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Abstract For structural systems exhibiting both probabilis-
tic and bounded uncertainties, it may be suitable to describe
these uncertainties with probability and convex set mod-
els respectively in the design optimization problem. Based
on the probabilistic and multi-ellipsoid convex set hybrid
model, this paper presents a mathematical definition of reli-
ability index for measuring the safety of structures in pres-
ence of parameter or load uncertainties. The optimization
problem incorporating such reliability constraints is then
mathematically formulated. By using the performance mea-
sure approach, the optimization problem is reformulated
into a more tractable one. Moreover, the nested double-loop
optimization problem is transformed into an approximate
single-loop minimization problem by considering the opti-
mality conditions and linearization of the limit-state func-
tion, which further facilitates efficient solution of the design
problem. Numerical examples demonstrate the validity of
the proposed formulation as well as the efficiency of the
presented numerical techniques.
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1 Introduction

Along with the ever increasing computational power, the
past two decades has seen a rapid development of structural
optimization in both theories and industrial applications. In
particular, the design optimization problem incorporating
various uncertainties has been intensively studied (Schuëller
and Jensen 2008). Among other non-deterministic optimal
design formulations, the reliability-based design optimiza-
tion provides an effective tool for seeking the best designs
against structural failures in presence of system variations.
Basically, the uncertainty models employed by a typical
structural reliability analysis can be classified into two cat-
egories: the probabilistic model and non-probabilistic mod-
els. As the most mature uncertainty model, the probabilistic
model describes the stochastic parameters and structural
responses with random fields or discrete random variables
that have certain statistical distribution characteristics. The
probabilistic model has been successfully used in many
real-life engineering applications for structural reliability-
based design optimization (RBDO) (Frangopol and Corotis
1996; Papadrakakis and Lagaros 2002) as well as robust
design optimization (Doltsinis and Kang 2004; Beyer and
Sendhoff 2007). In practical applications, the probabilistic
distribution type and the corresponding statistical parame-
ters of inputs are usually extracted from a sufficient amount
of measured data or assumed on the basis of engineering
experiences.

A meaningful probabilistic reliability analysis relies on
availability of precise description of the statistical charac-
teristics, particularly, the tail distribution of the random
inputs. However, these data cannot be accurately extracted
in some circumstances where only limited number of sam-
ples are available. Construction of appropriate probability
model using insufficient data or incomplete knowledge of
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the uncertainty has been a classical problem in the prob-
ability theory. A conventional treatment is to model the
concerned uncertainty with a probabilistic distribution that
is closest to be uniform by using the principle of maximum
entropy (Jaynes 1957; Soize 2001).

As illustrated by Elishakoff (1995, 1999), in particu-
lar cases a small error in constructing the probabilistic
density function for input quantities may give rise to mis-
leading prediction of the probabilistic reliability. This means
that the traditional probabilistic approaches might be ques-
tionable to deal with those problems involving incomplete
information or inherently non-probabilistic uncertainties.
Consequently, non-traditional uncertainty models, such as
the fuzzy possibility model (Mourelatos and Zhou 2005;
Du et al. 2006a), the fuzzy/statistical hybrid model (Möller
and Beer 2004; Buckley 2005; Du et al. 2006b; Du and Choi
2008) and the convex model (Ben-Haim and Elishakoff
1990; Elseifi et al. 1999), have also been developed as alter-
native models for describing uncertainty with incomplete
statistical information. The interested readers are referred to
review papers by e.g. Moens and Vandepitte (2005), Möller
and Beer (2008).

In many circumstances, the bounds of uncertainty, com-
pared with the precise probability distribution data, are
more easily available. This is particularly the case for the
geometry uncertainty arising as a result of manufacturing
errors, which are subject to the tolerance band control. The
set theory-based convex models, especially the ellipsoidal
model, provide an attractive framework for treating those
so-called uncertain-but-bounded variations of a structural
system. Two characteristics make the ellipsoidal convex
model more appealing when no sufficient data on the inner
distributions of system variations are available. Firstly, only
bound information of the uncertainties is needed for con-
struction of a convex model. Secondly, the convex model
presents a mathematically differentiable bound description
of the inputs and thus facilitates use of common optimiza-
tion algorithms in seeking the minimum of a function value.
A number of studies on the non-probabilistic optimization
designs using convex sets have been presented in literatures
(Qiu and Elishakoff 1998; Pantelides and Ganzerli 1998;
Au et al. 2003; Jiang et al. 2007; Luo et al. 2009).

In some typical engineering problems, some of the con-
cerned uncertainties are probabilistic variables with precise-
enough probability distribution information, while others
are only uncertain-but-bounded due to their inherent char-
acteristic or lack of sufficient sample data. Therefore, it
is desirable to select the best suitable model to quan-
tify these different types of uncertainties. Early attempts
have been made by e.g. Elishakoff and Colombi (1993)
to accommodate both probabilistic and convex models into
structural reliability analysis and design. Recently, the func-
tion approximation technique (Penmetsa and Grandhi 2002;

Adduri and Penmetsa 2007) and the probability bounds
(p-box) approach (Karanki et al. 2009) have been suggested
for estimating the lower and upper bounds of the struc-
tural reliability when both random and interval parameters
are concerned. Similar problems have also been studied by
Hall and Lawry (2004), Berleant et al. (2005), Utkin and
Kozine (2005), Kreinovich et al. (2006) and Qiu et al.
(2008). Moreover, Du et al. (2005) extended the conven-
tional RBDO method to structural design problems where a
part of the uncertainties appear as interval variables. In their
study, a procedure for seeking the worst-case combination
of the interval variables is embedded into the probabilis-
tic reliability analysis. As the literature survey shows, the
existing studies mainly focus on solving the combination
of random variables and interval variables. Basically, the
interval set can be regarded as the simplest specific case
of set-value based convex models and it does not account
for the dependencies among the bounded uncertainties. It
is therefore meaningful to fully explore the reliability-based
design optimization formulation using the mixed descrip-
tion of probability and more general convex set model, e.g.
the multi-ellipsoid convex model.

