
Struct Multidisc Optim (2010) 41:495–505
DOI 10.1007/s00158-009-0452-7

BRIEF NOTE

Volume preserving nonlinear density filter
based on heaviside functions

Shengli Xu · Yuanwu Cai · Gengdong Cheng

Received: 18 May 2009 / Revised: 2 September 2009 / Accepted: 20 October 2009 / Published online: 12 December 2009
c© Springer-Verlag 2009

Abstract To prevent numerical instabilities and ensure
manufacturability, restrictions should be applied in topol-
ogy optimization. In this paper, a volume preserving density
filter based on Heaviside functions is presented. Different
from earlier Heaviside density filters, this filter is volume
preserving, which ensures efficiency and stability in opti-
mization. The new filter is compared with four other filters
through a compliance minimization problem.

Keywords Topology optimization · Filtering ·
Volume preserving · Heaviside function

1 Introduction

In classical continuum structure topology optimization
using finite element discretization (Bendsøe and Kikuchi
1988; Bendsøe 1989), two numerical problems called
checkerboards and mesh-dependency (Cheng and Olhoff
1981) attracted interests of many researchers. The checker-
board problem refers to the transition fields of alternating
black and white elements arranged in a checkerboard-like
pattern. The mesh-dependency problem, also called nonex-
istence of solutions in discretized topology optimization,
refers to obtaining different solutions for different mesh
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sizes or discretizations. As is well known, these two arti-
ficial problems will cause numerical instabilities in opti-
mization (Sigmund and Petersson 1998) and lead to results
unacceptable. To prevent such problems and obtain black
and white topology, restriction methods should be applied
to optimization (Sigmund and Petersson 1998).

During the past twenty years, various kinds of restriction
methods have been proposed in topology optimization to
avoid checkerboards and mesh-dependency problems. The
first literature concerned about restriction methods can be
traced to 1983 written by Niordson (1983). After the appear-
ance of density-based topology optimization (Bendsøe
1989), Ambrosio and Buttazzo (1993) suggested a perime-
ter control method in optimal design problem; Haber et al.
(1996) used a constraint on perimeter in topology opti-
mization. At the same time, a sensitivity filtering scheme
was proposed by Sigmund (1994) which is being widely
used in topology optimization because of its simplicity and
efficiency. Before long, slope constraint method appeared
(Bendsøe 1995; Petersson and Sigmund 1998; Borrvall
2001; Zhou et al. 2001). And then, another popular filtering
method called density filter came out (Bourdin 2001; Bruns
and Tortorelli 2001). There are also other restriction meth-
ods such as level-set method (Sethian and Wiegmann 2000;
Wang et al. 2003; Allaire et al. 2004), wavelet parameteri-
zation (Kim and Yoon 2000; Poulsen 2002) and phase-field
approach (Bourdin and Chambolle 2003; Wang and Zhou
2004).

Among all the restriction methods, filtering methods
are probably the most popular ones because they are
very simple and efficient. After the basic sensitivity filter
(Sigmund 1994) and density filter (Bruns 2001; Bourdin
2001), many other filtering methods based on these two
filters have been proposed, such as modified density fil-
ter (Guo and Gu 2004), bi-lateral density filter (Wang
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and Wang 2005), density filter with a Heaviside func-
tion (Guest et al. 2004), modified density filter with a
Heaviside function (Sigmund 2007), alternative sensitiv-
ity filter (Borrvall 2001), sensitivity filter without density
weighting (Sigmund 2001), mean sensitivity filter (Sigmund
2007) and bi-lateral sensitivity filter (Wang and Wang
2005). Recently, Sigmund (2007) introduced a new class
of morphology-based restriction schemes that work as den-
sity filters, which can provide black and white designs with
minimum length-scale constraints on hole sizes and struc-
tural feature sizes. In general, sensitivity filters and density
filters are usually easy for implementation and can eliminate
checkerboards and mesh-dependencies effectively. But their
results have grey elements around boundaries (boundary
diffusion effect), which will bring difficulties to boundary
identification in post-processing. This problem can be alle-
viated by decreasing filter size, but more details in structure
will emerge, which is also not expected in topology opti-
mization. Density filters using Heaviside functions and the
morphology-based restriction schemes can also solve both
the checkerboards and mesh-dependency problems without
grey elements at boundaries, but there are other problems
like volume preservation and stability.

