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Abstract A robust shape and topology optimization
(RSTO) approach with consideration of random field uncer-
tainty in loading and material properties is developed in this
work. The proposed approach integrates the state-of-the-
art level set methods for shape and topology optimization
and the latest research development in design under uncer-
tainty. To characterize the high-dimensional random-field
uncertainty with a reduced set of random variables, the
Karhunen–Loeve expansion is employed. The univariate
dimension-reduction (UDR) method combined with Gauss-
type quadrature sampling is then employed for calculating
statistical moments of the design response. The combination
of the above techniques greatly reduces the computational
cost in evaluating the statistical moments and enables a
semi-analytical approach that evaluates the shape sensitiv-
ity of the statistical moments using shape sensitivity at
each quadrature node. The applications of our approach to
structure and compliant mechanism designs show that the
proposed RSTO method can lead to designs with completely
different topologies and superior robustness.
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Nomenclature
C(x1, x2) spatial covariance function
D spatial domain
Ei jkl elastic tensor
a(x, ω) random field
ā (x) mean function of a(x, ω)

ai (x) or ai ith eigenfunction of random field
g(z) function of z
J objective functional
p(z) joint probability density function
u state variable
V(x) design velocity field
wi weight of the ith quadrature point
φ level set function
λ Lagrange multiplier
λi ith eigenvalue of random field
ξ i (ω) orthogonal random variables with zero

mean and unit variance
μ mean performance
σ 2 performance variance
z vector of random variables
zi the i-th random variable of z
zi j the j-th quadrature node of zi

� sample space
ω an element of sample space �

� geometric shape of design
∂� boundary of �

1 Introduction

Since the seminal work of Bendsøe and Kikuchi (1988),
structural topology optimization has undergone consider-
able developments during the past two decades, which
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provides an efficient way to obtain effective design candi-
dates and greatly accelerates the engineering design inno-
vation process. The state-of-the-art topology optimization
approaches include the ground structure method (Bendsøe
et al. 1994), the homogenization based method (Bendsøe
and Kikuchi 1988), simple isotropic material with penaliza-
tion (SIMP) (Rozvany et al. 1992; Sigmund 2001), and the
level set methods (Wang et al. 2003; Allaire et al. 2004).
Although topology optimization is becoming a matured
field, most of the current work is focused on deterministic
optimization where the design is determined without con-
sideration of various sources of uncertainties, such as the
variation in the loading, material properties, or geomet-
ric variations due to the imprecise manufacturing process.
To obtain robust and reliable designs, the uncertainties
existing in the structure and its operating environment
need to be considered and their impact on design perfor-
mance should be assessed quantitatively during a design
process. Topology optimization under uncertainties is still
an open research area which requires further investiga-
tions. The difficulties are largely attributed to the infinite-
dimensional property of topology optimization, which poses
great challenges in uncertainty representation, propagation,
and design sensitivity analysis.

Recent years have seen growing interests in taking uncer-
tainty into account to obtain robust and reliable topological
designs. Due to its simplicity, frame structures were first
studied for robust and reliability-based topology optimiza-
tion under uncertainty (Christiansen et al. 2001; Mogami
et al. 2006; Seepersad et al. 2006; Jung and Cho 2004).
Olhoff et al. first integrated reliability analysis into the
element-based topology optimization method and intro-
duced a new strategy called reliability-based topology opti-
mization (RBTO) (Kharmanda and Olhoff 2002), where
a probabilistic constraint is introduced and the objec-
tive is treated as deterministic. Reliability-based topol-
ogy optimization was further developed in recent years by
different research groups (Jung and Cho 2004; Maute and
Frangopol 2003; Kharmanda et al. 2004; Allen and Maute
2005). A comprehensive review of RBTO can be found in
Mozumder et al. (2006). On the other hand, not many works,
except Seepersad et al. (2006), Kogiso et al. (2008), Conti
et al. (2008), exist on robust topology optimization (RTO),
although it is a topic of great significance both in academic
and industrial applications.

Robust optimization problems have been addressed in
different scientific disciplines (Beyer and Sendhoff 2007).
The first approach is the method of stochastic program-
ming (Birge and Louveaux 1997) with its root in operations
research; the second method is robust design (Chen et al.
1996) that originated in engineering design. Among the
existing RTO works, Seepersad et al. employed the frame

structure method and the robust design approach to imple-
ment robust topology optimization of cell structures consid-
ering uncertain boundary conditions (Seepersad et al. 2006).
The limitation in the frame-structure based RTO method
lies in the fact that the configuration of the optimal design
is determined to a large extent by the number and loca-
tions of the nodes of the frame structure. If the number
of nodes is limited, the solution may not be sufficient to
represent the optimal topology. Using the homogenization
based method, Kogiso et al. (2008) proposed a sensitivity-
based RTO method for designing compliant mechanisms,
where the effect of the variations in the direction of the
input force on the output displacement is considered based
on the first-order derivative. Conti’s work (2008) is the first
to combine level set methods with stochastic programming
techniques for structural optimization, however, the work
is limited to considering only the loading uncertainty in a
random variable form.

In this work, we propose a methodology for robust shape
and topology optimization (RSTO) problems by integrating
the level set methods with the robust design formulation
considering not only the random variable uncertainty, but
also random field uncertainties in loading and material prop-
erties. Conventional robust design optimization is usually
set as a continuous optimization problem in finite dimen-
sions. To combine robust design with shape and topology
optimization, which is an infinite-dimensional optimization
problem, we define the statistical moments of the response
as functionals of geometric shapes and a set of random vari-
ables reduced from random field. A fundamental challenge
to be addressed in RSTO is how to characterize uncertainties
and propagate them to the design responses in an efficient
manner. In this paper, the spectral method (Ghanem and
Spanos 1991), in particular the Karhunen–Loeve expan-
sion, is employed to reduce the dimensionality in uncer-
tainty representation. In addition, the statistical moments
of design responses are evaluated using the generalized
Gauss-type quadrature, which transforms the RTO prob-
lem into a weighted summation of a series of determinis-
tic topology optimization sub problems at the quadrature
nodes. The design (shape) sensitivity is derived at each
quadrature node using the adjoint variable method. The
shape derivative is further combined with a steepest descent
method to form a design velocity filed for the level set equa-
tion to update the design solution in optimization iterations.
The level set methods offer a precise boundary description
for implementing both the robust shape optimization and
topology optimization in a unified mathematical framework,
which is another advantage of the proposed method.

This paper is organized as follows: A brief review of
robust optimization and fundamentals about level set meth-
ods for RSTO are presented in Section 2. After that,



Level set based robust shape and topology optimization under random field uncertainties 509

uncertainty characterization and propagation using the spec-
tral method and the Gauss-type quadrature are introduced
in Section 3. In Section 4, the shape derivatives of the
statistical moments are evaluated using the adjoint vari-
able method. The numerical algorithm for RSTO together
with four demonstration examples is provided in Section 5.
Conclusions and future works are discussed in the last
section.

2 Level-set based RSTO

2.1 Robust design models

Conventional robust design, pioneered by Taguchi (1993),
refers to a class of methods for improving quality and reli-
ability by designing a product or process so that it is robust
(insensitive) against variations in uncontrollable noise vari-
ables (Phadke 1989; Wu and Hamada 2000). The robust
design problem typically involves a nonlinear programming
formulation (Chen et al. 1996; Parkinson et al. 1993) in
which the objective is to make suitable tradeoff between
‘optimizing’ the mean performance μ and minimizing the
performance variance σ 2 (or the standard deviation σ ), as
shown in Fig. 1.