This paper aims to provide a mathematical statement
and associated numerical techniques to incorporate simul-
taneously stochastic randomness and general uncertain-but-
bounded quantities into the design optimization problem.
To achieve this goal, a mathematical definition of struc-
tural reliability index based on probabilistic model and
multi-ellipsoid convex set is first proposed. Then, a nested
optimization model for reliability-based structural design
problems with constraints on such reliability indices is pre-
sented. To improve the convergence of the overall solution,
the performance measure approach (PMA) is employed.
Further, an iteration scheme based on linear approxima-
tion of the limit-state function and the optimality conditions
is proposed for converting the nested double-loop prob-
lem into an approximate single-loop one. This approach
is employed to solve the present optimization problem
and its performance is compared with that of the direct
nested double-loop method in aspect of efficiency. Finally,
to demonstrate the applicability of the proposed model
and the efficiency of the numerical techniques, three pure
mathematical or engineering design examples are presented.

2 General concept of multi-ellipsoid convex model

Several frequently used convex models are the envelope-
bound convex model, the instantaneous energy-bound con-
vex model, the cumulative energy-bound convex model
and the ellipsoid convex model (Ben-Haim and Elishakoff
1990). In this study, the multi-ellipsoid convex model
(Luo et al. 2009) is applied for the uncertain-but-bounded
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uncertainty description. This model and the corresponding
normalization procedures are described as follows.

Assume the uncertain-but-bounded variables are col-
lected in the vector Y ∈ Rn . The conventional single-
ellipsoid convex model assumes that all the possible value
of uncertainties are bounded by a multidimensional (hyper-)
ellipsoid, which is expressed by:

Y ∈ E
(
Wy, ε

) =
{

Y : (Y − Ŷ
)TWy

(
Y − Ŷ

) ≤ ε2
}

, (1)

where Ŷ is the nominal value vector of Y, Wy is the
characteristic matrix of the ellipsoid, and it is a symmet-
ric positive-definite real matrix defining the orientation and
aspect ratio of the ellipsoid, and ε is a real number defining
the magnitude of the parameter variability.

The vector Y can be transformed into a dimensionless
vector δ ∈ Rn and the components of the vectors δ and Y
are related by:

δi = Yi − Ŷi

Ŷi
(i = 1, 2, . . . , n) , (2)

where Ŷi denotes the nominal value of the i-th uncertain-
but-bounded variable. Thus, the ellipsoid set can be further
transformed into its dimensionless form:

δ ∈ E (W, ε) = {δ : δTWδ ≤ ε2}, (3)

where W is the dimensionless characteristic matrix.
In some structural design problems, it might be suitable

to divide all the uncertain-but-bounded variables into groups
and assume that variations of parameters in different groups
are uncorrelated. In such circumstances, the multi-ellipsoid
convex model is competent for the description of these
uncertainties (Luo et al. 2009). Supposing the uncertain-
but-bounded variables are divided into NE groups denoted
by:

YT = {YT
1 , YT

2 , . . . , YT
NE

}
, (4)

the multi-ellipsoid convex model treats each group of uncer-
tainties Yi ∈ Rni (i = 1,2,. . . ,NE) with an individual
ellipsoid convex set, respectively, as:

δ ∈ E = {δ : δT
i Wiδi ≤ ε2

i (i = 1, 2, . . . , NE)
}
, (5)

where δi is the dimensionless vector of Yi , Wi is the dimen-
sionless characteristic matrix of the i-th ellipsoid, εi (i =
1, 2, . . .,NE) are real numbers, NE is the total number
of groups of bounded uncertainties, ni is the number of
bounded uncertainties in the i-th group and

∑NE
i=1 ni = n.

The multi-ellipsoid convex model provides a unified
approach that accommodates coexisting conventional ellip-

soid sets and interval sets in the representation of bounded
uncertainties. In particular, if each group consists of only
one uncertain parameter, the multi-ellipsoid set in (5)
degenerates into a multi-dimensional interval set (hyper-box
model). On the other hand, the single-ellipsoid model repre-
sents another degenerated case of the multi-ellipsoid model,
where all the bounded uncertainties are correlated.

3 Reliability definition under hybrid model
of probability and convex sets

3.1 Pure probabilistic description

In the conventional probabilistic framework (Melchers
1999), the uncertainties are modelled as random variables
with certain distribution characteristics. Let X = {X1,
X2, . . . ,Xm}T denotes the vector of random variables, the
structural failure probability can be given as:

Pf = Pr [G (X) ≤ 0] =
∫

. . .

∫

G(X)≤0
pX (x) dx1 . . . dxm

(6)

where Pr[·] denotes the probability, G(X) is a system per-
formance function and G(X) ≤ 0 defines the failure event,
x = {x1, x2,. . . ,xm}T represents the realization of X, px(x)
is the joint probability density function, which is usu-
ally approximated using measured data sets of the system
parameters. The accuracy of the approximation for px(x)
is limited by the total number of available samples. For
assessing the multi-variate integral in (6), many available
techniques, such as the Monte Carlo simulation and the
familiar first-order reliability method (FORM) (Hasofer and
Lind 1974), can be implemented.

