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Abstract In predator–prey algorithm, a relatively small
number of predators (“lions”) and a much larger number
of prey (“antelopes”) are randomly placed on a two dimen-
sional lattice with connected ends representing an unfolded
surface of a torus. The predators are partially or completely
biased towards one or more objectives, based on which
each predator kills the weakest prey in its neighborhood. A
stronger prey created through evolution replaces this prey.
In case of constrained problems, the sum of constraint
violations serves as an additional objective. Modifications
of the basic predator–prey algorithm have been imple-
mented in this paper regarding the selection procedure,
apparent movement of the predators, and mutation strategy.
Further modifications have been made making the algo-
rithm capable of handling multiple equality and inequal-
ity constraints. The final modified algorithm was tested
on standard linear/nonlinear and constrained/unconstrained
single-objective optimization problems.
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1 Introduction

The last few decades have seen the development of opti-
mization algorithms inspired by the principles of natural
evolution. These algorithms, often termed Evolutionary
Optimization Algorithms (EOAs), use a set of candidate
solutions (population space) and follow an iterative pro-
cedure to produce a final set of the best compromise
solutions, the graphical representation of which is termed
as the Pareto front (Deb 2002). In case of single objec-
tive problems the Pareto front reduces to a single optimal
solution known as the global minimum or global maxi-
mum. Genetic algorithm, differential evolution, particle
swarm, and predator–prey algorithms are some of the most
prominent EOAs.

Hybrid optimization techniques with automatic switch-
ing capability among a number of EOAs and classi-
cal gradient-based optimization algorithms have also been
developed (Dulikravich et al. 1999; Colaço et al. 2005;
Moral and Dulikravich 2008) and successfully implemented
in multi-disciplinary problems (Martin and Dulikravich
2002).

In 1998, Hans Paul Schwefel proposed a new EOA to
search for Pareto-optimal solutions (Laumanns et al. 1998)
from a randomly generated initial population of candidate
solutions. This algorithm imitates the natural phenomena
that a predator kills the weakest prey in its neighborhood,
and the next generations of prey that evolve are relatively
stronger and more immune to such predator attacks.

In nature, individual predators have different means of
tracking their prey, as a result of which their choice of
prey might differ. This algorithm mimics such preferential
hunting tactics in associating each predator or a group of
predators with different objectives. In course of their ran-
dom movements in the prey neighborhood, each predator
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tracks down the weakest local prey, that is, the one which
is the most vulnerable to their particular hunting tactics.
This refers to the prey which has the worst objective value
with respect to that predator. The prey, thus killed, is then
replaced by a stronger successor or a child.

Such phenomenon repeating itself over generations leads
to evolution of the prey population into stronger species that
are more immune to the distinct hunting tactics of the differ-
ent predators. This, in mathematical terms, reflects improve-
ments of the prey population as a whole with respect to
all function objectives. In case of a multi-objective opti-
mization problem, natural selection based on such a method
ensures convergence of solutions towards the Pareto front
without any direct implementation of a dominance based
criterion. This is the major contribution of the predator–prey
class of evolutionary algorithms.

In this light, application of the predator–prey selection
technique to unconstrained single-objective optimization
problems does not furnish any unique benefit. Conse-
quently, in case of single-objective optimization problems,
this algorithm acts like a typical genetic algorithm.

However, there is one major difference between the
predator–prey algorithm and any other evolutionary algo-
rithm. Absence of any global mixing of the population
members results in localized improvements of the prey
population in the predator–prey algorithm. This is further
facilitated by the evolutionary techniques (crossover and
mutation) employed in predator–prey algorithm that estab-
lish a localized and adaptive search, thereby enhancing the
robustness of this optimization algorithm. This proves to be
slower, but a more reliable mechanism of progress towards
the global optimum in case of complex single-objective
functions, like ones with multiple local optima.

In the predator–prey algorithm, prey, which represent
members of the population/solution space are randomly
placed (unique integer co-ordinates are randomly generated
for each prey) on a two dimensional lattice with connected
ends, that is, an unfolded surface of a torus. Predators,
which are comparatively fewer in number than prey, are
placed at the cell centers of the same 2D lattice. Each
predator is completely biased towards one of the objec-
tives, which form the quantitative basis of determining
the weakest local prey. After the weakest local prey (the
local solution candidate with the lowest value of the fit-
ness function) is identified, it is eliminated (this “prey” is
“killed”) and a new prey is created through mutation of
one of the immediate surviving neighboring prey. While
the prey remain stationary, the predators move to a random
neighboring location after every generation.

However, this original predator–prey optimization algo-
rithm appears to have difficulty in producing well dis-
tributed non-dominated solutions along the Pareto front.
Since then, several modifications of the above algorithm

have appeared in literature. Deb (2002) suggested an
improved version of the algorithm which involved the asso-
ciation of each predator with a weighted sum of objectives
instead of one particular objective. Certain new features,
namely, the ‘elite preservation operator”, the ‘recombina-
tion operator’ and the ‘diversity preservation operator’ were
also included. A further modified version of the algorithm
was proposed by Li (2003), where a dynamic spatial struc-
ture of the predator–prey population was used. It involved
the movement of both predators and prey and changing
population size of prey. Some other versions of the algo-
rithm have been presented by Grimme and Schmitt (2006)
and Silva et al. (2002). The former uses a modified recom-
bination and mutation model. The latter, predominantly a
particle swarm optimization algorithm, introduces the con-
cept of predator–prey interactions in the swarm to control
the balance between exploration and exploitation, hence
improving both diversity and rate of convergence.