The common robust design objective function balances
between the mean and standard deviation of the objec-
tive response through the choice of the constant k (Kalsi
et al. 2001; Jin et al. 2003). Functions of the form μ + kσ

also play a role when we have constraint responses that
must satisfy certain conditions with specified probabilities.
When the constraints relate to the failure of a product,
the constraint evaluation is often referred to as reliability
assessment (Melchers 1999; Du and Chen 2000, 2001). A
complete review of robust design optimization can be found
in literatures (Beyer and Sendhoff 2007; Chen et al. 1996).

robust X 

f (X) 
[ , ]

. . 0
f f

g g

minimize

s t k

μ

Fig. 1 Robust design model (Chen et al. 1996)

2.2 Level set methods for shape and topology
optimization

Level set methods were originally introduced by Osher and
Sethian (1988) as a numerical scheme for tracking fronts
propagating with curvature-dependent speed. In the past
two decades, level set methods have thrived to be power-
ful tools with many applications in different fields (Sethian
1999; Osher and Fedkiw 2003). Their advantage lies in their
capability of precisely describing closed boundaries with
dynamic variations, which enables easy ‘capture’ of the
boundary on a fixed Eulerian grid (a structured rectangular
grid) by solving a Hamilton–Jacobi partial differential equa-
tion (Wang et al. 2003). Sethian and Wiengmann (2000)
first combined level set methods with the immersed inter-
face methods for structural boundary design, where the
former was used to represent the geometric boundary of the
design and the latter was used for elastic analysis. Osher and
Santosa (2001) introduced the shape gradient of the objec-
tive functional into the level set model and established a link
between the shape gradient and the velocity field. This work
was further completed by Allaire et al. (2002, 2004), who
derived the shape sensitivity of compliance and geometric
advantage by employing the adjoint variable method. Start-
ing from the material time derivative method (Wang et al.
2003; Wang and Wang 2004b), Wang et al. (2003) identi-
fied a meaningful link between the velocity field in the level
set method and the general structural sensitivity analysis.
The ‘color level set’ model, which was also proposed by
Wang (2004b), made possible the topology optimization of
multi-material structures and compliant mechanisms in the
level set framework (Wang and Wang 2004a; Wang et al.
2005; Chen and Wang 2007; Chen et al. 2008; Wang and
Chen 2009). To avoid being lost in technical details, in this
section, we only focus on the key issues involved in RSTO.
A complete introduction to level set methods can be found
in Sethian (1999), Osher and Fedkiw (2003).

As its name implies, level set method implicitly repre-
sents the boundary as the zero level set of a one-higher
dimensional surface φ(x), which is called the level set func-
tion. In the level set model, the domain is defined as three
parts according to the value of the level set function:

⎧
⎨

⎩

φ (x(t)) > 0 : x(t) ∈ D\�
φ (x(t)) = 0 : x(t) ∈ ∂�

φ (x(t)) < 0 : x(t) ∈ �\∂�

, (1)

where D denotes the design domain; and t ∈ R+ is time.
The domain and a sketch of level set representation are
shown in Fig. 2. The greatest advantage of implicit represen-
tation lies in its ability of dealing with topological changes,
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Fig. 2 a, b A 2D boundary
embedded as the zero level set
of a 3D level set function

(a) 3D level set function (b) corresponding 2D geometry

( ) 0xφ =
( ) 0xφ >

( ) 0xφ <

D( ) 0xφ >

( ) 0xφ =

( ) 0xφ <

such as splitting and merging of the boundary, in a natural
manner.

By calculating the material time derivative (Reddy 1986)
of the equation φ(x) = 0, we get the following equation:

∂φ

∂t
+ ∇φ · V (x) = 0, (2)

where V (x) = dx
dt is the velocity vector field. Considering

n = ∇ϕ
|∇ϕ| and V · ∇ϕ = (V · n) |∇ϕ|, we can write (2) as

∂φ

∂t
+ Vn (x) |∇φ| = 0. (3)

These two Hamilton–Jacobi type partial differential equa-
tions (PDEs) are the well-known level set equations (Osher
and Sethian 1988; Sethian 1999; Osher and Fedkiw 2003).
Based on the level set theory, the topology optimization
problem is transformed into a problem of finding the steady-
state solution of the Hamilton–Jacobi equation. To get a
feasible steady-state solution of (2) and (3), an important
issue is to identify a rational velocity field. More details on
calculating the shape derivative and identifying the velocity
field in the RSTO problem will be provided in Section 4.

2.3 Setting an RSTO problem

In probabilistic RSTO, uncertainty is introduced as a new
dimension in addition to space and time (Zabaras 2007),
while the solution is sought in this extended space. Let’s
use z to denote the random variables in the system, and
assume z is independent of the design variable, shape �.
The design response (performance) under uncertainties can
be correspondingly expressed as a functional J (�, u, z) of
the random quantities z in addition to the geometric shape
� and state variable u, that is

J (�, u, z) =
∫

�

f (u(�, z))d�, (4)

where the performance function J (�, u, z) is the total
strain energy, or the mean compliance of the structure
in structural optimization; in complaint mechanism opti-
mization, J (�, u, z) is the geometric advantage or work
efficiency. The random quantities involved in the system can
have spatial variability to form a random field or random
process but it can always be discretized into a finite num-
ber of random variables, which will be further explained in
Section 3.1. Thus (4) is general enough to cover random
field or random process.

The mean μ(J (�, u, z)) and standard derivation σ (J (�,
u,z)) of the response J (�, u, z) in (4) can be further
expressed as follows:

μ(J (�, u, z)) =
∫∫

�

p(z) f (u(�, z))d�dz

=
∫

p(z)J (�, u, z)dz,

σ 2(J (�, u, z)) =
∫

p(z)
[∫

�

p(z) f (u(�, z))d�

−
∫∫

�

p(z) f (u(�, z))d�dz
]2

dz

=
∫

p(z)
[
J (�, u, z) − μ(J (�, u, z))

]2
dz,

(5)

where p(z) is the joint probability density function (p.d.f.)
of the random variables. In this way, an RSTO problem is
set as follows:

Minimize
J ∗(�, u, z) = μ(J (�, u, z)) + kσ(J (�, u, z))

Subject to :
V olume constraint |�| = |�|obj ,

Perimeter constraint on |∂�| , (6)

together with the partial differential equations (PDEs) gov-
erning the physical system.
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3 Uncertainty quantification and propagation
in RSTO

3.1 Random variable and random field

Uncertainties in structural optimization can be modeled
either by random variables or random fields (Ying et al.
2009). The former can be considered as the constituting ele-
ment of the latter, as shown in Fig. 3. Random variables
and random fields can be used to model different physical
quantities. For example, when considering a concentrated
random load, we can model its magnitude and direction as
two random variables (Chen et al. 2009), either correlated
or independent. But for physical quantities varying across
the spatial domain, e.g., material property or a distributed
random load, they should be more realistically modeled as
random fields (Ying et al. 2009). A random variable often
can be conveniently characterized by the mean and stan-
dard deviation of its distribution. To characterize a random
field, a third factor needs to be taken into account, that is,
the correlations (dependency) among the random variables
in this random field. When there is no correlation or the
correlation is very weak, the random field is more like the
‘white noise’ in signal analysis and Monte Carlo method
can be used to model such a random field. When the cor-
relation is strong, spectral methods (Ghanem and Spanos
1991) need to be employed to quantify the uncertainty. In
this work, we use a Gaussian random field with a relatively
strong correlation to describe the uncertain material field.
To characterize the random-field material uncertainty with
a reduced set of random variables, the Karhunen–Loeve
(K–L) expansion approach is employed. To efficiently prop-
agate uncertainty in a RSTO process, we propose to use
the univariate dimension reduction (UDR) method which is

applicable to arbitrary probability distributions. The uncer-
tainty modeled by a random field needs to be discretized into
a finite number of random variables for practical manipula-
tions. In this section, we first discuss the discretization of
random fields using the K–L spectral representation and the
propagation of uncertainty based on the UDR method com-
bined with quadrature formula for sampling. These methods
are further incorporated into the framework of the level-set
based RSTO.