3.2 Probability and convex set hybrid model description

In practice, engineering structures may exhibit both prob-
abilistic uncertainties and bounded uncertainties. In such a
case, the uncertain variables involved in the design problem
can be classified into random variables and uncertain-but-
bounded variables described by multi-ellipsoid convex sets.
They are respectively denoted by X = {X1,X2,. . . ,Xm}T

and Y = {Y1,Y2,. . . ,Yn}T (or Y = {
YT

1 , YT
2 , . . . , YT

NE

}T in
terms of NE vectors for grouped bounded variables), which
are expressed using above-mentioned notations as:

X ∼ pX (x) , (7)

Y ∈ E =
{
δ : δT

i Wiδi ≤ ε2
i , i = 1, 2, . . . , NE

}
, (8)
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where pX(x) is the joint probability density function for
the random variables X, E is the multi-ellipsoid convex set
defining the variation range of Y.

3.2.1 Normalization of probabilistic random variables

A normal random variable X can be transformed into a
standard normal random variable u by:

u = X − X̄

σ
, (9)

where X̄ and σ are the mean value and the standard
deviation of X , respectively.

In general cases, the random variables X can be trans-1

formed to a set of uncorrelated normal random variables via2

the Rosenblatt transformation (Rosenblatt 1952):3

u = {u1, u2, ..., um}T

=
{
�−1 [H1 (x1)] , �−1 [H2 (x2 |x1 )] , . . . ,

�−1 [Hm (xm |x1, x2, . . . , xm−1 )
]}T

, (10)

where Hj (x j |x1, x2, . . . , x j−1) is the marginal cumula-
tive distribution function and �−1(·) is the inverse stan-
dard normal cumulative distribution function. In this way,
all the random variables are transformed into statistically
independent standard normal ones in the normalized space
(or u-space).

3.2.2 Normalization of uncertain-but-bounded
uncertainties

For the case of convex set modelling, it is convenient to
convert the original uncertainties into dimensionless nor-
malized variables with a linearization transformation. This
procedure is elaborated in what follows.

Firstly, the following eigenvalue problems need to be
solved:

QT
i Wi Qi = �i (i = 1, 2, . . . , NE) , (11)

where Qi is the orthogonal matrix comprising the normal-
ized eigenvectors, �i is a diagonal matrix containing the
eigenvalues of Wi .

Then, by defining a dimensionless vector vi as:

vi = (1/εi
)
�

1/2
i QT

i δi (i = 1, 2, . . . , NE) (12)

and substituting (12) into (8), the original multi-ellipsoid
convex set is rewritten as:

E = {vi : vT
i vi ≤ 1, i = 1, 2, . . . , NE

}
, (13)

where vi is the normalized vector of the i-th group of
uncertain-but-bounded variables. It can be seen that the
normalized convex set forms multiple spheres of unit radius.

3.3 Definition of the reliability measure under hybrid
model description

For assessment of the structural reliability, a quantitative
definition of the failure state is needed. We assume a desired
performance of a structure is represented by G(X, Y) > 0.
After the uncertainty normalization procedures given by
(10) and (12), the performance function G(X, Y) is sym-
bolically transformed into its normalized form, which is
expressed by g(u, v).

In the conventional probability model, the limit state
g = 0 defines a unique surface which is called the limit-
state surface. However, when the coexistence of random
and uncertain-but-bounded variables is encountered, there
are a cluster of limit-state surfaces g(u, v) = 0, which form
a critical region in the u-space for all possible values of
v ∈ E. As shown in Fig. 1, the whole u-space � is thus
divided into a safe region

(
�s = {u : min

v∈E
g (u, v) > 0

})
, a

critical region (�c = {u : ∃v ∈ E, g (u, v) = 0}) and a fail-
ure region (�f = �\ (�s ∪ �c)). If multiple failure modes
(each represented by a limit-state equation gi (u, v) = 0 for
j = 1, 2, . . . , NF ) are considered, the safe region of the
problem becomes �s = �s,1 ∩ �s,2 ∩ . . . ∩ �s,NF . Here
NF is the total number of failure modes and �s , j is the safe
region for the j-th failure mode.

It is recalled that the structural reliability is defined as the
probability that the structure performs its desired function-
ality under given random system variations. By extending
this concept, we define the reliability under probability and
convex set hybrid model as: the least probability that the
structural behaviour satisfies the design requirements for all
the possible values of the bounded uncertainties. This reli-
ability measure provides a conservative assessment on the

Fig. 1 Schematic representation of the reliability measure under
hybrid model in u-space
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probability that a structure performs as designed in presence
of bounded variations in addition to conventional random-
ness. Mathematically, by replacing the limit-state function
in the conventional reliability definition, we can express the
structural reliability under the hybrid model as:

Pm = Pr
{
g (u) > 0

}
, (14)

where g (u) = min
v:v∈E

g (u, v) and g (u) = 0 indicates the

failure of the structure. The subscript 〈m〉 stands for the
hybrid model.

For a given limit-state surface g(u,v) = 0, we define
the most probable failure point (MPP) uMPP (v) for a cer-
tain combination of bounded variables v as the solution of

min
u:g(u,v)=0

uTu. As analogues to the probabilistic reliability

index, we further define a quantified reliability index βm as:

βm = sgn (g (0, v∗)) · min
v:v∈E

√
{uMPP (v)}T uMPP (v) (15)

where v∗, the solution of the constrained minimization
problem, is referred to as the worst-case point (i.e. worst-
case realization of the bounded uncertainties) in this paper
since it corresponds to the largest failure probability for all
v ∈ E. The signum function sgn(·) is included here to yield
a negative value when g(0, v∗) < 0, which indicates that
the design violates the design requirement for the mean val-
ues of the probabilistic uncertainties under the worst-case
combination of the bounded parameters.