In this paper, we propose a new filtering method which
is volume preserving combining the Heaviside filter (Guest
et al. 2004) and the modified Heaviside filter (Sigmund
2007). As will be shown in the following, the new filter is
volume preserving, which is a very important feature in fil-
tering (Sigmund 2007). It has several other advantages, such
as stable and fast convergence, black and white solutions,
etc., which will be discussed in detail in the following.

This paper is organized in the following structure. In
Section 2, we give definitions of a compliance minimization
problem that is used to test the filters. In Section 3, we intro-
duce several filtering methods in which we are interested
briefly. In Section 4, we present the new volume preserv-
ing filter which is based on the Heaviside and modified
Heaviside density filters. In Section 5, we test and discuss
the new filter, and compare it with the filters introduced in
Section 3. In Section 6, we discuss some topics associated
with filtering. Finally, in Section 7, we summarize and give
conclusions.

2 Compliance minimization problem

We consider a simple compliance minimization problem
with a material resource constraint. The structure is a
cantilever beam shown in Fig. 1.

The cantilever beam is discretized with 120×40 bi-linear
quadrilateral finite elements. The test example is based on
the standard density-based topology optimization, i.e. the
design variables are piece-wise constant element densities

Fig. 1 Design domain and boundaries for the compliance minimiza-
tion problem

ρe. We use linear isotropic materials, and the artificial
Young’s modulus of an element is a function of the element
density given by the modified simplified isotropic material
with penalization (SIMP) interpolation scheme

E(ρe) = Emin + ρ
p
e (E0 − Emin), ρe ∈ [0, 1], (1)

where Emin is a small number representing the stiffness of
void material which is used to avoid singularity of the stiff-
ness matrix, E0 is the Young’s modulus of solid material,
and p is the penalization power. In our test example, we
choose Emin = 10−9, E0 = 1, p = 3, and Poisson’s ratio
ν = 0.3.

The optimization problem can be written as

min
ρ

: f (ρ) = UT KU =
∑

e

uT
e keue

s.t. : KU = F

: g = V (ρ)/V ∗ − 1 =
∑

e

veρe/V ∗ − 1 ≤ 0

: 0 ≤ ρ ≤ 1 (2)

where K, U and F are the global stiffness matrix, dis-
placement vector and force vector respectively. Lower-case
symbols represent element-wise quantities. ke = ke(ρe) =
E(ρe)k0

e , E(ρe) is defined in (1), k0
e is the element stiff-

ness matrix for unit Young’s modulus. V ∗ is the material
resource constraint and ve is the volume of element e.
The sensitivity of objective function with respect to design
variable is

∂ f

∂ρe
= −uT

e
∂ke

∂ρe
ue,

∂ke

∂ρe
= p(E0 − Emin)ρ

p−1
e k0

e,

∂g

∂ρe
= ve/V ∗. (3)

It should be pointed out that in optimization using den-
sity filters, the density used in (1)–(3) should be physical
density, i.e. density after filtering (see Section 6.1 for
details).
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3 Filtering methods

In this section, we will present four filters that will be
used to compare with the new density filter introduced in
Section 4. Here we only give their equations with sim-
ple explanations. Detailed discussions and comparisons are
referred to Sections 5 and 6.

3.1 Sensitivity filter

Sensitivity filter was first presented by Sigmund (1994),
which is in the form

∂ f

∂ρe
=

∑
i∈Ne

w(xi )ρi
∂ f
∂ρi

ρe
∑

i∈Ne

w(xi )
, (4)

where f is the objective or constraint function, ρe is the
density of element e, Ne is the neighborhood of element e,
which is specified by the elements that have centers within
a given filter radius R of the center of element e, i.e.