Most of the above versions are strictly directed towards
unconstrained multiobjective optimization problems. The
majority of practical applications of optimization involve
constraints. This demands optimization algorithms capa-
ble of producing solutions that are both optimum as well
as feasible with respect to the problem constraints. There
exist very few instances of published applications of any
form of the predator–prey algorithm to such real world
problems. Nevertheless, since the basic concept of the
predator–prey algorithm is significantly different from other
standard EOAs, there is sufficient basis to believe that the
potentials of this algorithm have not been fully realized.

The fundamental idea of the work presented here is
to combine the basic predator–prey algorithm with some
advanced features such as the constraint dominance cri-
terion, hypercube sizing and the epidemic operator, to
develop a reliable method of solving complex constrained/
unconstrained single-objective optimization problems.

There are two benefits of using a multi-objective
approach. The algorithm can be used without changing
the basic dynamics of the predator–prey interaction and
weighted objective association of predators.

In case of solving constrained single-objective problems,
the total constraint violation acts as the third objective. The
constraint dominance criterion gives preference to selection
based on lower constraint violation. On the other hand, the
property that the first two objectives are equal to the actual
problem objective function leads to two-thirds biasing of
predators towards this objective. Both these factors acting
together provide a balance between selections of prey (solu-
tions) based on actual objective value as well as its distance
from the feasible domain (constraint violation).

This method is somewhat similar to the filter method
of constrained optimization, with the dominance crite-
rion biased towards selection based on total constraint
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violation. The weighted function association of predators on
the other hand creates a counter effect as explained above.
However, the version of the algorithm that was found to
perform most satisfactorily when dealing with constrained
problems involved selection based on ‘constraint domi-
nance’ criterion instead of the ‘weighted sum of objectives’
method which makes SOMPP very similar to NSGA II by
Deb et al. (2000) with respect to the selection procedure.

This study presents the development of a constrained
single-objective version of the modified predator–prey
algorithm which involves new features that are expected
to promote dependability in terms of convergence of
solutions as well as reduction of the number of func-
tion evaluations necessary. This single-objective, modi-
fied, predator–prey algorithm (SOMPP) has been derived
from the basic predator–prey algorithm. Any unconstrained
single-objective optimization problem was treated as a two-
objective optimization problem, where the second objective
is just a clone of the first one. In case of the constrained
problems, all the equality and inequality constraints were
collaged together to form a third objective and the prob-
lem was solved as a three-objective optimization problem
(Chowdhury et al. 2009, 2010) where the first two are
equivalent and different from the third objective (constraint
objective).

2 Single objective modified predator–prey algorithm

Any general constrained single objective test problem is
reformulated as follows.

Minimize f1 = f (X)

Minimize f2 = f1
(1)

subject to

gic ≤ 0, ic = 1, 2, 3, . . . , p
hic = 0, ic = p + 1, p + 2, . . . , p + q
p, q ∈ Nc

(2)

Here, X is the vector of design variables, that is,

X = (x1, x2, .., xv, . . . , xNv) , xv ∈ R

The inequality and equality constraints are added up to form
the third objective

Minimize f3 =
p∑

ic=1

max (gic, 0)

+
p+q∑

ic=p+1

max ((hic − ε) , 0) (3)

where ε is the tolerance for equality objectives.

In case of unconstrained problems, SOMPP indeed acts
as a generic genetic algorithm which selects solutions based
on their objective value. However, SOMPP also applies the
hypercube technique as a qualification criterion for accept-
ing new/child solutions. This incorporates diversity into the
population in the same way as the concept of crowding
distance does in case of NSGA II by Deb et al. (2000)
and the recently developed Constrained Particle Swarm
Optimization by Venter and Haftka (2009).

The initialization and subsequent steps executed by the
algorithm in each generation in solving a single-objective
optimization problem are sequentially presented below. It
should be noted that in case of a maximization problem the
function is multiplied by ‘−1’, to convert it into a general
minimization problem.

First, a population of N candidate solutions (prey) is
created using Sobol’s (1976) quasi-random sequence gen-
erator to generate their vectors of design variables. Using
these values of design variables, objective functions for each
candidate solution are evaluated. Sobol’s algorithm offers
significantly more uniform distribution of random numbers
than a typical random number generator routine.

Then, the prey are placed at the nodes of a two dimen-
sional grid with connected ends hence having a toroidal
nature. The grid is allowed to adjust its size dynamically
according to the population size maintaining the dimensions
I × J , where we found after numerical experimentation that
the most suitable value for J is J = 5. Consequently, I is
chosen such that I is the lowest possible integer for which
N < I × J . Random members of the prey population are
cloned (four or less) if required in order to ensure that all
grid points (having integer co-ordinates) are occupied by
prey.

Similarly, M predators are placed on the same 2D
grid such that they occupy random cell centers (Fig. 1).

Fig. 1 An active four prey locality/neighborhood on the grid drawn on
an unfolded toroidal surface
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The value of M is determined by the following empirical
formula.