Substituting the definition of uMPP(v) into (15), it yields:

βm = sgn (g (0, v∗)) · min
v:v∈E

(
min

u:g(u,v)=0

√
uTu

)
(16)

With a deeper insight into problem (16), we can find
that this bi-level optimization problem is equivalent to the
following single-level optimization problem:

min
u,v

uTu

s.t. g (u, v) = 0
vT

i vi ≤ 1 (i = 1, 2, . . . , NE)

(17)

From geometrical point of view, the reliability index
βm is the shortest distance from the origin to the critical
region in u-space, as shown in Fig. 1. Obviously, if all the
uncertainties can be provided with precise probabilistic dis-
tributions, the proposed reliability index degenerates into a
conventional probability reliability index.

4 Reliability-based design optimization
under hybrid models

A structural optimization problem aims to seek the best
design that satisfies certain structural behaviour require-
ments. Under the hybrid model, the structural behaviours

can be represented by the performance functions g j (d,u,v)
( j = 1, 2, . . ., NF), which are functions of the design vari-
ables d, the normalized probabilistic variables u and the
normalized uncertain-but-bounded variables v. It should be
noted that the design variables d can also be the mean (or
nominal) values of geometrical dimensions and material
properties when their variations are modelled as stochastic
(or bounded) uncertainties. In the present paper, analo-
gously as the stochastic optimization under pure probabilis-
tic framework (see e.g. Enevoldsen and Sørensen 1994;
Vietor 1997), the reliability-based design optimization prob-
lem under the probability and convex set hybrid model is
mathematically formulated as:

min
d

f (d)

s.t. βm
[
g j (d, u, v)

] ≥ β
m, j

( j = 1, 2, . . . , NF)

dL ≤ d ≤ dU (18)

where f (d) is the objective function to be minimized;
βm[g j (d, u, v)] is the reliability index (see (15)) cor-
responding to the j-th performance function; β

m, j
is the

prescribed target value of the reliability index; dL and dU

are the lower and upper bounds of the design variables,
respectively.

The above reliability-based design problem is a double-
loop optimization one. The outer-loop aims to minimize
the cost function of the structural design, while the inner-
loop represents the reliability analysis. For improving the
computational efficiency in solving this problem, the pop-
ular performance measure approach (PMA), which was
proposed by Tu et al. (1999) and enhanced by e.g. Youn
et al. (2005), is employed in this paper. Researches showed
that the performance measure approach is inherently robust
and superior in aspects of both computational efficiency
and numerical stability (Lee et al. 2002). In contrast to
the direct method relying on the comparison between the
current reliability index value and the prescribed target
value, the performance measure approach checks the sat-
isfaction of a reliability constraint according to the target
performance value. Based on a similar idea, we transform
the design problem (18) into an equivalent optimization
problem expressed by:

min
d

f (d)

s.t. α j (d) ≥ 0 ( j = 1, 2, . . . , NF)

dL ≤ d ≤ dU (19)

where α j (d) is the target performance value corresponding
to the prescribed target reliability index β

m, j
for the j-th

failure mode and it is expressed by:

α j (d) = min
u:uTu=β2

m, j

g
j
(d,u) (20)



94 Z. Kang, Y. Luo

where g
j
(d, u) is mathematically stated as:

g
j
(d,u) = min

v:v∈E
g j (d, u,v) (21)

Here, problems (20) and (21) can be combined into a single-
level problem:

α j (d) = min
u,v

s.t.

g j (d,u, v)

uTu = β2
m, j

vT
i vi ≤ 1 (i = 1, 2, . . . , NE) (22)

Note that the reliability-based optimization formulation
expressed by (19) and (22) reduces to the conventional
RBDO in cases where only probabilistic random variables
are concerned. Problem (22) is more general than the hybrid
random/interval model-based formulation proposed by Du
et al. (2005), since the interval model considered therein
can be regarded as a specific instance of the multi-ellipsoid
model used in this study. Moreover, this problem also differs
from the PMA (Tu et al. 1999) for the conventional RBDO
or the mentioned formulation considering random/interval
hybrid uncertainties in aspects of constraint conditions.
Here, the target performance value α j (d) is to be found
by minimizing the performance function on a hyper-sphere
surface in u-space under multiple quadratic inequality con-
straints defined in the sub-spaces of bounded uncertainties.
This nature also necessitates special handling techniques,
which will be described in the following section.

5 Solution strategy

The structural optimization problem incorporating reliabil-
ity constraints under hybrid model of probabilistic random-
ness and convex models presents a challenging problem
with nested optimization. While a direct nested double-loop

approach is applicable, we proposed a single-loop approach
based on linearization of the limit-state function and the
optimality conditions in order to reduce the computational
cost.

5.1 Nested double-loop approach

In the reliability-based optimization problem under the
hybrid model, the inner-loop of the target performance eval-
uation is embedded in the outer-loop for the overall design
optimization. A direct nested double-loop procedure, as
schematically depicted in Fig. 2, can be resorted for solving
the nested problem (19) and (22). Herein, the mathemat-
ical programming package CFSQP (Lawrence et al. 1997),
which is an implementation of the Sequential Quadratic Pro-
gramming (SQP) algorithm, is used to solve the problem.

Though the nested double-loop approach is applicable,
it still requires prohibitively lengthy calculations. Since
the inner-loop (evaluation of the target performance) needs
many evaluations of limit-state functions, and each iteration
of the outer-loop optimization consists of an execution of
the inner-loop minimization, the total number of limit-state
function evaluations is usually very high.