Ne = { i | ‖xi − xe‖ ≤ R }, (5)

xi is the spatial (center) location of element i , and w(xi ) is
the weighting function given by

w(xi ) = R − ‖xi − xe‖. (6)

When using modified SIMP model, there is a possibil-
ity that element density ρe in the denominator of (4) could
be zero, thus resulting in an infinite number. In order to
avoid such a case, we replace the element density ρe in the
denominator with max(ρe, 10−3).

3.2 Density filter

Density filter was introduced by Bruns and Tortorelli (2001)
and Bourdin (2001). The formulation is

ρ̄e =

∑
i∈Ne

w(xi )viρi

∑
i∈Ne

w(xi )vi
, (7)

where vi is the volume of element i , and the others are the
same as in Section 3.1.

The first derivative of the filtered density ρ̄e with respect
to ρi is

∂ρ̄e

∂ρi
= w(xi )vi∑

j∈Ne

w(x j )v j
. (8)

The sensitivity of the objective function f with respect
to design variable ρe can be derived by the chain rule

∂ f

∂ρe
=

∑

i∈Ne

∂ f

∂ρ̄i

∂ρ̄i

∂ρe
, (9)

where the first part ∂ f
∂ρ̄i

can be calculated through (3) by

replacing ρe with ρ̄e, and the second part ∂ρ̄i
∂ρe

is defined
in (8).

3.3 Density filter with a Heaviside function

To obtain 0/1 solutions, Guest et al. (2004) modified the
linearly filtered density ρ̄e which is obtained by the original
density filter in Section 3.2 using a Heaviside step function

ρ̃e =
{

0 ρ̄e = 0
1 0 < ρ̄e ≤ 1

. (10)

The Heaviside step function (10) is smoothed by intro-
ducing one parameter β, and then the modified density can
be written as

ρ̃e = 1 − e−βρ̄e + ρ̄ee−β. (11)

A figure illustrating (11) with different β is shown in
Fig. 2.

As we can see, for β equal to zero, ρ̃e is equal to ρ̄e,
i.e. (11) does nothing to linearly filtered density ρ̄e. For β

approaching infinity, (11) acts as the step function (10), i.e.
only if ρ̄e equal to zero will ρ̃e be zero, and when ρ̄e >

0, ρ̃e is equal to one. For other cases of β, (11) acts as a
penalty forcing the intermediate density ρ̄e moving to one.
In practical optimization process, β is set to a small value
(e.g. 0.1) at first, and increased gradually during iteration.

Fig. 2 Smoothed Heaviside function with different β
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The first derivative of ρ̃e with respect to ρ̄e is

∂ρ̃e

∂ρ̄e
= βe−βρ̄e + e−β. (12)

The sensitivity of the objective function f with respect
to design variable ρe can be derived by the chain rule

∂ f

∂ρe
=

∑

i∈Ne

∂ f

∂ρ̃i

∂ρ̃i

∂ρ̄i

∂ρ̄i

∂ρe
, (13)

where the first part ∂ f
∂ρ̃i

can be calculated through (3) by

replacing ρe with ρ̃e, the second part ∂ρ̃i
∂ρ̄i

is defined in (12),

and the third part ∂ρ̄i
∂ρe

is defined in (8).

3.4 Modified filter with a Heaviside function

Based on the density filter with a Heaviside function
described in Section 3.3, Sigmund (2007) presented another
Heaviside filter contrary to that in Section 3.3.

ρ̃e =
{

0 0 ≤ ρ̄e < 1
1 ρ̄e = 1

. (14)

Following the form of (11), we can also get a smoothed
form of (14):

ρ̃e = e−β(1−ρ̄e) − (1 − ρ̄e)e
−β. (15)

A figure illustrating (15) with different β is shown in
Fig. 3.