M = max

(([
N

20

)
× Nf

)
, 4

)
(4)

where, [r) is the lowest integer greater than r , r ∈ R+, and
Nf is the number of objectives. Each predator is associated
with a weighted value of the objectives as follows.

f j =
Nf∑

i=1

w j
i fi

Nf∑

i=1

w j
i = 1 ∀j

(5)

Here, f j is the effective objective function value that the
jth predator is associated with and w j

i is respective weight of
the ith objective with respect to the jth predator. The weights
are distributed uniformly in case of two-objective problems
(from (0,1) to (1,0)) and using Sobol’s (1976) algorithm in
case of problems with more than two objectives (constrained
problems).

Thus, the basic SOMPP algorithm was designed to han-
dle problems with more than one objective. The dynamics of
the algorithm is also conducive to multi-objective optimiza-
tion. Hence, an unconstrained single objective optimization
problem is treated as a two-objective problem with equal
objective values, that is,

f1 (X) = f2 (X)

This allows one to use the same predator–prey dynamics
as in a multi-objective problem. However, mathematically
the algorithm will be solving the single objective problem,
because each predator will be completely biased towards a
single objective (5) since f j = f1 = f2 for each predator
in the grid.

In case of a constrained single-objective problem, the
total constraint violation is treated as the third objective.

This is why the number of objectives is defined by the
general notation Nf, where N f = 2 for an unconstrained
single-objective problem and N f = 3 for a constrained
single-objective problem. However, the single-objective
MPP (SOMPP) algorithm is significantly different from
the multi-objective MPP in some other features, such as
the mutation operator, the hypercube operator, rank based
predator relocation, nine prey neighborhoods and the epi-
demic operator. By the virtue of the above features, SOMPP
acts as a distinct version of the Modified Predator Prey algo-
rithm suitable for handling single-objective optimization
problems.

The presence of three objectives, among which the first
two are equivalent and different from the third objective

(constraint objective), creates a platform where one can reap
substantial benefits from the preferential hunting nature of
predators based on their colligation with different objec-
tives. The property that the first two objectives are equal to
the actual problem objective function entails a higher prob-
ability of prey killings (almost two thirds) based on their
weakness with respect to the actual objective. On the other
hand, the constraint dominance measure that acts as one
of the qualification criterion when accepting new (replace-
ment for the killed) prey, promotes selection based on lower
constraint violation.

Notice also that the constraint handling technique used
in SOMPP is free of any user-defined constants/coefficients,
unlike most penalty function methods (shown in the review
by Coello Coello 2002), where the user has to tune different
problem specific algorithm coefficients. Consequently, the
scope of applying SOMPP universally to any single objec-
tive problem with equality and/or inequality constraints
seems promising.

Since predators are randomly located at the centers of
quadrilateral cells drawn on an unfolded toroidal surface,
each neighborhood that contains a predator can be termed
as an ‘active locality’ as shown in Fig. 1. In each of these
localities/cells, the value of f as defined by (5) correspond-
ing to the local predator, is calculated for each prey (local
fitness of prey). The weakest prey, that is, the prey hav-
ing the maximum value of f is selected to be killed and
replaced by a new prey produced by the crossover of the
two strongest neighboring prey and a subsequent mutation
of the crossover child.

The blend crossover (BLX-α) (Deb 2002) was used in
this case.

y(1,t+1)
v = (1 − γv) x (1,t)

v + γvx (2,t)
v

γv = (1 + 2α) uv − α
(6)

Here, x (1,t)
v and x (2,t)

v are the design variables that define
parent solutions, y(1,t+1)

v is the design variable that defines
the child solution and uv is a random number between 0 and
1. A value of 0.5 was used for α as suggested by Deb (2002).

Non-uniform mutation (Deb 2002), as defined below,
was used in this algorithm.

β = 10
−

(
1+K t

/
tmax

)

y(1,t+1)
v = x (1,t+1)

v

+ τ
(

x (U )
v − x (L)

v

) (
1 − r

(
1−t/tmax

)b

v

)
× β (7)

Here, 10−K is the terminal order of magnitude of the extent
of mutation, y(1,t+1)

v is the child produced by mutation of
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the vth variable, x (U )
v and x (L)

v are upper and lower lim-
its of the vth variable, rv is a random number between
0 and 1, τ takes a Boolean value −1 or 1, each with a
probability of 0.5, t and tmax are the number of function
evaluations performed until then and maximum allowed
number of function evaluations, respectively, while b is the
user defined parameter (b = 1.5 determined empirically)
and β is the scaling parameter.

The evolutionary operators such as crossover and muta-
tion operator applied in SOMPP are based on the niching
strategies used in genetic algorithms. The BLX-α crossover
is utilized since it facilitates genetic recombination that
is adaptive to the existing diversity in the parent popula-
tion; a desirable characteristic for Pareto front convergence.
Also, non uniform mutation (Michalewicz 1992) is utilized
since it provides a uniformly distributed search in the ear-
lier generations and a relatively focused search in the later
ones.