5.2 Linearization-based approach

Various techniques have been proposed to decouple the
nested optimization problem involved in the conventional
RBDO. In a sequential optimization strategy (Royset et al.
2001; Du and Chen 2004; Cheng et al. 2006), the inner-
loop and the outer-loop are treated sequentially and thus
the optimum design is obtained by solving a sequence of
sub-programming problems. Moreover, a decoupled single-
loop strategy (Chen et al. 1997; Kuschel and Rackwitz
2000; Liang et al. 2007; Minguez and Castillo 2009),
which allows the solution to be infeasible before con-
vergence and to satisfy the constraints only at the final

Fig. 2 Flow chart of the direct
nested double-loop approach Starting 
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optimum, has also been developed to address the compu-
tational challenges. Numerical investigations suggested that
these methods could considerably improve the efficiency in
solving the RBDO problem. In this paper, based on a simi-
lar decoupling strategy as the above-mentioned single-loop
approach, a linearization-based method is presented to solve
the proposed reliability-based optimization problem under
the hybrid uncertainty model.

In most practical circumstances, the variability of the
uncertain-but-bounded variables is relatively small or mod-
erate. Therefore, it is reasonable to assume that the mechan-
ical performance functions are monotonic with respect to
these quantities within their variation bounds (see e.g.
Neumaier and Pownuk 2007). In virtue of this, the inequal-
ity constraints in (22) should be active at the optimum. Thus,
an iteration scheme for solving the optimum

(
u∗

, j , v∗
, j

)
is

derived based on the optimality conditions in the following.
Denoting the approximate solution of (22) in the k-th

iteration by
(
u(k)

, j , v(k)
, j

) (
j = 1, 2, . . . , NF

)
, by approxi-

mating the limit-state function g j with the first-order Taylor

expansion about
(
u

(
k
)

, j , v

(
k
)

, j

)
, we rewrite (22) as:

α j
(
d(k)
) = min

u,v

{
g j

(
d(k), u(k)

,j , v(k)
,j

)
+ GT

u(k)
, j

(
u − u(k)

, j

)

+ GT
v(k)
, j

(
v − v(k)

, j

)}

s.t. uTu = β2
m, j

vT
i vi = 1 (i = 1, 2, ..., NE) (23)

where d(k) denotes the k-th (current) iteration design vari-
ables, the subscript 〈, j〉 stands for the j-th performance
function. Gu(k)

, j
and Gv(k)

, j
are partial derivatives of the

performance function, which are expressed by:

Gu(k)
, j

= ∂g j

∂u

∣
∣
∣∣
d(k),u(k)

, j ,v(k)
, j

, Gv(k)
, j

= ∂g j

∂v

∣
∣
∣∣
d(k),u(k)

, j ,v(k)
, j

, (24)

Both derivatives can be either analytically obtained or
evaluated by using classical approaches such as the semi-
analytical method. For design problems involving a large
number of uncertain variables, the adjoint variable scheme
is preferably used in view of its computational efficiency.

Before derivation of the iteration scheme for solving
the above constrained minimization problem, a Lagrangian
function is first constructed:

L = g j

(
d(k), u(k)

, j , v(k)
, j

)
+ GT

u(k)
, j

(
u−u(k)

, j

)
+ GT

v(k)
, j

(
v−v(k)

, j

)

+ κ
(

uTu − β2
m, j

)
+

NE∑

i=1

λi

(
vT

i vi − 1
)
, (25)

where κ and λi are the Lagrangian multipliers for the
corresponding constraints.

Applying the Karush–Kuhn–Tucker optimality condition
at
(
u∗

, j , v∗
, j

)
, we have:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂u

∣∣
∣
∣
u∗

, j

= Gu(k)
, j

+ 2κu∗
, j = 0,

∂L

∂vi

∣
∣
∣∣
v∗

i, j

= Gv(k)
i, j

+ 2λi v∗
i, j = 0,

(
u∗

, j

)T
u∗

, j − β2
m, j

= 0,

(
v∗

i, j

)T
v∗

i, j − 1 = 0 (i = 1, 2, . . . , NE) .

(26)

After some manipulations, the equations in (26) lead to:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗
, j = −

β
m, j

Gu(k)
, j√

GT
u(k)

, j

Gu(k)
, j

,

v∗
i, j = −

Gv(k)
i, j√

GT
v(k)

i, j

Gv(k)
i, j

(i = 1, 2, . . . , NE) .

(27)

Thus, a heuristic scheme for updating
(
u∗

, j , v∗
, j

)
corre-

sponding to the j−th reliability constraint would be:

(
u(k+1)

, j , v(k+1)
, j

)
=
(

u(k+1)
, j , v(k+1)

1, j , . . . , v(k+1)
NE, j

)

= −

⎛

⎜⎜
⎝

β
m, j

Gu(k)
, j√

GT
u(k)

, j

Gu(k)
, j

,

Gv(k)
1, j√

GT
v(k)

1, j

Gv(k)
1, j

, . . . ,

Gv(k)
NE, j√

GT
v(k)

NE, j

Gv(k)
NE, j

⎞

⎟⎟
⎠ .

(28)

where the superscript k and k + 1 denote the iteration step
of the overall design optimization of the structure.