As we can see, the modified Heaviside filter (15) acts
exactly contrary to the Heaviside filter (11). For β equal to

Fig. 3 Smoothed modified Heaviside function with different β

zero, ρ̃e is equal to ρ̄e, i.e. (15) does nothing to linearly
filtered density ρ̄e. For β approaching infinity, (15) acts as
the step function (14), i.e. only if ρ̄e equal to one will ρ̃e be
one, and when ρ̄e < 1, ρ̃e is equal to zero. For other cases of
β, (15) acts as a penalty forcing the intermediate density ρ̄e

moving to zero. In practical optimization process, β is set
to a small value (e.g. 0.1) at first, and increased gradually
during iteration.

The first derivative of ρ̃e with respect to ρ̄e is

∂ρ̃e

∂ρ̄e
= βeβ(ρ̄e−1) + e−β. (16)

The sensitivity of the objective function f with respect
to design variable ρe can be derived by the chain rule (13)
like the original Heaviside filter in Section 3.3 but with the
second part ∂ρ̃i

∂ρ̄i
defined in (16).

4 Volume preserving density filter based on Heaviside
functions

In this section, we propose a new volume preserving den-
sity filter with a Heaviside function by combining the two
Heaviside density filters in Sections 3.3 and 3.4.

4.1 The new Heaviside function

To satisfy the requirement of volume preservation, our basic
idea is that the new Heaviside function should have such a
property: for 0 ≤ ρ̄e < η, ρ̃e is equal to zero; for η <

ρ̄e ≤ 1, ρ̃e is equal to one; and for ρ̄e equal to η, ρ̃e is η.
Here η is a new parameter introduced in our new Heaviside
function and η ∈]0, 1[. The new Heaviside function can be
written as:

ρ̃e =
⎧
⎨

⎩

0 0 ≤ ρ̄e < η

η ρ̄e = η

1 η < ρ̄e ≤ 1
. (17)

The smoothed form of (17) can be written as

ρ̃e =

⎧
⎪⎪⎨

⎪⎪⎩

η
[
e−β(1−ρ̄e/η) − (1 − ρ̄e/η)e−β

]
0 ≤ ρ̄e < η

η ρ̄e = η

(1 − η)
[
1 − e−β(ρ̄e−η)/(1−η)

+ (ρ̄e − η)e−β/(1 − η)
] + η η < ρ̄e ≤ 1

,

(18)

in which there are two parameters β and η. Note that the
first and third expressions of (18) are both equal to η for
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ρ̄e = η, which means the new Heaviside function (18) is a
continuous function. We can rewrite it as

ρ̃e =

⎧
⎪⎨

⎪⎩

η
[
e−β(1−ρ̄e/η) − (1 − ρ̄e/η)e−β

]
0 ≤ ρ̄e ≤ η

(1 − η)
[
1 − e−β(ρ̄e−η)/(1−η)

+ (ρ̄e − η)e−β/(1 − η)
] + η η < ρ̄e ≤ 1

,

(19)

Figures illustrating (19) with different β and η are shown
in Figs. 4, 5.

As we can see, the new Heaviside filter (19) is a combi-
nation of the original Heaviside filter (11) and the modified
Heaviside filter (15) by simply rescaling them from [0, 1] to
[η, 1] and [0, η] respectively. When η approaches 0, (19) is
degenerated to the original Heaviside filter (11), and when η

approaches 1, (19) is degenerated to the modified Heaviside
filter (15). For η between 0 and 1, (19) is a combination of
the two, as in Figs. 4, 5. We can also see that for β equal
to zero, ρ̃e is equal to ρ̄e, i.e. (19) does nothing to linearly
filtered density ρ̄e. For β approaching infinity, (19) acts as
the step function (17), i.e. only if ρ̄e equal to η will ρ̃e be η,
and for all other values of ρ̄e, ρ̃e is equal to 0 or 1. For other
cases of β, (19) acts as a penalty forcing the intermediate
density ρ̄e moving towards 0 and 1. In practical optimiza-
tion process, β is set to a small value (e.g. 0.1) at first, and
increased gradually during iteration.