The child prey produced by crossover and mutation qual-
ifies to be accepted only if it fulfills the following three
criteria:

1. The child is stronger than the worst local prey based on
f calculated by (2),

2. The child is non-dominated (Deb 2002) with respect to
the other three local prey, and

3. The child is not within the objective space hypercube
(Deb 2002) of the remaining three neighboring prey.

Apparently, the treatment of constrained single-objective
problems as bi-objective problems with total constraint vio-
lation as the second objective is similar to the constrained
handling method adopted in other filter algorithms. Nev-
ertheless, the selection criterion is different from the con-
ventional weak dominance criterion used in multi-objective
problems. Instead, the constrained dominance criterion as
introduced by Deb et al. (2000) is used in SOMPP. The con-
straint dominance criterion for a minimization problem is
defined as follows.

Solution i is said to dominate solution j if:

1. Both solutions are infeasible, and solution i has lower
value of constraint violation than solution j (i.e., f i

3 <

f j
3 )

2. Solution i is feasible and solution j is infeasible.
3. Both solutions are feasible (or problem is uncon-

strained) and solution i has a lower objective value than
solution j (that is, f i

1 < f j
1 ).

SOMPP, thus, does not follow the actual Pareto approach
in searching for optimal solutions. Under such circum-
stances the predator–prey algorithm demonstrates a desir-

able balance between selection of solutions based on actual
objective value and its distance from the feasible domain.
This allows one to incorporate the useful genetic traits of
strong infeasible solutions, while driving the prey popula-
tion towards the feasible domain.

In case of the third criterion, each old local prey is con-
sidered to be at the centre of its hypercube, the size of which
is dynamically updated with generations and is determined
by the following novel equation.

ω = 10
−

(
2+L t

tmax

)

ηi = ω × min
(

f new prey
i , f old prey

i

)
(8)

Here, 10−L is the terminal order of magnitude of relative
window size, ω is the window size of the hypercube and
ηi is the half side length of the hypercube corresponding to
the ith objective. The first two criteria promote convergence
towards the global minimum. The third criterion helps in
maintaining diversity in the solution space in order to avoid
converging to a local minimum. Ten trials were allowed to
produce a qualified child that satisfies these three criteria,
failing which the worst prey was retained.

Hence, to conclude, selection in SOMPP is chiefly based
on constraint dominance. This gives feasibility a preference
over optimality, but promotes both simultaneously, which is
partially similar to the filter algorithms. At the same time,
the mutation operator and the hypercube operator incorpo-
rate the traits of niching. Niching has been applied in the
field of evolutionary algorithms using various techniques
such as dynamic mutation, preselection (Cavicchio 1970),
crowding distance concept (Dejong 1975), sharing func-
tion model (Goldberg and Richardson 1987), etc. However,
SOMPP demonstrates a search radius that is adaptive to
the extent of convergence of the population (through adap-
tive mutation) and a diversity preserving technique (the
hypercube operator) adaptive to the current diversity of the
population; the simultaneous existence of both is rare in lit-
erature. This reinforces SOMPP with the ability to adapt to
the complexities of the problem (especially multimodality)
at hand.

Thus, we can conclude that the preferential hunting tac-
tics of predators in the predator–prey algorithm do not
contribute any unique gain in case of unconstrained single-
objective problems. However, when dealing with con-
strained single-objective problems, such characteristic is
highly favorable to ensure simultaneous achievement of
feasibility and objective optimization.

Upon completion of the above predator–prey interactions
in each active locality, the predators were relocated ran-
domly. A probability based relocation criterion was intro-
duced here, which ensures that each cell is visited, therefore
favoring an even distribution of the number of visitations by
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a predator to each cell. The predator relocation criterion is
defined as follows:

if cellcount (i, j) > cellcountavg + 1, locate = no
else , locate = yes

(9)

Here, cellcount (i, j) is the number of times predators have
visited the cell (i, j) in previous generations, cellcountavg

is the average of all cellcount (i, j) and (i, j) is the ran-
domly generated location on the 2D lattice. This new feature
ensures that every member of the prey population irrespec-
tive of its location in the 2D lattice gets fair opportunity of
improvement.

At the end of each generation the objective value of
the strongest prey (based on dominance criterion) is found
and the algorithm checks for termination. The termination
criteria are as follows:

1. Maximum allowed number of function evaluations
(fcallmax) has been exhausted, or

2. The best objective value searched by the algorithm has
not changed during the last 100 generations.

The dynamic reduction of the window size of the hyper-
cube and the mean extent of mutation along the course of
generations introduces the desirable attribute of ‘adaptive
shrinkage of the search radii’ as solutions converge towards
the global optimum.

The above steps summarize the basic version of SOMPP
which can be termed as SOMPP Version-1. During the
course of further development of SOMPP, other alter-
ations/additional features were also implemented causing
minor to significant improvements in its performance. These
versions of SOMPP are described in detail as follows.

2.1 SOMPP version-2: rank based predator relocation

Localities with relatively stronger prey were designed to
have a higher affinity of attracting predators. The probabil-
ity ‘cellprobi, j ’ of locating a predator in a particular locality
(co-ordinates i , j generated by a random number generator)
is determined as follows.

cellranki, j = min

(
ranki, j ranki+1, j

ranki+1, j+1 ranki, j+1

)

cellprobi, j = N − cellranki, j

N

(10)

Here, cellranki, j is the rank of the cell/locality (i, j) and
ranki, j is the rank of the prey located at the grid point (i, j),
ranking being determined on the basis of dominance. N

is the total number of prey, hence equal to the maximum
rank in the population. This feature introduces substantial
amount of elitism into the algorithm thereby speeding up
convergence. However, in some cases this might limit the
domain of search and hence should be applied carefully.