Using the iteration scheme given in (28), u∗
, j and v∗

, j
can be explicitly updated in each step of the structural opti-
mization. Then the optimum structural design is searched in
the design space by a gradient-based optimizer. This pro-
cess continues until the objective function converges and
all the target performance constraints are satisfied. The
flowchart of the optimization process using the proposed
linearization-based approach is given in Fig. 3. With this
procedure, the computational efficiency should be much
higher than that of the nested double-loop approach because
the expensive iteration procedures for solving the inner-loop
minimization problems are avoided.
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Fig. 3 Flow chart of the optimization process using the linearization-
based approach

However, it should be noted that the suggested
linearization-based approach relies on the assumption of the
local monotonicity of the performance function with respect
to the uncertainty variables. In addition, the global optimal-
ity cannot be guaranteed if the performance function is non-
convex or not smooth. In such a case, the nested double-loop
approach enhanced with special techniques such as multiple
initial guesses and sequential convex approximations can be
resorted to.

6 Numerical examples

In this section, three numerical examples are presented
to demonstrate the validity and efficiency of the proposed
method. The optimization package CFSQP is employed for

solving all the minimization problems, where the stop cri-
terion of iterations is: the relative difference between the
objective function values of two adjacent iterations is less
than 10−4, or the number of iteration steps exceeds 500.

6.1 Minimization of a mathematical function
under reliability constraints

The first example considers minimization of an explicit
function under reliability constraints. Two random variables
(denoted by X = X1, X2}T) and two uncertain parame-
ters (denoted by Y = {Y1, Y2}T) bounded by an ellipsoid
model are taken into account in the problem. Let X1 be a
Gaussian distributed random variable and X2 be a log-
normally distributed random variable. The optimization
problem is expressed as:

min
d

f (d) = (d1 + 3)2 + (d2 + 3)2

s.t. βm [G1 (X, Y) ≥ 0] ≥ βm,

βm [G2 (X, Y) ≥ 0] ≥ βm,

0.01 ≤ d1 ≤ 10, 0.01 ≤ d2 ≤ 10,

(29)

in which:

G1 (X, Y) = X1 (X2 + Y1) − Y2,

G2 (X, Y) = X1 − (X2 + Y1)
2 Y2, (30)

where the design variables are d = {d1, d2}T , with
d1 and d2 representing the mean value of X1 and the
median of X2, respectively. The coefficients of varia-
tion (COV) for X1 and X2 are both 0.1. The variation
ranges of Y1 and Y2 are given by Y = {Y1, Y2}T ∈
E =

{
Y
∣
∣(Y − Ŷ

)TWy
(
Y − Ŷ

) ≤ 0.52
}

, where their nom-

inal values are Ŷ = {
Ŷ1, Ŷ2

}T = {0.25, 2}T and the

characteristic matrix is Wy =
[

4 0
0 1

]
.

Table 1 Solutions for the
mathematic example Linearization-based approach Nested double-loop approach

Objective 76.0129 76.0129

Optimal design (d1, d2) (4.9025, 0.6828) (4.9025, 0.6828)

Nominal value (X̄1, X̄2, Ŷ1, Ŷ2) (4.9025, 0.6828, 0.25, 2) (4.9025, 0.6828, 0.25, 2)
(
X∗

1 , X∗
2 , Y ∗

1 , Y ∗
2

)
for G1 (3.7068, 0.5736, 0.0300, 2.2374) (3.7080, 0.5734, 0.0300, 2.2368)

(
X∗

1 , X∗
2 , Y ∗

1 , Y ∗
2

)
for G2 (3.8715, 0.8452, 0.4661, 2.2515) (3.8693, 0.8449, 0.4662, 2.2510)

Number of iterations for outer-loop 21 27

Average number of iterations for 1 10

each inner-loop solution

Total number of performance 42 540

function evaluations
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The target reliability index of the constraints is β
m

= 3.0,
which means the failure probability of the structure must be
less than 0.135%. After the uncertainty normalization, prob-
lem (29) can be reformulated by using the PMA approach
as:

min
d

f (d) = (d1 + 3)2 + (d2 + 3)2

s.t. α1 (d) ≥ 0,

α2 (d) ≥ 0,

0.01 ≤ d1 ≤ 10, 0.01 ≤ d2 ≤ 10,

(31)

in which:

α j (d) = min
u,v

s.t.

g j (d, u, v)

uTu = 3.02,

vTv ≤ 1,

(32)

where u and v are the normalized vectors of X and Y,
g j (·) ( j = 1, 2) are the normalized performance functions
of G j (·) ( j = 1, 2).

The initial values of the design variables are set to
be d(0)

1 = d(0)
2 = 5. The proposed linearization-based

approach results in the identical optimal solutions as the
nested double-loop approach, as listed in Table 1. How-
ever, the former approach is much more efficient. This is
due to the fact that it requires only one limit-state func-
tion evaluation for each inner-loop solution. For further
testing of the convergence behaviour of the linearization-
based approach, three different initial guesses of design
variables

(
d(0)

1 , d(0)
2

) = (1, 1),
(
d(0)

1 , d(0)
2

) = (3, 3) and
(
d(0)

1 , d(0)
2

) = (
8, 8
)

are also fed into the optimizer. From
the iteration histories shown in Fig. 4, it can be seen that
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Fig. 4 Iteration histories of the optimization with different initial
design points

Fig. 5 The ten-bar truss structure

the iterations converge to the same optimum, though the
number of iterations relies on the initial design point.

6.2 Reliability-based optimization of a ten-bar truss
structure

Figure 5 shows a frequently studied planar ten-bar truss
structure, which is to be optimized for minimum weight
under non-deterministic conditions in this study. The hor-
izontal and vertical bar members have a length of L = 360.
The mass density of the material is ρ = 0.1. Two exter-
nal loads P are applied to node 2 and node 4. A constraint
U ≤ 2.0 is imposed on the vertical displacement of node
2. The bar cross-sectional areas Ai (i = 1, 2, . . ., 10) and
the Young’s modulus E of the material are Gaussian nor-
mal random variables, whereas the external load P is an
uncertain-but-bounded variable. The uncertainty properties
of these parameters are summarized in Table 2.