3.2 Reduced order Karhunen–Loeve expansion
of random field

The Karhunen–Loeve expansion (Ghanem and Spanos
1991) is a spectral approach to represent a random field
using eigenfunctions of the random field’s covariance func-
tion as expansion bases. Let a (x, ω) : D × � → R be a
random field defined over a spatial domain D, which is a
function of spatial coordinate x. Here ω ∈ � denotes an
element of the sample space and is used to indicate that the
involved quantity is random. The random field a(x, ω) can
be represented by the K–L expansion as follows:

a (x, ω) = ā (x) +
∞∑

i=1

√
λi ai (x) ξi (ω), (7)

where ā (x) is the mean function. λi and ai (x) are the ith
eigenvalue and eigenfunction obtained from the following
integral equation:
∫

D
C (x1, x2) ai (x1) dx1 = λi ai (x2), (8)

where C(x1, x2) is the spatial covariance function of the ran-
dom field a(x, ω). The random field variables, ξ i (ω) in (7)

k

(a) The p.d.f. of a random
variable at a specific 

location

(b) A realization of a weakly correlated random field ,a (X,   )

  

(c) A realization of a strongly correlated random field ,a (X,   )

ω

ω

σ

μ

Fig. 3 a–c Concept of random variable and random field
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are orthogonal random variables with zero mean and unit
variance. That is,

E (ξi (ω)) = 0 and E
(
ξi (ω) ξ j (ω)

) = δi j . (9)

The orthogonality of ξ i (ω) is a unique feature of the K–L
expansion. ξ i (ω) can be calculated as:

ξi (ω) = 1√
λi

∫

D
(a (x, ω) − ā (x)) ai (x) dx . (10)

The second order statistics of ξ i (ω) in (9) can be derived
from (10) Based on sampling and spatial integration at the
right side of (10), samples of ξi (ω) can be generated to
infer the distribution of the random field variable, ξi (ω). The
K–L expansion is the optimal among finite representations
using orthogonormal bases in the sense that the mean square
error caused by a truncation of the expansion is minimized
(Ghanem and Spanos 1991).

When applying the K–L expansion to a discretized ran-
dom field, operations on functions are transformed into
operations on matrices (Ghanem and Doostan 2006). A
random field can be spatially discretized by the spatial
averaging method or the collocation method (Haldar and
Mahadevan 2000). Let a(ω) denote an N dimensional ran-
dom vector whose elements are random variables obtained
by discretizing a random field a(x, ω) at N observation
points in the domain D. The K–L expansion of a(ω) can
be expressed as:

a (ω) = ā +
N∑

i=1

√
λi aiξi (ω) , (11)

where ā denotes a vector containing the mean values of the
random field at the N observation points; λi and ai are the
eigenvalues and eigenvectors of the covariance matrix C;
ξi (ω) are orthogonal random field variables with zero mean
and unit variance. By truncating (11) at some M 	 N , a
reduced order K–L representation of random field can be
obtained with its significance of representing the random
field measured as:

s =
M∑

i=1

λi

/
N∑

i=1

λi . (12)

When s is sufficiently close to one, a reduced order rep-
resentation ((11) with N = M) can be used to represent
the random field with a much smaller dimensionality (M)
without sacrificing too much accuracy. The random field
variables ξ i (ω) thus identified with reduced dimensional-
ity together with other random quantities in the system,

comprise the vector of random variables, denoted as z in the
optimization formulation (4). The benefits of such reduction
will be further demonstrated in our example problems. The
procedure illustrated above can also be used to character-
ize a random field from data obtained at a finite number
of observation points in a spatial domain (Ghanem and
Doostan 2006).

3.3 Multivariate gauss-type quadrature for statistical
moments calculation

Multivariate quadrature formulas for multiple random vari-
ables can be built from one dimensional quadrature formu-
las. There are many ways of doing this (Engels 1980) and in
this paper, we focus our examination on two methods, the
tensor product quadrature (TPQ) formula and the univariate
dimension reduction (UDR) method.

With the TPQ formula, the k-th statistical moments of
g(z) can be calculated as:

E[gk] =
∫

�1

· · ·
∫

�n

{g (z1, · · · , zn)}k fz (z) dz



m1∑

i1=1

w1·i1 · · ·
mn∑

in=1

w1·in

{
g

(
l1·i1 , · · · , ln·in

)}k (13)

where fz(z) is the joint p.d.f. of z and li · j ,wi · j are the
j-th node and weight of the i-th variable. �i , mi are the
domain of integration and the number of nodes for i-th vari-
able, respectively. The total number of g(z) evaluations is
m1 × m2 · · · × mn .

The central moments can be calculated from the raw
moments obtained by (13) or directly calculated as in (13)
with g(z) replaced by g(z) − μg . Expressions for the mean,
standard deviation are as follows:

(mean)

μg =
m1∑

i1=1

w1·i1 · · ·
mn∑

in=1

wn·in g
(
l1·i1 , · · · , ln·in

)
,

(STD)

σg =
⎡

⎣
m1∑

i1=1

w1·i1 · · ·
m2∑

in=1

wn·in

(
g

(
l1·i1 , · · · , ln·in

)−μg
)2

⎤

⎦

1/2

.

(14)

With the univariate dimension reduction (UDR) method
(Rahman and Xu 2004), the multivariate function g(z)
is approximated by a sum of univariate functions which
depend on only one variable with the other variables fixed
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to their mean values. Let the univariate functions denoted
by g_i , then g(z) is approximated as follows:

g (z) 
 ĝ (z) =
n∑

i=1

g (μ1, · · · , zi , · · · , μn)

− (n − 1) g (μ1, · · · , μn)

=
n∑

i=1

g_i (zi ) − (n − 1) g (μz). (15)

Here independence of zi is assumed and it is known that the
error of this approximation is mainly contributed from the
interaction effects among variables (Xu and Rahman 2004).
Since zi are mutually independent, g_i (zi ) are also indepen-
dent with each other and the statistical moments of ĝ (z) can
be approximated conveniently from moments of g_i (zi ), as
follows (Zhao and Ono 2001):

(Mean) μĝ =
n∑

i=1

μg_i − (n − 1) g (μz) ,

(Variance) σ 2
ĝ =

n∑

i=1

σ 2
g_i

. (16)

The moments of univariate functions are calculated using
one dimensional Gauss-type quadrature formula. The num-
ber of g(z) evaluations for this calculation is m1 + · · · +
mn + 1 where mi is the number of nodes used for the
calculation of moments of g_i . The UDR method offers a
more efficient approach than the TPQ method, however,
the method might not be accurate when there exists strong
interactions between random variables (Lee and Chen 2008;
Lee et al. 2009).