2.2 SOMPP version-3: nine prey neighbourhood

Instead of the predator being located at the center of a four-
vertex quadrilateral cell, the predator is now located on the
same grid nodes as prey and allowed to have access to all
eight preys around it as well as the prey at that very grid
location (Fig. 2). This increases the neighbourhood scope of
the predator from four to nine. Since prey are not relocated
in SOMPP, this modification facilitates faster communica-
tion of genetics among prey irrespective of their location on
the unfolded toroidal surface grid, which in turn accelerates
the rate of improvement of the prey population as a whole.

2.3 SOMPP version-4: global elitist crossover

Here, the worst prey in each active neighbourhood is
replaced by the crossover of the strongest two prey in the
entire prey population, instead of the strongest two local
prey. Strength of the prey in this case is determined on the
basis of the objective value. This significantly decreased
the number of function evaluations necessary, but often led
to stalling of solutions at the local minima. This might be
avoided by selecting the parents for crossover out of the top
‘p’ percentage of the prey population based on dominance,
instead of the two global prey with minimum objective val-
ues. Nevertheless, even then the fundamental characteristics

Fig. 2 An active nine prey locality/neighbourhood on the grid drawn
on an unfolded toroidal surface
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of predator–prey approach, that is localized evolution of
solutions, will be lost.

2.4 SOMPP version-5: version-2 and version-3 combined
with an epidemical operator

In this version of SOMPP, the concepts of nine-prey active
neighborhoods and rank based relocation of predators are
implemented simultaneously to promote faster convergence
and better communication among the prey. However, the
rank for each cell is calculated as the average of the ranks
of all the local prey in that cell. In addition to that, to
counteract the possibility of convergence to a local min-
imum, a concept of an epidemic genetic operator was
introduced as implemented by Cuco et al. (2008) in the
Epidemic Genetic Algorithm. If the objective value of the
strongest prey does not change over a certain number of
consecutive iterations, a part of the prey population is dis-
carded and replaced with new population generated using
Sobol’s (1976) quasi-random sequence generator. This is
implemented as follows.

If Nchng > 10,

1. Rank prey population by dominance.
2. Discard weakest 0.0 < fw < 1.0 fraction of the prey

population.
3. Set variable limits within the actual specified variable

limits as well as suitable to the order of magnitude of
the remaining prey design vector values and generate
N × fw new prey to replace the discarded ones.

Here, Nchng is the consecutive number of generations with-
out any change in the objective value of the strongest prey
by a relative tolerance of 10e-03. Numerical experiments
showed that a high value of fw ( fw = 0.9) should be used
for all test cases since whenever the above conditions for
the application of the epidemical operator was satisfied, the
existing diversity in the population was significantly below
that required to produce new solutions. As a result of which,
retaining a few representative solutions (stongest of the lot)
from the existing population, should be sufficient.

2.5 SOMPP version-6: version-5 with dominance based
selection in active neighbourhoods

Here, the relative strength of the prey in an active locality is
determined on the basis of the dominance criterion instead
of the weighted f value given by (5). In case of uncon-
strained problems, this has no additional influence because
the dominance is merely based on the actual objective value.
However, in case of constrained problems, this modification
helps significantly in directing solutions into the feasible
region first, before the process of minimization takes over.
This is because the dominance criterion (Deb 2002) was
designed so that feasibility has a preference over minimiza-
tion. This in turn substantially reduces the domain of search
at the later stages making the algorithm more robust and
efficient.

The final version of SOMPP (version 6) also incorpo-
rates rank based relocation of predators. This is a specific
attribute of this single-objective version of predator–prey.
Single-objective optimization demands more focused search
for optimal solutions compared to multi-objective prob-
lems. The rank based relocation ensures that the algorithm
does not waste too much time searching sections of the
domain which are less likely to contain the optimal solu-
tion. However, this can prove to be disadvantageous in cases
of highly non-convex or discontinuous functions (like delta
functions).

It should be noticed that in SOMPP version 5, the
weighted sum of objectives determines the strength of prey,
each predator being associated with a different distribu-
tion of weights. Whereas in SOMPP version 6 selection is
guided by the constraint dominance criterion. This proves to
be more favorable for faster convergence of solutions.

3 Numerical experiments

All six versions of SOMPP were implemented using a
C++ programming language. The objective functions were
evaluated by the corresponding external executable files.

Table 1 Details of three unconstrained single-objective test cases

Problem Nv Variable limits Objective function 1 Analytical solution

Griewank 2 xi ∈ [−600, 600] f (X) =
m∑

i=1

x2
i

4000
−

m∏

i=1

cos

(
xi√

i

)
+ 1 f (X) = 0, xi = 0

Rosenbrock 2 xi ∈ [−2.048, 2.048] f (X) = 100
(
x2 − x2

1

)2 + (1 − x1)
2 f (X) = 0, xi = 1

Miele-Cantrell 4 xi ∈ [−10, 10] f (X) = (
e(x2−x1)

)4 + 100 (x2 − x1)
6 f (X) = 0, x1 = 0,

+ (
tan−1 (x3 − x4)

)4 + x2
1 x2 = x3 = x4 = 1

Nv number of variables
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The final version of the algorithm, that is, SOMPP
Version-6 was initially tested on three popular uncon-
strained single-objective test functions namely Griewank
function, Rosenbrock function and Miele-Cantrell function
as evaluated by Colaco et al. (2008). Details about these
functions are given in Table 1.