The mean values of the member section areas
Āi (i = 1, 2, . . . , 10) are taken as design variables, with
lower bound limits di = 0.1 and initial values d(0)

i =
40.0 (i = 1, 2, . . . , 10). The target reliability index is set as
β

m
= 3.0.

The obtained optimal design by the present method
based on the hybrid model is given in the second column

Table 2 Uncertainty properties for the ten-bar truss structure

Uncertainty Cross-sectional areas Young’s External

Ai (i = 1,2,. . . ,10) modulus E load P

Distribution Normal distribution Normal Uncertain-but-

distribution bounded

Nominal value Āi 107 105

COV 0.05 0.05 –

Variation range – – 15%
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Table 3 Optimal solutions
using different approaches Member number Optimal cross-sectional area Āi

Proposed method Deterministic Conventional RBDO Worst-case

using hybrid model optimization scenario approach

1 42.91 31.37 39.23 49.83

2 0.10 0.10 0.10 0.10

3 29.32 21.48 26.81 34.16

4 21.01 15.46 19.23 24.57

5 0.10 0.10 0.10 0.10

6 0.10 0.10 0.10 0.10

7 3.38 2.83 3.21 4.19

8 30.81 22.56 28.18 35.81

9 29.94 21.86 27.36 34.75

10 0.10 0.10 0.10 0.10

Total weight 6638.0 4880.4 6076.9 7729.8

βm 3.00 <0 1.50 5.33

of Table 3. Therein, a reliability index βm = 3.00 is
achieved. The iteration history plotted in Fig. 6 shows a
steady decrease of the objective function as well as a stable
convergence during the optimization process.

For comparison’s purpose, the deterministic optimization
based on nominal values, the reliability-based optimization
in the pure probabilistic framework (Conventional RBDO)
and the worst-case scenario approach using pure non-
probabilistic description were also run. The well-known
PMA approach (Tu et al. 1999) is employed for solving
the conventional RBDO problem, where all the uncertain-
ties are assumed to have a Gaussian normal distribution with
the coefficient of variation being 0.05 and the probabilistic
reliability is required to be 3.0. In the worst-case scenario
approach, all the uncertain parameters are described by
interval variables. Therein, the variation ranges of Ai (i =
1,2,. . . ,10) and E about their nominal values are assumed to
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Fig. 6 Iteration histories

be 15%, i.e. three times that of the corresponding coefficient
of variation.

The optimal solutions using the above three methods are
also listed in Table 3. For these optimal designs, the corre-
sponding reliability indices evaluated with the hybrid model
are given in the last row of the table. The deterministic opti-
mization presents a design with the least structural weight,
though the reliability requirement is not satisfied. The con-
ventional RBDO solution has a reliability index of βm =
1.50 and therefore also violates the reliability constraint.
The design obtained by the worst-case scenario approach

Spar 3Lower skin 

Rib 8 

Tip displacement 
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Root chord 

Rib 7 

Rib 6 

Rib 5 

Rib 4 

Rib 3 

Rib 2 

Rib 1 

Upper skin 

Spar 2
Spar 1

120 

2300

1220 

Fig. 7 The wing box structure (unit: millimeters)
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Table 4 Uncertainty properties for the wing box structure

Uncertainty Thicknesses of spars, ribs and skins (mm) Young’s moduli (GPa) External loads (kN) (P1, P2, P3)

ti (i = 1, 2, . . . , 13) (E1, E2)

Distribution Normal distribution Normal distribution Uncertain-but-bounded

Nominal value Design variables di (72.42, 68.98) (146.23, 64.44, 17.26)

COV 0.02 0.03 –

Convex model – – [δP1 δP2 δP3]

⎡

⎢
⎣

1 0 0

0 2.78 0

0 0 4

⎤

⎥
⎦

⎡

⎢
⎣

δP1

δP2

δP3

⎤

⎥
⎦ ≤ 0.12

demands for the most volume of material. With a corre-
sponding reliability index βm = 5.33, it turns out to be an
over-conservative design. It is also noted that there are con-
siderable differences between the optimal solution by the
present method and those by the conventional RBDO or
the worst-case scenario approach. This implies that it may
be not appropriate to treat probabilistic uncertainties with
non-probabilistic models, and vice versa. The importance
of the present method based on the hybrid model is thus
demonstrated.

Though all the computations are based on the finite ele-
ment model, an explicit expression of the displacement
constraint would be useful for gaining an insight into the
nonlinearity of this problem. Using the node equilibrium
equations and the compatibility relations, the member axial

forces Ni (i = 1,2,. . . ,10) can be easily obtained as (Au et al.
2003):

N1 = P −
√

2

2
N8, N2 =−

√
2

2
N10,

N3 = −3P −
√

2

2
N8, N4 =−P −

√
2

2
N10

N5 = −P −
√

2

2
(N8 + N10) , N6 =−

√
2

2
N10,

N7 = 2
√

2P + N8, N8 = a12
2P − a22
1P

a11a22 − a12a21
,

N9 = √
2P + N10, N10 = a21
1P − a11
2P

a11a22 − a12a21
.