4 Shape derivatives of statistical moments

4.1 Decomposition of the shape derivatives
of statistic moments

To minimize the objective functional formulated in (6),
we need to quantify the change of the objective functional
J ∗(�, u, z) with respect to a small variation of the shape �

(design), which can provide us with necessary information
for updating the current design. This process is called shape
sensitivity analysis and the result is called shape derivative
(Sokolowski and Zolesio 1992). In this section, a semi-
analytical shape sensitivity analysis approach is presented
for the proposed RSTO formulation. The mean and standard
deviation of the response are first numerically discretized
using the multivariate Gauss-type quadrature discussed in
Section 3.3. From an optimization point of view, the mul-
tivariate Gauss-type quadrature essentially transforms the

RSTO problem into a weighted summation of a series of
deterministic topology optimization sub problems at the
quadrature nodes. The shape sensitivity of each sub prob-
lem is then derived using the adjoint variable method and
calculus of variation.

Equation (6) can be approximated by using either the
TPQ formula in (14) or the UDR formula in (15) and (16).
The UDR formula is used here as an example to illustrate
how to derive the shape gradient of the statistical moments.
For shape sensitivity analysis with TPQ formula, please see
our paper (Chen et al. 2009). With the UDR method, the
mean and standard deviation of a response are calculated
from the mean and standard deviation of univariate sub-
functions which can be evaluated by the one dimensional
Gauss-type quadrature formula as discussed in Section 3.3.
From an optimization point of view, the Gauss-type quadra-
ture formula essentially transforms the RSTO problem into
a weighted summation of a series of deterministic topol-
ogy optimization sub problems. The shape sensitivity of
each sub problem is then derived using the adjoint variable
method and calculus of variation.

Following this approach, (6) can be approximated as
follows by using the UDR formula in (15) and (16).

μJ =
n∑

i=1

μJ_i − (n − 1) J (�, u, μz)

σ 2
J =

n∑

i=1

σ 2
J_i

(17)

where J_i is a univariate subfunction depending only on
one random variable zi with the other random variables
fixed to their mean values; n is the number of random vari-
ables. We address the general problem using the variational
method and the techniques proposed in Allaire et al. (2004),
Pironneau (1984). With the assumption that the random
variables are independent of the design variables �, the
shape derivative of the mean of the performance function
J (�, u, z) is expressed as follows:

D� [μJ ] =
n∑

i=1

D�

[
μJ_i

] − (n − 1) D�

[
J (�, u, μz)

]

(18)

Similarly, the shape derivative of the standard deviation can
be expressed as:

D� [σJ ] = 1
√

n∑

i=1
σ 2

J_i

n∑

i=1

D�

[
σ 2

J_i

]
(19)
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The final shape derivative of the objective functional
J ∗(�, u, z) is

D�

[
J ∗ (�, u, z)

] = D� [μ (J (�, u, z))]

+ k D� [σ (J (�, u, z))]

=
n∑

i=1

D�[μJ_i ]

− (n − 1) D�

[
J (�, u, μz)

]

+ k
√

n∑

i=1
σ 2

J_i

n∑

i=1

D�

[
σ 2

J_i

]
(20)

With one dimensional Gauss-type quadratue formula, the
shape sensitivity D�

[
μJ_i

]
and D�

[
σJ_i

]
in (19) and (20)

can be calculated from simple mathematical manipulations
on the shape sensitivities of a series of deterministic scenar-
ios denoted as D�

[
J

(
�, u, zi j

)]
j = 1, · · · , mi where

zi j and mi mean the j-th quadrature node of zi and the num-
ber of the nodes, respectively. D�

[
J

(
�, u, zi j

)]
reveals the

underlying relations between the design variable shape �

and the objective functional J (�, u, zi j ) under a specified
scenario with the random variable zi .

4.2 Variational method for shape sensitivity analysis
of sub problems

In order to calculate (20), we need to calculate the shape
sensitivity J�(�, u, zi j ) for each scenario with the ran-
dom variable zi . Since in each scenario zi j is constant,
we briefly write J (�, u, zi j ) as J (�, u) in the following
derivation process. Each sub problem can be considered
as a deterministic optimization problem, where an objec-
tive functional is maximized or minimized with respect to
a class of admissible boundaries of the design (Pironneau
1984). The performance functional J (�, u) can be formu-
lated either directly as a domain/boundary integrals as (21)
or indirectly formulated as a function of the integrals.

J (�, u) =
∫

�

f (u (�))d�

J (�, u) =
∫

∂�

f (u (�))ds (21)

For example, in the structure optimization problem, the
objective functional of mean compliance can be expressed
as

J (�, u) =
∫

�

ε (u) : D : ε (u) d�, (22)

where ε (u) = 1
2

(∇u + ∇uT
)

is the strain field. In lin-
ear compliant mechanism optimization problem as demon-
strated in one of our examples, geometric advantage (GA)

is a commonly used performance index, which can be
formulated as follows (Wang et al. 2005):

G A (�, u) = −out (�, u)

in (�, u)

= Finu1o + fou2o

−Finu1i − fou2i −Finku1ou2i +Finku1i u2o
,

(23)

where

u1i =
∫

�

ε (u1) : D : ε (u1) d�,

u2o =
∫

�

ε (u2) : D : ε (u2)d�,

u1o = u2i =
∫

�

ε (u1) : D : ε (u2)d�. (24)

u1 denotes the displacement field caused by a unit input
force; u2 is the displacement field caused by a unit out-
put force. For more details, please be referred to literatures
(Wang et al. 2005).

Assuming � is a region with a continuous and smooth
boundary, a smooth vector field V is applied along the
boundary for an extremely short dummy time τ , mapping �

into �τ . The variation of the objective functional J (�, u)

can be formally defined as follows (Pironneau 1984):

δ J
= J

(
�τ , u

(
�τ

)) − J (�, u) = [J� + Juu�] δ�, (25)

where the first term in the brackets is the derivative of
J (�, u) with respect to � with the state variable u being
constant. In terms of the domain-based objective functional
J (�, u) = ∫

�
f (u (�))d�, its variation is written as:

δ J =
∫

δ�

f (u) d� +
∫

�

δ f (u)d�. (26)

According to Sokolowski and Zolesio (1992), Pironneau
(1984), the first term in the above equation can be
written as
∫

δ�

f (u)d�
.=

∫

∂�

f (u)V · nds. (27)

Substituting it into (26), we can get

δ J =
∫

∂�

f (u)V · nds +
∫

�

δ f (u)d�. (28)

In terms of the boundary-based functional J (�, u) =∫

∂�
f (u (�))ds, its variation has the following form

(Sokolowski and Zolesio 1992):

δ J =
∫

∂�

V · n
(

∂ f

∂n
+ f κ

)

ds +
∫

∂�

fuδuds. (29)
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where ∂ f
∂n = ∇ f · n and κ = divn is the curvature of a point

on the boundary.
The significant challenge in the above equations is that

we can not acquire u� (or δu) directly, since u is a vari-
ational weak solution to the state equations. The adjoint
variable method is employed in this work to solve this prob-
lem. Let W (�, u, v) = 0 denote the weak form of the
physics governing equation. In this work, we only consider
linear elastic problems, where the governing equation can
be expressed as follows:

W (�, u, v) = 1

2

∫

�

ε (u) : D : ε (v)d�

−
∫

�

f · vd� −
∫

�t

g · vds ≡ 0 (30)

The variation of the Lagrange equation of the sub prob-
lem can be formulated as follows (Arian and Ta’asan 1995):

δL = δ J + δW = [J� + Juu� + λ (W� + Wuu�)] δ�

= (J� + λW�) δ� + (Ju + λWu) u�δ� (31)

By solving the adjoint equation Ju + λW = 0, we can get
a proper Lagrange multiplier λ and further get the shape
derivative in (20). For more details of sensitivity analysis
for level-set based topology optimization, please be referred
to literatures (Wang et al. 2003, 2005; Allaire et al. 2004;
Chen et al. 2005).