The user-defined parameters used in the SOMPP
Version-6 algorithm in case of the above three test problems
are summarized in Table 2.

The prey population size used here is the ‘small set’ pop-
ulation size defined by Colaco et al. (2008) as equal to
10 Nv. The crossover probability should be maintained at
unity (i.e., 100%) since localized recombination is abso-
lutely necessary for evolution of a population which lacks
global mixing of solutions. The mutation probability used is
also high (around 0.25, i.e., 25%) which is usual for applica-
tion of evolutionary algorithms to unconstrained problems.
However, specific real world problems might demand a
higher or lower mutation probability, which may not be
possible to predict a priori without some knowledge of the
function topology.

The values of K and L reflect the degree of conver-
gence that the user expects to achieve. However, care should
be taken to allow a sufficient number of function evalua-
tions to converge. Otherwise, the local search radii would
reduce too much and too soon rendering the algorithm
incapable of producing substantially better solutions in sub-
sequent generations. In this case, high values of K and L are
used because the above test problems are unconstrained and
relatively easy to solve.

The test functions were run until the relative error in
the computed minima reduced to 10e-09 or the maximum
allowed number of function evaluations was exhausted. The
relative error was calculated as follows.

relative error =

⎧
⎪⎨

⎪⎩

∣∣Mincomp − Minanal
∣∣

Minanal
, if Minanal �= 0

∣∣Mincomp − Minanal
∣∣ , if Minanal = 0

(11)

Table 2 SOMPP Version-6 user-defined parameters for three single-
objective test cases

Parameter Value

Population size (# prey) 10 Nv

Crossover probability 1.0

Mutation probability 0.25

Maximum allowed function evaluations 10,000

K (mutation) 6

L (hypercube) 10

fw (epidemic operator) 0.9
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Fig. 3 Convergence history of SOMPP version-1 applied to Griewank,
Miele-Cantrell and Rosenbrock functions

The convergence histories of the three test problems are
shown in Figs. 3 and 4. It is noticeable that numerous mod-
ifications introduced in SOMPP Version-6 made it superior
to SOMPP Version-1.

The results for these three test cases for SOMPP Version-
1 (Fig. 3) and SOMPP Version-6 (Fig. 4) are shown a priori
for ease of latter comparison against results of testing all
six version of SOMPP on a much larger set of test func-
tions. Though multiple runs were performed, the outcome
of only one of the representative runs is shown here due to
obvious constraints in demonstrating convergence histories
of multiple runs together on the same graph.
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Fig. 4 Convergence history of SOMPP version-6 applied to Griewank,
Miele-Cantrell and Rosenbrock functions
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Fig. 5 Number of variables for each of the 293 test cases defined by
Hock and Schittkowski (1981)

Figure 4 shows that the SOMPP Version-6 reduced the
relative error by ten orders of magnitude in less than 10,000
function evaluations for the Griewank function. However,
in case of the Rosenbrock function and the Miele–Cantrell
function the algorithm ran for 10,000 function evaluations
to reduce the relative error by ten orders and by only three
and a half orders of magnitude, respectively.

Further fine calibration of the extent of mutation and
the relative hypercube size together with allowing more
function evaluations is likely to achieve better accuracy in
finding the global minimum.

In order to test the SOMPP thoroughly, the algorithm
in its original version (SOMPP Version-1) was tested on
the 293 constrained and unconstrained single objective test
cases with known analytic solutions that were derived from
the collection of 395 linear/nonlinear test cases (actually
295 test problems) formulated by Hock and Schittkowski
(1981) and Schittkowski (1987). The number of variables
involved in these cases ranges from 2 to 100 as shown in
Fig. 5. The number of inequality and equality constraints
range from 0 to 38 and 0 to 6, respectively.

Table 3 SOMPP Version-1 user-defined parameters for the 293 test
cases

Parameter Value

Population size (# prey) 10 Nv

Crossover probability 1.0

Mutation probability 0.1

Maximum allowed function evaluations 20,000

K (mutation) 2

L (hypercube) 4
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Fig. 6 Relative error of computed minima for the 293 test problems
(SOMPP version-1)

The user-defined parameters used in the SOMPP
Version-1 algorithm in case of the above 293 test problems
are summarized in Table 3.

A lower mutation probability is used in this case, because
most of the above test cases are constrained and care should
be taken to avoid already feasible solutions (near the bound-
aries of the feasible domain) from leaving the feasible space.
Similarly, lower values of K and L were used to impose
stricter restrictions on the rate of decrease of search radii,
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Table 4 Details of the 13 test problems from the set of 293

# TP Nv q P value

1 1 2 0 0

2 37 3 0 2

3 44 4 0 6

4 55 6 6 0

5 75 4 3 2

6 110 10 0 0

7 112 10 3 0

8 118 15 0 29

9 246 3 0 0

10 251 3 0 1

11 301 50 0 0

12 393 48 2 1

13 395 50 1 0

since a lower degree of convergence is expected for such
a set of complex constrained/unconstrained test problems.
A relative tolerance of ε = 0.001 was used for equality
constraints.

