete couple-stress quadrilateral
element formulation in Appendix 1. Besides the mate-
rial volume constraint, two additional constraint functions
(39) are imported in this example. We will give a detailed
explanation in the next section.

DH
11 ≥ 0; DH

22 ≥ 0 (39)

The couple-stress based optimal topology depends remark-
ably on the size ratio n (Fig. 8). Similar features are
observed as n changes to what observed in Example 1.

The same tendency is observed from the evolution of the
objective function against the increase of the ratio (Fig. 9).
Different from the classical result, the couple-stressed based
result increases sharply and eventually converges to the clas-
sical result as the length scale of the unit cell decreases.
When the size of macrostructures is far larger than that of
the microstructures, the couple-stress continuum turns into
the classical continuum.

4.3 Discussions

Similar to the classical optimization model, the checker-
board pattern is observed in the present couple-stress based
optimization formulation. One can eliminate this numerical
instability by the filtering technique (Bruns and Tortorelli
2001; Sigmund 2007). Besides, there are two more aspects
that should pay attention to.

First, the present method has some dependency on the
initial guess, especially when the size of microstructure is
far smaller than that of the macrostructure. In short, the
initial homogeneous distribution of densities will lead to
iteration infeasibility in these cases. This phenomenon can
be interpreted from the sensitivity of the objective function.

Fig. 8 Optimal microstructures
of the L-beam
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Fig. 9 The optimal objective against the ply number

The key point of the sensitivity analysis is the sensitivity of
the effective constitutive constants with respect to design
variables. From (36), initial homogeneous distribution of
design variables means the homogeneous distribution of
∂C/∂ρe. Thus for the classical model, this homogeneous
distribution of derivatives will also lead to the homogeneous
distribution of the sensitivity of the objective function. On
the other hand, for couple-stress model, when the ratio is
small, the couple-stress effect is significant, thus the sensi-
tivity distribution is not homogeneous since the ∂ D/∂ρe is
not homogeneous. However, if the ratio is large enough, the
couple-stress effect is small enough to be ignored; thus the
sensitivity distribution is approximately to be homogeneous.
Hence, the iteration will be infeasible.

The second problem is that the additional constraints
(39) are necessary if the macrostructural compliance has to
be computed through the FE method. Bigoni and Drugan
(2007) have pointed out that the composites can not be
homogenized to couple-stress continuum unless the inclu-
sion phase is softer than the matrix phase (for example,
the solid base material with a void). Otherwise, the bend-
ing moduli will no longer be positive. In other words, the
permitted material lies in the center of the design domain
will lead to the negative bending modulus D. Since the FE
method is mostly based on the variational principle that
requires the positive definite of the constitutive matrix, the
constraints (39) have to be satisfied. However, the import
of the inequality (39) confines the feasible set of the ini-
tial structural optimization problem, thus the result may
not strictly converge to the optimal solution sometimes. For
example, in the optimization of the L-beam, when the ratio
is large enough, the couple-stress based result is close yet
not equal to the classical result, and the objective func-
tion is slightly bigger than the classical results. Fortunately,
when the ratio is large enough, the couple-stress effect can

be totally ignored, thus one can model it by the classical
method.

5 Conclusion

In this paper, we introduced the concept of couple-stress
into the microstructure design of periodic material. This
new model can grasp the size effect lying in the optimiza-
tion procedure since the couple-stress theory contains high
order information of microstructure.

We should remark that the present results can also be
realized through the fully discretization model with the vari-
able linking technique. To some extent, this discrete model
is even more accurate since it contains the complete fea-
tures of microstructures. But our method has two significant
advantages. First, the present method is of greater computa-
tional efficiency due to the use of the effective continuum
model. Although it seems we need six loading cases to
determine the effective couple-stress continuum constants,
the global stiffness in the FE analysis of these loading cases
are exactly the same, which makes the whole procedure sim-
ple and efficient. Second, our model is more convenient to
integrate into the concurrent optimization model of mate-
rial and structures since the structural mesh and the material
mesh are completely uncoupling.

Compared with the classical method, the present method
has remarkable advantages. However, the present approach
is limited to the periodic microstructures with central-
symmetry only. For the microstructures without symmetry,
we need additional work to determine the coupling constitu-
tive constants F, which is difficult. A more general method
is currently under investigation.
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Appendix 1: Formulation of discrete couple-stress
quadrilateral element

FE analysis is a restricting factor against the application of
couple-stress theory since the theory requires the C1 con-
tinuity of displacements. In this section, we derive a four-
node quadrilateral FE formulation, based on the technique
of discrete couple-stress constraint (Zheng et al. 2004), to
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implement the optimization procedure. The total potential
functional (without body force and body moment) is

Π =
∫


0

1

2

(
εT Cε + κT Dκ

)
d
0 −

∫

�t +�m
t̃
T

ũd S (40)

The displacement vector of element is discretized as (41)

ũ = Nd̃e (41)

where N is the shape function matrix of generalized dis-
placement which would be explained in the following
context and d̃e is the generalized nodal displacement vector.

The corresponding geometry equations are

ε = Lu ũ = Lu Nd̃e = Bu d̃e,

κ = Lφ ũ = Lφ Nd̃e = Bφ d̃e (42)

Hence the total potential functional of an element is

Πe =
∫


e
0

1

2

(
d̃

T
e BT

u C Bu d̃e + d̃
T
e BT

φ DBφ d̃e

)
d
e

0

−
∫

�e
t +�e

m

d̃
T
e NT t̃d Se (43)

The element stiffness matrix, obtained from the variation
of (43), is superposed by two terms as

K e = K
e

u + K
e

φ =
∫


e
0

BT
u C Bud
e

0 +
∫


e
0

BT
φ DBφd
e

0

(44)

where the former term is the conventional element stiffness
matrix, based on the classical elasticity theory and general-
ized to global level; the latter one is the special term of the
couple-stress continuum. We proceed to derive the second
term in the natural coordinate.