5 RSTO algorithm and demonstration examples

5.1 Numerical algorithm

The algorithm for RSTO is represented by a flowchart
shown in Fig. 4. After setting the initial design and boundary
conditions, the spectral methods introduced in Section 2 are
first applied to reduce the dimensionality for representing
the uncertainties in loading and material. For the reduced
set of random variables, the locations and weights of nodes
are determined next based on the Gauss-type quadrature for
calculating the mean and standard deviation of the perfor-
mance function. The shape sensitivity is then calculated at
each integration node. Therefore, the computational cost
is proportional to the number of nodes. The velocity field
is set using the steepest descent method and the geometry
is updated via Hamilton–Jacobi equation. These final two
steps are the same as the techniques used for deterministic
level set based topology optimization. This loop will iterate
until the convergence criterion is satisfied.

Fig. 4 Flow chart of the RSTO algorithm

5.2 Demonstration examples

The proposed robust design procedure is first applied to an
example with two non-normal random variables to verify
the effectiveness and feasibility of the moment calculation
based on the Gauss-type quadrature formula and the pro-
posed design sensitivity analysis. After that, we apply the
proposed method to design a 3D bridge beam with consid-
eration of a random loading field in Example 2 and a random
material field in Example 3. In Example 4, a compliant
mechanism is designed against the variations associated
with a random material field.

Example 1 A 2D bridge beam with a random load at bottom

In this example, a 2D bridge beam structure is opti-
mized with consideration of a random force, of which the
magnitude and angle are characterized by two uncorrelated
random variables. This example is used to demonstrate
the geometric differences between the robust design and
its deterministic counterpart, their respective performances
under the random force, and the accuracy of statistical
moments computed using the proposed uncertainty propa-
gation techniques.

The robust design objective is to minimize the weighted
summation of the mean and standard deviation of the total
strain energy of the structure as introduced in (6), where the
weight k for minimizing the standard deviation is set to be 1
in all examples in this paper, assuming optimizing an mean
performance is equally important as minimizing its stan-
dard deviation. The boundary condition of the bridge beam
is shown in Fig. 6. The design domain is defined within a
2-by-1 square with the lower left corner fixed and the lower
right corner simply supported. A random external force is
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applied in the middle of the bottom. The angle θ takes a
uniform distribution (32) with the interval from − 3π

4 to −π
4 ,

p (θ) =

⎧
⎪⎨

⎪⎩

2

π
θ ∈

[

−3π

4
, −π

4

]

0 else

. (32)

The force magnitude h takes a Gumbel distribution (33)
which is an extreme value distribution used to consider the
rare events of very large force magnitudes,

p (h) = 1

σ
exp

[

−h − μ

σ
− exp

(

−h − μ

σ

)]

, (33)

where the mean (location parameter) μ is equal to 1 and the
standard deviation (distribution scale) σ is equal to 0.3. The
plot of the joint PDF (probability density function) is shown
in Fig. 5a.

The level set function is evolved on a 401-by-201 fixed
Eulerian grid. The design domain is discretized using 100-
by-50 finite elements for elastic analysis. The elastic mate-
rial is assumed with a dummy Young’s modulus of E = 1
and the Poisson ratio of 0.3. The void area is assumed with
a dummy Young’s modulus of 0.001 and the same Poisson
ratio of 0.3. A volume constraint is applied with a fixed
Largrangian multiplier of 1,000 (Allaire et al. 2004). The
settings in the deterministic optimization are the same as
the robust optimization example, except that the load is a
deterministic unit force ( f = −1) in the vertical direction.

As shown in Fig. 5b, a 25-point tensor product Gauss-
type quadrature is used to identify the locations and cor-
responding weights of the quadrature nodes for the two
random variables and then calculate the mean and standard
deviation of the compliance at each design solution.

As shown in Fig. 6, the geometric difference between
the robust and deterministic designs is obvious. The robust
design possesses an asymmetrical configuration while its
deterministic counterpart is characterized by a strictly
symmetric pattern. These solutions match well with the

problem formulations. In particular, the deterministic design
is a symmetric design because the vertical load is applied
in the middle of the bottom structure and the vertical dis-
placements are constrained symmetrically at both the lower
left and the lower right corners. In robust design, due to its
randomness, the applied force may pose a horizontal com-
ponent on the structure, resulting an asymmetrical boundary
condition. Considering that only the lower left corner is
fixed while the lower right corner is movable in the horizon-
tal direction, the left half structure undergoes an additional
deformation caused by the horizontal force, leading to an
asymmetrical design. It can be noted that the robust design
possesses a thicker bottom chord at the lower left side than
the one at the right side, which provides additional stiffness
to withstand the deformation caused by the horizontal force
component.

For the purpose of verification, the mean performance
and robustness (standard deviation) of the robust and deter-
ministic designs are compared in Table 1, subject to the
same random load. To verify the accuracy of the 25-point
tensor product Gauss-type quadrature formulae, results
from 10,000 Monte Carlo simulations are used as reference.
By using the linear superposition theory, the computational
cost is significantly reduced for running the Monte Carlo
simulations. For the given random load, both the mean
(1,410.70) and standard deviation (994.86) of the robust
topology design are much smaller (better) than those of the
deterministic design (1,422.25 and 1,030.93 respectively).
Therefore even though the deterministic topology optimiza-
tion solution optimizes its performance (compliance C =
1,371.86) for a deterministic load condition, the robust
topology design possesses a superior performance and bet-
ter robustness with respect to a range of load conditions
with varying magnitudes and directions. It is noted from
Table 1 that the statistical performance obtained from the
25-point tensor product Gauss-type quadrature formulae are
very close to those of the Monte Carlo method, with much
improved efficiency. It is also noted that the robust and
deterministic designs possess similar volume ratios (0.246
and 0.247).

Fig. 5 Visualization of the joint
PDF of the force (a) and the
locations of TPQ nodes with
corresponding weights (b)

a b
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Fig. 6 Robust (left column) vs.
deterministic (right column)
topology optimization of a beam
structure

Deterministic Design Robust Design 

Boundary 
conditions 

Initial
design

and
level set
function

Optimal
Designs

Final 
level set
functions

Example 2 A 3D bridge beam with a random loading field
at the top

In this example, we optimize a 3D bridge beam consid-
ering a random loading field on the top. Here the load is
considered as a random field because the correlations of the
random load exist at different locations of the bridge beam
top surface. The robust design objective is to optimize the
weighted summation of the mean and standard deviation
of the total strain energy. To verify the method, solutions
from the following there scenarios are compared: (1) RSTO
solution for the given random loading field, (2) an optimal
design under a deterministic, distributed constant load, and

(3) an optimal design under distributed random variable load
where the load magnitude is treated as a random variable
everywhere.