To compensate for performance fluctuations induced by
random generators used in creating the initial population
and other genetic operators, the algorithm was run five times
for each of the 293 test problems resulting in a total of 1,465
test runs. An explicit termination criterion was also imple-
mented when relative error became less than 0.001. The
final relative error for the computed minimum and the num-
ber of function evaluations exhausted in doing so for each
of these test problems can be seen in Figs. 6 and 7. In both
of these figures the corresponding maximum, minimum and
average (of five runs) are given for each test problem.

It is evident from Fig. 6 that some of the test cases exhibit
partial convergence with a relative error of the order of
around 1.0. This can be attributed to the presence of either
multiple equality or inequality constraints (linear /nonlin-
ear) or both in most of these test problems (Hock and
Schittkowski 1981; Schittkowski 1987). Some of the test
cases do not converge at all leading to a relative error of
orders above unity. This is primarily due to the lack of any

Table 5 SOMPP user-defined parameters for the 13 test cases

Parameter Value

Population size (# prey) 10 Nv

Crossover probability 1.0

Mutation probability 0.25

Maximum allowed function evaluations 20,000

K (mutation) 3

L (hypercube) 6

fw (epidemic operator) 0.9
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specified variable limits for some of the variables in the orig-
inal publications. In such cases, a comprehensive range of
−10e10 to +10e10 was assigned for each design variable.

The number of function evaluations varied significantly
from problem to problem as seen from Fig. 7. Test problems
(TP) from TP-80 onwards till TP-118 (test runs 400–590)
have relatively high number of constraints leading to a
higher number of function evaluations. Whereas test prob-
lems ranging from TP-190 to TP-210 as well as from
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TP-260 to TP-293 have a relatively high number of design
variables leading also to a higher number of the objective
function evaluations. Though 20000 function evaluations
were allowed, some test cases show total executed num-
ber of evaluations to be a little more than that. This is
because in SOMPP the number of function evaluations in
each generation is not limited to the population size (not
predictable either) unlike in other evolutionary algorithms.
Consequently, the total number of function evaluations
might just exceed that allowed in course of the last executed
generation. This is also evident from Table 6 presented later
in the paper.

Running all 293 test problems in series is computation-
ally extremely time consuming. Consequently, a set of 13

test problems were chosen from among these 293 cases.
These 13 test cases involve number of variables ranging
from two to 50 (with or without specified limits), num-
ber of equality constraints ranging from 0 to 6 and number
of inequality constraints ranging from 0 to 38, thereby
exhibiting varying degree and nature of complexity. Details
pertinent to these test problems are given in Table 4. It
should be noted that, compared to Table 3, a higher mutation
probability was used to prevent intermediate convergence
to local minima and subsequent stagnancy in the region of
the local minima. Higher values of K and L were used to
achieve better accuracy.

Here, p = number of inequality constraints, q = number
of equality constraints.

All the latter five versions of SOMPP (versions 2 to 6)
were tested on these 13 test problems. Each of these test
problems was run five times on a small population size
(10 Nv) as before. The user-defined parameters used in the
SOMPP algorithm in case of these 13 test problems are
summarized in Table 5.

The relative error of the computed minima, the con-
straint violation of the computed minima, and the number
of function evaluations exhausted for each of the five ver-
sions of SOMPP running on each of the 13 test problems
thus resulting in 65 runs can be seen in Figs. 8, 9 and 10.

It can be observed from Fig. 8 that SOMPP Version-
6 performs better than the other versions of SOMPP in
approaching the global minima. It also has the maximum
potential in driving solutions into the feasible domain as
seen from Fig. 9. In case of some of the constrained prob-
lems the data points are not visible in Fig. 9. This is because
the constraint violation is zero, that is the final computed
minima in these cases are feasible solutions, and hence

Table 6 Output for the 13 test
problems with SOMPP
Version-6

TP Computed Actual Relative Constraint Number of function Computing

minima minima error violation evaluations time (s)

1 0.00701 0.00 0.00701 19,291 989

37 −3,454.06 −3,456 0.00056 0 1,347 69

44 −14.9708 −15.00 0.00195 0 5,635 290

55 6.33959 6.3333 0.00098 0.996963 10,952 568

75 5,176.05 5,174.41 0.00031 2.45536 3,522 182

110 −45.7493 −45.7785 0.00064 2,385 123

112 −0.05151 −0.47761 0.89215 0 20,059 1,045

118 751.617 664.82 0.130556 0 20,031 1,045

246 0.011518 0.00 0.011518 19,696 1,021

251 −3,454.81 −3,456 0.000345 0 294 15

301 0 −50 1.000000 20,052 1,062

393 1.8623 0.86338 1.15699 0 20,712 1,192

395 19,990.6 1.91667 10,428.9 163.789 20,150 1,071



552 S. Chowdhury, G.S. Dulikravich

cannot be represented in a logarithmic plot of Fig. 9. The
relevant output parameters relating to the most accurate
solution (of the five runs for each problem) for SOMPP
Version-6 running on the 13 cases are summarized in
Table 6.

The significantly low accuracy and inability to find feasi-
ble solutions in case of TP-395 can be attributed to the fact
that there were no specified variable limits for any of the
50 design variables involved in this problem provided in the
original publications (Schittkowski 1987).