(33)

Table 5 Optimal solutions for
the wing box structure Component Initial design (mm) Optimal thickness (mm)

Proposed method Deterministic

using hybrid model optimization

Spar 1 25.4 4.59 4.53

Spar 2 25.4 15.74 14.02

Spar 3 25.4 10.56 9.60

Rib 1 25.4 2.54 2.54

Rib 2 25.4 3.01 2.64

Rib 3 25.4 2.54 2.54

Rib 4 25.4 2.54 2.54

Rib 5 25.4 2.54 2.54

Rib 6 25.4 2.54 2.54

Rib 7 25.4 2.54 2.54

Rib 8 25.4 2.54 2.54

Upper skin 25.4 32.85 28.71

Lower skin 25.4 32.69 28.56

Weight (kg) 346.79 329.16 289.12

Reliability index βm

(for constraint UA ≤ 25.4 mm) −0.91 3.00 −1.22

Reliability index βm

(for constraint UB ≤ 25.4 mm) −2.77 3.00 −1.21
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where ai j (i = 1, 2; j = 1, 2) and 
i P (i = 1, 2) are defined
as:

a11 = L

2E

(
1

A1
+ 1

A3
+ 1

A5
+ 2

√
2

A7
+ 2

√
2

A8

)

,

a12 = a21 = L

2E A5
,

a22 = L

2E

(
1

A2
+ 1

A4
+ 1

A5
+ 1

A6
+ 2

√
2

A9
+ 2

√
2

A10

)

,


1P =
√

2P L

2E

(

− 1

A1
+ 3

A3
+ 1

A5
+ 4

√
2

A7

)

,


2P =
√

2P L

2E

(
1

A4
+ 1

A5
+ 2

√
2

A9

)

. (34)

In a similar way, the virtual member forces N 0
i (i = 1,

2, . . . , 10) can be also obtained by applying a unit virtual
load vertically at node 2.

Following the virtual load method, one may find the ana-
lytic expression for the vertical displacement of node 2,
which is:

U =
(

6∑

i=1

N 0
i Ni

Ai
+ √

2
10∑

i=7

N 0
i Ni

Ai

)
L

E
. (35)

In addition, it can be easily checked that a design problem
formulated with the explicit displacement constraint will
yield the same results as presented above.

6.3 Reliability-based optimization of a wing box structure

In this example, we considered optimal design of an aircraft
wing box. The simplified structural model has three spars,
eight ribs, an upper skin and a lower skin, as shown in Fig. 7.
The finite element model consists of 64 membrane elements
for the skins and 55 shell elements for the ribs and spars.
The wing box is fixed at the root chord. The aerodynamic
lifting forces are represented by three static loads (P1, P2

and P3), which are applied along the three spars. The spars
and ribs are made of an aluminium alloy with the Young’s
modulus E1 = 72.42 GPa, the Poisson’s ratio μ1 = 0.3,
and the mass density ρ1 = 2.768 × 103kg

/
m3. The skins

are made from a boron/epoxy composite material with the
Young’s modulus E2 = 68.98 GPa, the Poisson’s ratio μ2 =
0.21, and the mass density ρ2 = 2.007 × 103kg

/
m3.

The Young’s moduli and the thicknesses of spars, ribs
and skins are assumed to be normally distributed random
variables. A total number of 15 probabilistic variables are
considered, including two for the Young’s moduli E1 and
E2, and 13 for the thicknesses of the spars, ribs and skins.
In addition, the applied loads are bounded uncertainties and

they are described by a three-dimensional ellipsoid model.
The uncertainty properties are given in Table 4.

Two constraints, UA ≤ 25.4 mm and UB ≤ 25.4 mm,
are imposed on the vertical tip displacements. The nomi-
nal thicknesses of all the spars, ribs and skins are taken as
design variables di (i = 1,2,. . . ,13), with the lower bounds
limit of 2.54 mm and the initial values of 25.4 mm. The
design objective is to minimize the total structural weight
while achieving a target reliability index β

m
= 3.0 for the

displacement constraints.
The optimal results obtained by the proposed reliability-

based optimization formulation as well as the deterministic
optimization are listed in Table 5 for comparison’s pur-
pose. When the uncertainties are considered, both the initial
design and the deterministic optimal design result in a
severe violation of the reliability constraints. On the con-
trary, in the final reliability-based design obtained by the
present method, the reliability requirements of the tip dis-
placement constraints are all met. Again, the results showed
the effectiveness of the present method based on the hybrid
model. This example seems to confirm that the present
optimization method is capable of treating medium-scale
engineering problems.

7 Conclusions

While the probabilistic randomness is a natural model for
the stochastic parameter scatters exhibited by a structure,
the multi-ellipsoid convex model provides an appealing
non-probabilistic description method for uncertain-but-
bounded variations arising from different sources. This
paper explores the reliability-based optimization design
of non-deterministic structures with both stochastic and
uncertain-but-bounded variations. Based on the probabil-
ity and convex set hybrid model, the reliability index is
defined as the shortest distance from the origin to the critical
region in u-space. Then, the reliability-based optimization
with constraints on such reliability indices is formulated as
a nested optimization problem. By employing the perfor-
mance measure approach, the original optimization prob-
lem is reformulated into an inherently more robust and
numerically tractable one, in which the outer-loop aims
to minimize the cost function while the inner-loop evalu-
ates the target performance value. Two approaches, namely
the nested double-loop approach and the linearization-based
approach, are employed to solve the optimization prob-
lem. The numerical examples confirm that both approaches
are applicable but the linearization-based approach is more
efficient since it avoids expensive iterations for inner-loop
solution. The present optimization method is proven to be
effective in ensuring the structural reliability requirements
in presence of probabilistic and bounded uncertainties. In
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addition, the comparison of numerical examples also reveals
that it may be not appropriate to treat the inherently proba-
bilistic variations with non-probabilistic models, and vice
versa. This again implies the importance of the present
study.
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