The boundary conditions and initial designs are shown in
Fig. 7a, b. The dimensions of the design domain are 2-by-
0.5-by-1 (X-by-Y-by-Z). The lower left corner of the design
domain is fixed and the lower right corner is simply sup-
ported. A distributed load is applied at the top. For scenario
(1), the load magnitude at each point is assumed to take a
normal distribution with mean equal to 1 and standard devi-
ation equal to 0.2; the correlation length of the random field
is set to be 0.15. For scenario (2), the magnitude of the deter-
ministic distributed constant load is set as 1. For scenario

Table 1 Comparison between
robust and deterministic designs

C mean compliance of the
structure

Robust Deterministic

μ(C) 25-point tensor-product quadrature 1,410.70 1,422.25

Monte Caro (10,000 points) 1,400.10 1,424.99

σ(C) 25-point tensor-product quadrature 994.86 1,030.93

Monte Caro (10,000 points) 959.86 1,042.93

Volume ratio 0.246 0.247
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Fig. 7 Scenario (1)—RSTO of
a 3D bridge beam subject to
random loading field. a 2D
sketch of the boundary
conditions, b initial design and
loading condition, c final
design, d isometric view from
another viewpoint

a b

c d

(3), the magnitude of the distributed random variable load
follows the distribution N (1,0.2)everywhere.

In the optimization process, the level set function is
evolved on a 161-by-41-by-81 fixed Eulerian grid, where
the design domain is discretized using about 14,000 finite
elements for elastic analysis. For scenario (1), nine eigen-
vectors are identified in the reduced K–L expansion and
used in uncertainty quantification, while three quadrature
nodes are used in the direction of each eigenvector. UDR
is employed to calculate the stochastic moments, which
reduces the finite element evaluation numbers from 27
(using the tensor product quadrature) to 19 in each optimiza-
tion iteration.

The final design of RSTO under a random loading field
(Scenario (1)) is shown in Fig. 7c, d. The deterministic
result (Scenario (2)) is shown in Fig. 8a, b; the robust
design with a random variable load (Scenario (3)) is shown
in Fig. 8c, d. Compared with the deterministic design
(Scenario (2)), the robust designs with the random field
(Scenario (1)) or random variable models (Scenario (3))
possess more bars and a thicker beam at bottom, which
provide additional strengths to the bridge under loading
variations. Comparing the two robust designs (Scenarios (1)
and (3)), we find that the configurations of the two designs
are similar, indicating that the spatial variability of load
does not have a significant impact on the result for this case
study. In essence, the conventional single-random-variable
model can be considered as a special case of the random

field model. A comparison of the mean and standard devi-
ation of the designs are listed in Table 2, showing that the
design with the random field model (Scenario (1)) achieves
slightly better performance in its mean and standard devi-
ation compared to the random variable model (Scenario
(3)).

Example 3 A 3D bridge beam with a random material field

In this problem, a 3D bridge beam is optimized sub-
ject to a spatially-varying material property field across the
design domain. The objective function is still to optimize
the weighted summation of the mean and standard devia-
tion of the total strain energy of the structure. The boundary
condition of the problem is similar to that of example 1 and
the dimensions of the design domain are the same as the
setting of example 2. The material property field (Young’s
Modulus) is assumed to take a normal distribution with
mean equal to 1 and standard deviation 0.2. A realization of
the random field is shown in Fig. 9b. An exponential func-
tion is employed to describe the correlation between any two
spatial points in the random field as follows:

C = exp

(

−‖X1 − X2‖
d

)

. (34)

Here ‖X1 − X2‖ is the Euclidean distance between the two
points and d is the correlation length which is set to be 0.5
in this example. In the optimization process, the level set
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Fig. 8 Topology optimization
of a 3D bridge beam
considering Scenario
(2)—distributed constant load
and Scenario (3) a distributed
random variable load. a
Scenario (2)—deterministic
design under distributed
constant load, b isometric view
of the deterministic design from
another viewpoint, c Scenario
(3)—robust design considering
a distributed random variable
load, d isometric view of robust
design from another viewpoint

a b

c d

function is evolved on a 101-by-21-by-51 fixed Eulerian
grid, and the design domain is discretized using about
4,000 finite elements for elastic analysis. Due to the strong
correlation, three eigenvectors are used in uncertainty quan-
tification and the random material field can be quantified as
follows:

g (x, ω) = ḡ (x) +
3∑

i=1

√
λi gi (x) ξi (ω). (35)

Three quadrature nodes are used in each eigenvector direc-
tion for demonstration. The final design of RSTO is shown
in Fig. 9c, d. The corresponding DTO results are shown in
Fig. 9e, f, where the Young’s Modulus is a constant 1.

Since the material random field is geometry depen-
dent and the optimal geometry from robust optimization is

Table 2 Comparison of designs under a random loading field, a
distributed random load and a distributed constant load

Random field Single random variable Deterministic

μ(C) 8.7420 9.1757 8.0384

σ(C) 2.0463 3.5533

Volume ratio 0.27 0.26 0.25

C mean compliance of the structure

different from that of deterministic design, it is not appro-
priate to directly compare the performances between the
two designs. Even so, we can still evaluate the robustness
of a design by associating its geometric model with dif-
ferent material property fields and calculating its (mean)
performances under different scenarios. If the (mean) per-
formances of the design do not change much under different
material property fields, it means the geometric design pos-
sesses good robustness. In this example, we apply a constant
material field and a random material field to the robust
and deterministic designs respectively. The performances of
robust and deterministic designs under two material prop-
erty fields are listed in Table 3. According to Table 3,
the mean compliance of the robust design does not change
much (23.05 to 23.25) under different material fields, while
the mean compliance of the deterministic design degrades
(22.73 to 23.48) when changing from a constant material
field to a random field. This indicates that the robust design
is less sensitive to the variations of material properties
although its performance is not so good as the determin-
istic design under a constant material field, which coincides
well with our anticipation. From a geometric point of view,
the robust design possesses obviously thicker bars while the
number of bars is less than that of its deterministic coun-
terpart, making the appearance more robust. The increased
thickness of the bars makes the robust design less sensitive
to the variations in the material field.
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Fig. 9 Robust (a–d) vs.
deterministic (e, f) optimization
of a 3D bridge beam under a
random material field. a Initial
design, b a realization of the
random material field, c robust
design, d isometric view of the
robust design from another
viewpoint, e deterministic
design, f isometric view of the
deterministic design from
another viewpoint

Example 4 Designing A 3D micro-gripper under a random
material field

A 3D micro-gripper, subject to a spatially-varying mate-
rial property field across the design domain, is used as an
example to demonstrate the proposed method to robust com-
pliant mechanism design. The boundary conditions of the
deterministic and robust designs are the same, which are

shown in Fig. 10a: the four corners of the left side are fixed;
a horizontal force is applied at the center of the left side;
two vertical output displacements are expected at ports 1
and 2. The design objective in a deterministic compliant
mechanism optimization problem is to minimize the geo-
metric advantage (GA), which is defined as the ratio of
the output displacement over the input displacement. More
details about setting a compliant mechanism optimization

Table 3 Compliances of robust
and deterministic designs under
different material property fields