SOMPP Version-6 being the most efficient and robust of
all the different forms of the SOMPP, was then tested on the
entire set of 293 single objective test problems (Hock and
Schittkowski 1981; Schittkowski 1987) run five times each.
The various user-defined parameters used were the same as
given in Table 5. The relative error of the computed min-
ima, the constraint violation of the computed minima and
the number of function evaluations exhausted for all the 293
test runs are displayed in Figs. 11, 12 and 13 respectively. In
all the three figures, the corresponding maximum, minimum
and average (of five runs) are given for each test problem.

It is seen from Fig. 11 that SOMPP Version-6 performs
well in achieving relative error of the order of less than 1.0,
except for in cases which have a high number of design
variables with unspecified variable limits. However, the
most prominent improvement of this version of SOMPP is
its ability to find the feasible space in case of constrained
problems (as shown in Fig.12) irrespective of the number
and complexity of the inequality and equality constraints
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Fig. 11 Relative error of computed minima for the 293 test problems
(SOMPP version-6)
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Fig. 12 Total constraint violation for each of the 293 test problems
that are constrained (SOMPP version-6)

(whether linear or nonlinear). It should be noted that in
many of these constrained problems the initial population is
completely in the infeasible space. The inability to converge
to the feasible space in case of the last few test problems
can be attributed to the involvement of relatively high num-
ber of design variables (from 20 to 50) as seen from Fig. 5.
The number of function evaluations exhausted by SOMPP
Version-6 is relatively high as shown in Fig. 13, which

X
X

X

X

X

X

X

X

X

X

X

X

X

X

XX
X

X

XX

XX

X

XX

XXX
X

X

X

X

X

X

X

XX

X

X

X

XXX

X

X

XXXXXXX

X

XXX

X

X

X

X

X

XX

X

X

XXXXX

X

X

X

X

XXXXXXXXXXXXXXXX
X
XXXXX

X

X

XXXXXXXX

X

XXXXXXX

X

X

X
XX

X

X

X

X

X

X

X

X

X

X

X

X
X

XXX

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

XXXX
X
X

X

XXX

XXXXXXXXXXXXX

X

XXX

X

XXXXXXXXX
X
X

XX

X

X
X

X

XXXXXX

X

X

X

X

X

X

X

X

X

XXXX

X

X
XX

X

X

XX

X

X

XXX

X

X

X

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X
XX

TP runs

# 
F

u
n

ct
io

n
 E

va
lu

at
io

n
s

50 100 150 200 250

5000

10000

15000

20000

Avg.
Max
Min

X

Fig. 13 Number of function evaluations made for the 293 test prob-
lems (SOMPP version-6)



Improvements to single-objective constrained predator–prey evolutionary optimization algorithm 553

Fig. 14 Comparison of the frequency of occurrence of different
orders of magnitude of relative error in the computed minima between
SOMPP version-1 and SOMPP version-6. Note: frequency is the num-
ber of test runs that converged to that particular order of magnitude of
relative error

is expected as a substantial amount of functions evalua-
tions are consumed in successfully searching for the feasible
space in case of constrained problems.

The improved performance of SOMPP Version-6
becomes more evident from the histogram presented in
Fig. 14.

It is seen from Fig. 14 that in case of SOMPP Version-6,
more test cases have converged to relative errors of orders
of magnitude less than 1.0 (higher histogram bars for log
(relative error) ≤ 0).

4 Conclusion

All versions of the predator–prey algorithm that exist in
literature are mostly suited for unconstrained multiobjec-
tive optimization problems. Consequently, the predator–
prey algorithm in its modified form (SOMPP) is the first
of its kind that specifically deals with constrained single-
objective optimization problems. It performs well on the
popular unconstrained test functions, namely Griewank,
Rosenbrock and Miele-Cantrell functions. The 293 single-
objective test problems given by Hock and Schittkowski
(1981) and Schittkowski (1987) form the most expansive
set of single objective test functions (both constrained and
unconstrained and linear and nonlinear) available in the lit-
erature. SOMPP performs satisfactorily on a large number
of these test problems, in driving solutions into the feasible
domain and consequently converging to the global mini-

mum, using a relatively frugal population size defined by
the ‘small set’, i.e. ten times the number of design variables
Colaco et al. (2008). However, the accuracy of SOMPP
is noticeably affected by the absence of specified limits of
design variables especially in problems with a large number
of design variables.

SOMPP proves expensive in terms of function evalua-
tions when dealing with multiple equality/inequality con-
straints. This can be attributed to the fact that a substantial
amount of function calls are consumed in search of the
feasible domain. This expense increases significantly with
increase in the dimensionality of the problem, which is
however a generic problem with any kind of evolutionary
algorithm. Another drawback of SOMPP is that the algo-
rithm demands fine tuning of three user-defined parameters
namely the mutation probability, the relative hypercube
window size L , and the relative extent of mutation K .
Depending upon the problem, a value of 0.05 to 0.25 is
suggested for the probability of mutation, whereas values
of K and L are subject to the convergence expected with
L − K ≥ 2 always. Nevertheless, coupling SOMPP with an
efficient response surface model that interpolates both linear
and highly non linear functions in multidimensional spaces
(Colaco et al. 2008) is expected to improve the robustness
and accuracy of the SOMPP algorithm considerably.
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