The derivative of ρ̃e with respect to ρ̄e is

∂ρ̃e

∂ρ̄e
=

{
βe−β(1−ρ̄e/η) + e−β 0 ≤ ρ̄e ≤ η

βe−β(ρ̄e−η)/(1−η) + e−β η < ρ̄e ≤ 1
. (20)

Note that the two expressions in (20) are both equal to
β + e−β (which is always greater than 1 for β > 0) for

Fig. 4 Smoothed volume preserving Heaviside function with different
β and η = 0.3

Fig. 5 Smoothed volume preserving Heaviside function with different
β and η = 0.5

ρ̄e = η, which means the first derivative of ρ̃e with respect
to ρ̄e (20) is also continuous. A figure illustrating (20) is
shown in Fig. 6, from which we can see that it’s larger near
density ρ̄e = η, and almost zero for other densities (not
including β = 0). The contrast is more distinct for larger β.

The sensitivity of the objective function f with respect
to design variable ρe can be derived by the chain rule (13)
like the original Heaviside filter in Section 3.3 but with the
second part ∂ρ̃i

∂ρ̄i
defined in (20).

4.2 Volume preserving and determination of η

When using density filters, the density of a specific element
is changed at first, and the volume of the whole structure
after filtering is obtained with density filters applied to every
element in the structure. The original Heaviside filter and

Fig. 6 The first derivative of ρ̃e with respect to ρ̄e with η = 0.5 and
different β
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modified Heaviside filter are not volume preserving, i.e. vol-
umes before and after filtering are not the same, especially
when there are many grey elements in the structure.

The volume before volume preserving filtering is
N∑

i=1
ρ̄i vi , and the volume after filtering is

N∑
i=1

ρ̃i vi , where N

is the number of elements. According to volume preserving
condition, the volume before and after filtering should be
the same:

N∑

i=1

ρ̃i vi =
N∑

i=1

ρ̄i vi . (21)

Note that (21) has only one unknown number η, so η

can easily be determined by solving (21) using a simple
one-dimensional search (e.g. Bi-section method or golden
section search method).

At first steps of iteration when β is small, the penalty of
the filter to intermediate densities is weak. At this time, the
SIMP interpolation scheme makes the most important role
in penalizing grey elements until it comes to near the opti-
mal design. With the optimization going on and β increasing
(especially when β is greater than 50, the lines in Figs. 4, 5
is almost vertical near η and horizontal away from it), the
volume preserving Heaviside filter takes the control giving
great penalty to elements that still have densities other than
0 and 1, and quickly results in discrete solutions. Here we
should point out that the volume preserving Heaviside fil-
ter does no penalty to density exactly equal to η (ρ̃e = η

when ρ̄e = η), but this density will be changed in the
next iteration, because the SIMP interpolation scheme is
still penalizing intermediate densities including η. Once the
density is pulled away from η, it will be penalized greatly
by the filter and move to 0 or 1 quickly. So at the end of iter-
ation, elements with intermediate densities are very limited.
The volume preserving Heaviside filter and the SIMP inter-
polation scheme work together with different importance at
different stages in optimization, and they match each other
very well.

4.3 Filtering implementation

Now we give a summary to the filtering process using vol-
ume preserving Heaviside filter. First, we have the design
variable ρe get from last optimization iteration; second, we
apply a linear density filtering (7) to design variable ρe and
get ρ̄e; third, solve (21) to get η using one-dimensional
search; fourth, apply volume preserving filtering to linearly
filtered density ρ̄e and get ρ̃e, which is the physical density
(Sigmund (2007); Section 6.1). And then, the physical den-
sity ρ̃e is used to calculate objective function, sensitivities
and other quantities needed in optimizer. Through opti-
mizer, we get a new design and a new iteration starts. The

optimization procedure with volume preserving Heaviside
filter is shown as follows:

1. Initialize design variable ρ, iter = 0, change = 1,
β = 0.1;

2. while change>0.01 and iter<=1000
3. iter = iter + 1;
4. Calculate linearly filtered density ρ̄e using (7);
5. Calculate η by solving (21);
6. Calculate physical density ρ̃e using (19);
7. Solve FE problem based on physical density ρ̃e;
8. Calculate objective function, constraint function, and

sensitivities;
9. Update design variables ρnew using MMA;

10. Calculate change= ‖ρnew − ρ‖∞;
11. if { ( mod(iter,50)=1 or change<0.01 ) and β ≤βmax }

then β = 2β;
change=0.5;
end

12. end

where βmax is 200 for the volume preserving Heaviside fil-
ter. From the algorithm (Step 11), we can see that the final
β should be between βmax and 2βmax (see Table 1).