C mean compliance of the
structure

Parameters of material fields Robust design Deterministic design

Deterministic material field E=1 C = 23.05 C = 22.73

Random material field μE = 1, σ E = 0.2, d = 0.5 σ(C) = 23.25 σ(C) = 23.48

Volume ratio 0.24 0.23
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Fig. 10 Robust (c, d) vs.
deterministic (e, f) optimization
of a 3D micro-gripper under a
random material field. a
Boundary condition, b initial
design, c robust design, d
isometric view of the robust
design from another viewpoint,
e deterministic design, f
isometric view of the
deterministic design from
another viewpoint

a b

c d

e f

problem can be found in Wang et al. (2005), Wang and Chen
(2009), Chen et al. (2005), Chen and Wang (2006). The cor-
responding objective function of the RSTO problem is to
optimize the weighted summation of the mean and standard
deviation of the GA. The dimensions of the design domain
are 1-by-0.6-by-1. The material property field (Young’s

Modulus) is assumed to take a normal distribution with
mean equal to 1 and standard deviation 0.3. The correla-
tion function and the correlation length d of the random
field are the same as those of example 3. For simplicity,
it is assumed that the random field follows the symme-
try, hence only the upper part of the design is analyzed in
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Table 4 Comparison of robust
and deterministic CM designs
under different material
property fields

Parameters of material fields Robust design Deterministic design

Material field 1 E = 1 GA = −0.065 GA = −0.070

Material field 2 μE= 1, σ E = 0.3, d= 0.5 μ(GA) = −0.059 μ(GA) = −0.055

Volume ratio 0.098 0.090

the optimization process. The level set function is evolved
on a 101-by-61-by-51 fixed Eulerian grid, and the design
domain is discretized using about 5,000 finite elements for
elastic analysis. Similar to example 3, three eigenvectors
are used in uncertainty quantification based on reduced K–
L expansion, and three quadrature nodes are used in each
eigenvector direction based on the UDR method. The final
design of RSTO is shown in Fig. 10c, d. The correspond-
ing deterministic optimization result is shown in Fig. 10e,
f, where the Young’s Modulus is set as a constant 1. Simi-
lar to example 3, for the purpose of verification, we apply
two different material fields to the robust and determinis-
tic designs respectively to evaluate their robustness under
different material fields. The performances of robust and
deterministic designs are listed in Table 4. According to
Table 4, the geometric advantage of the robust design is
more stable (−0.065 to −0.059) under different material
fields, while the geometric advantage of the deterministic
design degenerates (−0.070 to −0.055) when the material
property field varies. This comparison shows that the robust
compliant mechanism design possesses superior robustness
than its deterministic counterpart under different material
property fields. Comparing the geometries of the robust and
deterministic designs, we find the robust design consists
of shorter but obviously thicker bars than its deterministic
counterpart. Since the local stress constraint is not taken
into account in current research, the obtained robust design
is more of a lumped compliant mechanism composed of
rigid parts connected by de facto hinges. The short and thick
bars favor the robust design objective function, making the
robust design less sensitive to material property variations.
The deterministic design possesses long and slim bars the
strength of which is more sensitive to material property vari-
ations. But there are less de facto hinges which makes the
stress level lower than its robust counterpart.

6 Conclusions and future work

The paper presents a unique approach to implement robust
design to level set based shape and topology optimization
with the consideration of random field uncertainty. The

method provides a mathematically rigorous and computa-
tionally viable approach to RSTO problems. It also offers
a unified framework for both robust shape and topology
optimization, that is applicable to various applications. To
reduce the dimensionality in characterizing random field
uncertainty, the Karhunen–Loeve expansion is employed
with a reduced set of random variables. Based on the total
number of random variables and the existence of variant
interactions, either the TPQ rule or the UDR quadrature
rule is then employed for calculating statistical moments of
the design response. The Gauss-type quadrature essentially
transforms the RSTO problem into a weighted summa-
tion of a series of deterministic topology optimization sub
problems at the quadrature nodes. This enables a semi-
analytical approach that introduces the shape sensitivity of
the statistical moments using the adjoint variable method
and calculus of variation. The shape derivative is seamlessly
integrated with a conventional level-set-based topology
optimization framework via the steepest descent method.
The proposed RSTO method is illustrated with bench mark
examples subject to lumped random loads and a random
loading/material field. The benchmark examples show that
the results from RSTO may be quite different from that
of the deterministic topology optimization and the RSTO
designs are more robust than deterministic designs under
uncertainty. Although the current contents of this paper are
focused on Gauss-type loading and material uncertainties,
the proposed method is generic and can be easily extended
to robust topology optimization subject to other types of
uncertainties, such as Gauss/Non-Gauss type geometric
uncertainties. Throughout our research, we also had the
observation that uncertainty is not the only factor that has
impact on the topology of the final design; the interaction
between the boundary condition and the uncertainties deter-
mines the topology of the final design to a large extent
(keeping other conditions fixed). These issues still require
further investigations in our future research.

Acknowledgments The grant support (CMMI-0522662) from
National Science Foundation (NSF) and the support from the Center
for Advanced Vehicular Systems at Mississippi State University via
Department of Energy Contract No: DE-AC05-00OR22725 are greatly
acknowledged.



Level set based robust shape and topology optimization under random field uncertainties 523

References

Allaire G, Jouve F, Toader A-M (2002) A level-set method for shape
optimization. C R Acad Sci Paris Serie I 334:1–6

Allaire G, Jouve F, Toader AM (2004) Structural optimization using
sensitivity analysis and a level-set method. J Comput Phys
194:363–393

Allen M, Maute K (2005) Reliability-based shape optimization
of structures undergoing fluid–structure interaction phenomena.
Comput Methods Appl Mech Eng 194(30–33):3472–3495

Arian E, Ta’asan S (1995) Shape optimization in one-shot. In:
Boggaard J et al (eds) Optimal design and control. Birkhauser,
Boston, pp 273–294

Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in struc-
tural design using a homogenization method. Comput Methods
Appl Mech Eng 71:197–224

Bendsøe MP, Ben-Tal A, Zowe J (1994) Optimization methods for
truss geometry and topology design. Struct Multidiscipl Optim
7:141–159

Beyer H-G, Sendhoff B (2007) Robust optimization—a comprehensive
survey. Comput Methods Appl Mech Eng 196(33–34):3190–3218

Birge J, Louveaux F (1997) Introduction to stochastic programming.
Springer, New York

Chen SK, Wang MY (2006) Conceptual design of compliant mecha-
nisms using level set method. Frontiers of Mechanical Engineer-
ing in China 1(2):131–145

Chen SK, Wang MY (2007) Designing distributed compliant mecha-
nisms with characteristic stiffness. In: of the ASME 2007 inter-
national design engineering technical conferences and computers
and information in engineering conference IDETC/CIE 2007.
Las Vegas, Nevada, USA

Chen W, Allen JK, Tsui KL, Mistree F (1996) A procedure for robust
design: minimizing variations caused by noise factors and control
factors. ASME J Mech Des 18(4):478–485

Chen SK, Wang MY, Liu AQ (2008) Shape feature control in
structural topology optimization. Computer-Aided Des 40(9):
951–962

Chen SK, Wang MY, Wang SY (2005) Optimal synthesis of compliant
mechanisms using a connectivity preserving level set method. In:
of ASME 2005 international design engineering technical confer-
ences and computers and information in engineering conference,
31st design automation conference. Long Beach, CA

Chen S, Lee S, Chen W (2009) Level set based robust shape and topol-
ogy optimization under random field uncertainties. In: ASME
2009 international design engineering technical conferences and
computers and information in engineering conference. San Diego,
California, USA