The interpolation functions of the generalized displace-
ment are

u =
4∑

i=1

Ni ui , v =
4∑

i=1

Nivi , φ =
4∑

i=1

Niφi + αNα (45)

Where, Ni is the four-node Lagrange interpolates func-
tion (Zienkiewicz et al. 2005); Nα is a bubble function (46),
and α is an undetermined coefficient, ξ and η denotes the
natural coordinates.

Nα =
(

1 − ξ2
) (

1 − η2
)/

8 (46)

Thus the macro-rotation of each point in an element can
be described as

ωz = 1

2

[
4∑

i=1

(
∂ Ni

/
∂x
)
vi −

4∑

i=1

(
∂ Ni

/
∂y
)

ui

]

(47)

We force the macro-rotation to equal the micro-rotation
on the given constraint point (ξ = η = 0), i.e.

1

2

[
4∑

i=1

(
∂ Ni

/
∂x
)
vi −

4∑

i=1

(
∂ Ni

/
∂y
)

ui

]

=
4∑

i=1

Niφi + αNα (48)

The value of α can be determined by (48). Substituting
α into (45) and (42) sequentially, we find the expression of
Bφ and, finally, we obtain the element stiffness formulation
K e. In brief, the requirement of C1 continuity is relaxed by
the discrete couple-stress constraint technique.

Appendix 2: Sensitivity of C H and DH

This appendix derives all the derivatives of the effective
couple-stress constitutive constants with respect to the
design variables which are necessary for the structural
compliance sensitivity (35). The derivatives can be found
directly from the procedure of the computation of C H and
DH .

Consider the RVE, which has been discretized into n
finite elements and, each element is assigned by a density
variable ρe(e = 1, . . ., n). Following the SIMP assumption,
the element stiffness matrix is related to the density variable
in the power form.

ki
1 = ρ

p
i k̃

i
1, i = 1, . . . , n (49)

where k̃
e
1 denotes the element stiffness matrix made of solid

material, p the penalty factor and p > 1. From Section 3.1,
the determination of different components of C H and DH

needs six loading cases. In each loading case, we need to
perform an FE analysis to compute the strain energy under
the specified displacement boundary conditions. Thus the
FE governing equation can be expressed as

K 1U ( j)
1 = P ( j)

1 , j = 1, . . . , 6 (50)

where K 1 denotes the global structural stiffness of the RVE,
and U ( j)

1 and P ( j)
1 the nodal displacements and load vector

in loading case j respectively. Extend ke
1 to the global level,

then

K 1 =
n∑

e=1

ρ
p
e k̃

e
1 (51)
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The sensitivity of the strain energy of the RVE with
respect to the element density variable ρe can be expressed
as

∂U ( j)
disc

∂ρe
= 1

2

∂

∂ρe

[
U T ( j)

1 K 1U ( j)
1

]

= 1

2

[

2
∂UT ( j)

1

∂ρe
P ( j)

1 + UT ( j)
1

∂ K 1

∂ρe
U ( j)

1

]

e = 1, . . . , n; j = 1, . . . , 6 (52)

It should be noted that the equilibrium (50) of the RVE
can be rewritten in the following form

[
K ii

1 K io
1

K oi
1 K oo

1

]{
U i( j)

1

Uo( j)
1

}

=
{

P i( j)
1

Po( j)
1

}

, (53)

where the superscript “o” denotes the nodes on which the
prescribed displacements are imposed. The superscript “i”
denotes the rest nodes. Following important information is
implied in equation

P i( j)
1 = 0,

∂Uo( j)
1

∂ρe
= 0; e = 1, . . . n; j = 1, . . . 6 (54)

Substituting (54) into (52), one will find

∂U ( j)
disc

∂ρe

= 1

2

[

2

(
∂U i( j)T

1

∂ρe
0

){
0

Po( j)
1

}
+ U T ( j)

1
∂ K 1

∂ρe
U ( j)

1

]

= 1

2
U T ( j)

1
∂ K 1

∂ρe
U ( j)

1 = p

ρe
u( j)

e

e = 1, . . . , n; j = 1, . . . , 6 (55)

From (55), one can obtain the results of (36). Since the
strain energy has been computed, no additional FE analysis
is required for the sensitivity analysis.

Appendix 3: Flexural rigidity of couple-stress
continuum beam

Consider a straight beam made of couple-stress continuum
with height H and thickness b, which subject to the pure
bending load (Fig. 10). Taking moment equilibrium in the
cross section of the beam, following equation is derived.

M = −
∫

A
yσx d A +

∫

A
mxzd A (56)

1 xzκ

xσ xzm
Μ

H

y

z
x

Fig. 10 Sketch of a couple-stress continuum beam

If the plane assumption for the deformation of cross-
section is used, then

σx = −Ex yκxz + σx
∣
∣y=0 (57)

(56) becomes

M = (Ex Iz + D11 A) κxz (58)

where Iz (= ∫
A y2d A = bH3

/
12, for rectangular cross-

section) and A are the moment of inertia and area, respec-
tively, of the beam’s cross section. Thus the flexural rigidity
of the couple-stress continuum beam D is defined as

D = Ex Iz + D11 A (59)

It has the same form as micropolar continuum beam
(Huang et al. 2000), where the first term denotes the
flexural rigidity of classical continuum while the second
term denotes the modification term of couple-stress contin-
uum beams.
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