5 Results of test example

In this section, we’ll test the five filtering methods
described in Sections 3 and 4 through a simple compliance
minimization problem described in Section 2. Through this
example, some issues in filtering are analyzed and discussed
in detail (Section 6).

We consider the problem with volume fraction 0.5 and
filter radius R = 3.5, and we use the Fortran implementa-
tion of the method of moving asymptotes (Svanberg 1987)
as the optimizer. The whole procedure has been shown in
Section 4.3 where βmax is 200 for the volume preserv-
ing Heaviside filter and 500 for the non-volume preserving
Heaviside filters.

To have a “measure of discreteness”, i.e. a way to tell
whether an optimized design has converged to a discrete
solution, we adopt the measure (Sigmund 2007)

Mnd =

n∑
e=1

4ρ̃e(1 − ρ̃e)

n
× 100%, (22)

which is in the form of a parabolic function. If a density
distribution is fully discrete, i.e. all the element densities
are 0 or 1, Mnd is 0(%). If the design is totally grey, i.e. all
element densities are 0.5, Mnd is 100(%).
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Table 1 Results of the compliance minimization problem

Filter type Physical density field f V/V0 Mnd (%) It. β

Sensitivity 202.2 0.5 21.43 93 –

Sensitivity(Sigmund 2007) 210.0 0.5 20.41 119 –

Density 209.7 0.5 26.08 282 –

Density(Sigmund 2007) 218.3 0.5 24.02 1000 –

Heaviside 173.5 0.58 3.10 325 819.2

Heaviside(Sigmund 2007) 190.0 0.5 0.36 489 –

Modified Heaviside 186.9 0.5 2.08 554 819.2

Modified Heaviside(Sigmund 2007) 192.3 0.5 0.23 435 –

Volume preserving Heaviside 179.1 0.5 0.15 359 204.8

The results of the test example are shown in Table 1. For
comparison, some similar results from Sigmund (2007) are
also given.

From Table 1, we can see that our results agreed with
the results from the literature. Analyzing the results, we can
see that Heaviside filters have clearer topologies (Mnd are
much smaller) and smaller objective functions. The origi-
nal Heaviside filter has the smallest objective function, but
it is an infeasible design because volume constraint has
been violated. The volume preserving Heaviside filter is
the clearest with a smaller β. From our experiences, β in
volume preserving filter can be very small (about 50) but

still gives discrete 0/1 solutions. And, optimization using
volume preserving Heaviside filter is more stable than that
using non-volume preserving Heaviside filters (see Section
6.2). It should be pointed out that we used standard settings
(GHINIT=0.5, GHDECR=0.7, GHINCR=1.2) for MMA
optimizer when using sensitivity filter and density filter,
while used smaller steps (GHINIT=0.1, GHDECR=0.95,
GHINCR=1.0) for the three Heaviside filters. The reason
that we used different settings is that when using stan-
dard settings, Heaviside filter and modified Heaviside filter
are unstable due to big changes of β which results in no
good result, and when using smaller settings, sensitivity



502 S. Xu et al.

filter and density filter may satisfy the convergence criteria
(max change of design variables in two successive iterations
smaller than 0.01) before reaching optimal solution.

We’ll not give more examples here in order to keep the
paper from becoming too lengthy, but results from other
examples that we have done are consistent with the results
of the compliance minimization problem.

6 Discussions

6.1 Relations between design variable and physical density

Sigmund (2007) has given a nice explanation of the rela-
tions between design variable and physical density. For
completeness of the paper, we’ll include it here again.