Christiansen S, Patriksson M, Wynter L (2001) Stochastic bilevel pro-
gramming in structural optimization. Struct Multidiscipl Optim
21(5):361–371

Conti S, Held H, Pach M, Rumpf M, Schultz R (2008) Shape optimiza-
tion under uncertainty—a stochastic programming perspective.
SIAM J Optim 19(4):1610–1632

Du X, Chen W (2000) Towards a better understanding of modeling
feasibility robustness in engineering design. ASME J Mech Des
122:385–394

Du X, Chen W (2001) A most probable point based method for
uncertainty analysis. J Des Manuf Autom 4:47–66

Engels H (1980) Numerical quadrature and cubature. Academic,
London

Ghanem RG, Doostan A (2006) On the construction and analysis of
stochastic models: characterization and propagation of the errors
associated with limited data. J Comput Phys 217:63–81

Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral
approach. Springer, New York

Haldar A, Mahadevan S (2000) Reliability assessment using stochastic
finite element analysis. Wiley, New York

Jin R, Du X, Chen W (2003) The use of metamodeling techniques
for optimization under uncertainty. J Struct Multidiscipl Optim
25(2):99–116

Jung H-S, Cho S (2004) Reliability-based topology optimization
of geometrically nonlinear structures with loading and material
uncertainties. Finite Elem Anal Des 41(3):311–331

Kalsi M, Hacker K, Lewis K (2001) A comprehensive robust design
approach for decision trade-offs in complex systems design.
J Mech Des 123(1):1–10

Kharmanda G, Olhoff N (2002) Reliability-based topology optimiza-
tion as a new strategy to generate different structural topologies.
In: 15th Nordic seminar on computational mechanics. Aalborg,
Denmark

Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004)
Reliability-based topology optimization. Struct Multidiscipl
Optim 26(5):295–307

Kogiso N, Ahn W, Nishiwaki S, Izui K, Yoshimura M (2008) Robust
topology optimization for compliant mechanisms considering
uncertainty of applied loads. J Adv Mech Des Syst Manufac 2(1):
96–107

Lee SH, Chen W (2008) A comparative study of uncertainty propa-
gation methods for black-box type functions. Struct Multidiscipl
Optim 37(3):239–253

Lee SH, Chen W, Kwak BM (2009) Robust design with arbitrary distri-
butions using Gauss-type quadrature formula. Struct Multidiscipl
Optim 39(3):227–243

Maute K, Frangopol DM (2003) Reliability-based design of MEMS
mechanisms by topology optimization. Comput Struct 81:
813–824

Melchers RE (1999) Structural reliability analysis and prediction.
Wiley, Chichester

Mogami K et al (2006) Reliability-based structural optimization of
frame structures for multiple failure criteria using topology opti-
mization techniques. Struct Multidiscipl Optim 32(4):299–311

Mozumder C et al (2006) An investigation of reliability-based
topology optimization techniques. In: Proceedings of the 11th
AIAA/ISSMO multidisciplinary analysis and optimization con-
ference, AIAA-2006–7058. AIAA, Portsmouth

Osher S, Fedkiw R (2003) Level sets methods and dynamic implicit
surfaces. Springer, New York

Osher S, Sethian J (1988) Fronts propagating with curvature-dependent
speed: algorithms based on Hamilton–Jacobi formulations.
J Comput Phys 79:12–49

Osher S, Santosa F (2001) Level set methods for optimization prob-
lems involving geometry and constraints. I. Frequencies of a
two-density inhomogeneous drum. J Comput Phys 171:272–288

Parkinson A, Sorensen C, Pourhassan N (1993) A general approach for
robust optimal design. ASME J Mech Des 115(1):74–80

Phadke MS (1989) Quality engineering using robust design. Prentice
Hall, Englewood Cliffs

Pironneau O (1984) Optimal shape design for elliptic systems. Series
in computational physics. Springer, New York

Rahman S, Xu H (2004) A univariate dimension-reduction method
for multi-dimensional integration in stochastic mechanics. Probab
Eng Mech 19:393–408

Reddy J (1986) Applied functional analysis and variational methods in
engineering. McGraw-Hill, New York

Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimiza-
tion without homogenization. Struct Optim 4:250–254

Seepersad CC, Alien JK, Mcdowell DL, Mistree F (2006) Robust
design of cellular materials with topological and dimensional
imperfections. ASME J Mech Des 128:1285–1297

Sethian JA (1999) Level set methods and fast marching methods,
2nd edn. Cambridge University Press, Cambridge



524 S. Chen et al.

Sethian JA, Wiengmann A (2000) Structural boundary design via
level set and immersed interface methods. J Comput Phys 163:
489–528

Sigmund O (2001) A 99 line topology optimization code written in
MATLAB. Struct Multidiscipl Optim 21(2):120–127

Sokolowski J, Zolesio JP (1992) Introduction to shape optimization:
shape sensitivity analysis. Springer, New York

Taguchi G (1993) Taguchi on robust technology development: bringing
quality engineering upstream. ASME, New York

Wang MY, Chen SK (2009) Compliant mechanism optimization: anal-
ysis and design with intrinsic characteristic stiffness. Mech Des
Struct Mach 37(2):183–200

Wang MY, Wang XM (2004a) ‘Color’ level sets: a multi-phase level
set method for structural topology optimization with multiple
materials. Comput Methods Appl Mech Eng 193:469–496

Wang MY, Wang XM (2004b) PDE-driven level sets, shape sensitivity,
and curvature flow for structural topology optimization. Comput
Model Eng Sci 6:373–395

Wang MY, Wang XM, Guo DM (2003) A level set method for struc-
tural topology optimization. Comput Methods Appl Mech Eng
192:227–246

Wang MY, Chen SK, Wang XM, Mei YL (2005) Design of multi-
material compliant mechanisms using level set methods. ASME
J Mech Des 127(5):941–956

Wu CFJ, Hamada M (2000) Experiments: planning, analysis, and
parameter design optimization. Wiley, New York

Xu H, Rahman S (2004) A generalized dimension-reduction method
for multi-dimensional integration in stochastic mechanics. Int J
Numer Methods Eng 61:1992–2019

Ying X, Lee S, Chen W, Liu W (2009) Efficient random field uncer-
tainty propagation in design using multiscale analysis. ASME J
Mech Des 131(2):021006.1–021006.10

Zabaras N (2007) Spectral methods for uncertainty quantification.
Available from: http://mpdc.mae.cornell.edu/

Zhao Y-G, Ono T (2001) Moment methods for structural reliability.
J Struct Saf 23:47–75

http://mpdc.mae.cornell.edu/

	Level set based robust shape and topology optimization under random field uncertainties
	Abstract
	1 Introduction
	2 Level-set based RSTO
	2.1 Robust design models
	2.2 Level set methods for shape and topology optimization
	2.3 Setting an RSTO problem

	3 Uncertainty quantification and propagation in RSTO
	3.1 Random variable and random field
	3.2 Reduced order Karhunen–Loeve expansion of random field
	3.3 Multivariate gauss-type quadrature for statistical moments calculation

	4 Shape derivatives of statistical moments
	4.1 Decomposition of the shape derivatives of statistic moments
	4.2 Variational method for shape sensitivity analysis of sub problems

	5 RSTO algorithm and demonstration examples
	5.1 Numerical algorithm
	5.2 Demonstration examples

	6 Conclusions and future work
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