When using density-based filters, it is the density after
filtering that is used in interpolation scheme and calcula-
tion of structural stiffness, which we call physical density
(ρ̄ for original density filter, ρ̃ for Heaviside filters), while
the density before filtering ρ has no relation to the physical
structure. It is only used in the optimizer as design variable.
So depending on the usage of different densities, we can
easily distinguish them from each other.

When plotting density distribution of the structure, the
physical density (density used in the SIMP interpolation
scheme) should be plotted, which represent the real struc-
ture, while the density before filtering (design variable) can
also be plotted, but only can be used as a comparison. For
example, the density distribution before filtering using the
original Heaviside filter (Section 3.3) is comprised of very
thin structures, and when using the modified Heaviside fil-
ter (Section 3.4), the density distribution before filtering is
comprised of very thick structures, both of which are not
real structures.

Fig. 7 Iteration history

Fig. 8 Iteration history of Heaviside filter and the positions where β

increases

As to sensitivity analysis, we should also be clear that
the sensitivity used in optimizer is the sensitivity of objec-
tive function with respect to design variable, which has
been shown in the previous sections calculated by the chain
rule, not the sensitivity of objective function with respect to
physical density.

6.2 Volume preserving

An important feature in filtering is volume preservation,
i.e. the volume of material before and after filtering should
be the same. The original Heaviside filter (Guest et al.
2004) and modified Heaviside filter (Sigmund 2007) are
non-volume preserving, which will cause oscillation in
optimization iteration, while the volume preserving filter
presented in this paper prevented this problem. To demon-
strate this, the iteration histories of the objective function
are shown in Fig. 7 (Figs. 8, 9, 10, 11, 12, 13).

Fig. 9 Volume fraction of Heaviside filter and the positions where β

increases
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Fig. 10 Iteration history of modified Heaviside filter and the positions
where β increases

From Fig. 7, we can see clearly that optimizations with
the two non-volume preserving filters oscillating violently
with increased iteration number. This is caused by non-
volume preservation. In our optimization scheme, β is ini-
tialized with a small value (0.1), and doubled when the inner
loop has been converged or iterated for 50 times (see Step
11 of the algorithm in Section 4.3). So at first, the influence
of the Heaviside filter is not very strong and the violation
of the volume constraint is not obvious. The optimization
process is stable in the first few iterations. But when β

continues to increase, changes between two successive β

become larger and larger. Violation of the volume constraint
becomes severe (Fig. 9) which results in infeasible design in
Heaviside filter (in modified Heaviside filter, the result after
filtering is a feasible design but with a volume much smaller
than volume constraint, see Fig. 11). The optimizer is no
longer able to draw the infeasible design back into the fea-
sible field in limited iteration steps. The iteration becomes
unstable (Figs. 8, 10) and sometimes even can not get to

Fig. 11 Volume fraction of modified Heaviside filter and the positions
where β increases

Fig. 12 Iteration history of volume preserving Heaviside filter and the
positions where β increases

an acceptable design. Using the volume preserving filter,
we don’t have to worry about violations of volume con-
straint, and the iterations are very stable compared to the
non-volume preserving ones (Figs. 12, 13).

Note that the small oscillation of volume at the end of
iteration in Fig. 13 (similar oscillations also exist in original
Heaviside filter and modified Heaviside filter, see Fig. 9 and
Fig. 11) is caused by the nature of the Heaviside function,
and it has no influence to the iteration history of objective
function (Fig. 12). In fact, the topology at this point has
been already near to the optimal. What the oscillation does
is only small adjustment of intermediate densities around
the boundaries. From Figs. 4, 5, we can see that the lines are
steep near ρ̄e = η (when β is greater than 10) which will
cause elements with densities near η changing frequently
between 0 and 1 (which happens around the boundaries),
and consequently the volume changes frequently too. If β

continues to increase once it reaches the convergence crite-
ria (change<0.01), like in Fig. 13, lines in Figs. 4, 5 become

Fig. 13 Volume fraction of volume preserving Heaviside filter and the
positions where β increases
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Fig. 14 History of η

even steeper. Elements with densities near to η are forced to
be 0 or 1 with no chances to change. The volume fraction
will move to 0.5 at last and optimization be converged.

Figure 14 shows the evolution history of the parameter η.
It can be seen that η is always changing during optimization,
because η must satisfy the volume preservation condition in
every iteration. It also can be proved that parameter η has
and only has one root between 0 and 1, see Appendix A for
details.

7 Conclusions

In this paper, we presented a new volume preserving
Heaviside filter by combining original Heaviside filter
(Guest et al. 2004) and modified Heaviside filter (Sigmund
2007). The most significant feature of the new filter is its
volume preservation, that is, volumes before and after filter-
ing are the same, which makes the optimization procedure
stable. Another important feature is that the result of the
volume preserving filter is quite discrete (black and white
solution) with a smaller β than original Heaviside filter and
modified Heaviside filter.

In view of success in using the volume preserving
Heaviside filter in compliance minimization problem, we
are trying to apply this filter in other fields, and preliminary
results showed that the new filter is applicable in various
applications.
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Appendix A: Proof of existence and uniqueness
of parameter η

According to (21), we denote f (η) as a monadic function
of η:

f (η) =
n∑

i=1

ρ̃i vi −
n∑

i=1

ρ̄i vi (23)

The goal is to prove that f (η) = 0 has and only has one root
in ]0, 1[.

First, prove the existence of root. Assume a set of given
densities denoted as ρ̄1, ρ̄2, · · · ρ̄n are arranged from small
to large. In these densities, the ones with subscripts less than
i are equal to zero. Let η1 < ρ̄i , then for e ≤ i , ρ̃e = ρ̄e = 0,
and for e > i , ρ̃e > ρ̄e, so

n∑

i=1

ρ̃eve >

n∑

i=1

ρ̄eve,

i.e., when η1 < ρ̄i

f (η1) > 0. (24)

Also assume densities with subscripts greater than j are
equal to one. Let η2 > ρ̄ j , then for e > j , ρ̃e = ρ̄e = 1, and
for e ≤ j , ρ̃e < ρ̄e, so

n∑

i=1

ρ̃eve <

n∑

i=1

ρ̄eve,

i.e., when η2 > ρ̄ j

f (η2) < 0. (25)

From (24) and (25), it can be concluded that for a given
density distribution, when η is small enough, f (η) > 0, and
when η is close to one, f (η) < 0. Because f is a continuous
function of the parameter η, it must have zero roots in ]0, 1[.

Second, prove that the first derivative of f with respect
to η is less than zero, i.e.,

∂ f

∂η
=

n∑

i=1

∂ρ̃i

∂η
vi < 0. (26)

To prove (26), it only has to prove that ∂ρ̃i
∂η

in (26) is less
than zero for arbitrary i .

a. When ρ̄ ≤ η, the first derivative of filtering function
with respect to η is

∂ρ̃

∂η
= e−β

(
eβρ̄/η − 1 − βρ̄

η
eβρ̄/η

)
. (27)
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For fixed ρ̄, η and β > 0, it can be proved that (27) is
less than or equal to zero. If there exist ρ̄ > 0, then (27)
is less than zero.

b. When ρ̄ > η, the first derivative of filtering function
with respect to η is

∂ρ̃

∂η
= e−β

ρ̄−η
1−η

(
−β(1 − ρ̄)

(1 − η)
+ 1 − e−β

1−ρ̄
1−η

)
. (28)

For fixed ρ̄, η and β > 0, it can be proved that (28) is
less than or equal to zero. If there exist ρ̄ < 1, then (28)
is less than zero.

Because ρ̄ is the density after linear filtering, there must
exist intermediate densities, so the first derivative of filtering
function with respect to η is less than zero, and so (26) is
true.

Function f (η) is a monotonic function of parameter η,
and is greater than zero when η approaches 0, and less than
zero when η approaches 1, so it has and only has one root in
]0, 1[.
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