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Abstract This study aims at improving the performance
of simulated annealing (SA) search technique in real-size
structural optimization applications with practical design
considerations. It is noted that a standard SA algorithm
usually fails to produce acceptable solutions to such prob-
lems associated with its poor convergence characteristics
and incongruity with theoretical considerations. In the paper
novel approaches are developed and incorporated into the
standard SA algorithm to eliminate the observed draw-
backs of the technique. The performance of the resulting
(improved) algorithm is investigated in conjunction with
two numerical examples (a 304-member braced planar
steel frame, and 132-member unbraced space steel frame)
designed according to provisions of the Allowable Stress
Design (ASD) specification. In both examples, curves show-
ing the variation of average acceptance probability parame-
ter in standard and improved algorithms are plotted to verify
usefulness and robustness of the integrated approaches.
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1 Introduction

Kirkpatrick et al. (1983) used the so-called Metropolis algo-
rithm to search for the best solution to an optimization
problem amongst a set of feasible ones. In order to set
forth the implicit connection between statistical mechanics
and combinatorial optimization, they explained that in the
annealing process minimization of the internal energy (heat)
between many molecules was modeled using principles of
statistical mechanics. Similarly, combinatorial optimization
is the one such that it minimizes the value of an objec-
tive function between a number of design variables. They
gave examples showing how statistical mechanics in anneal-
ing process was analogous to combinatorial optimization in
designing computer chips as well as to the well-known trav-
eling salesman problem. The technique, named simulated
annealing (SA), soon gained a worldwide popularity as a
metaheuristic search and optimization technique and found
important applications in many disciplines of science and
engineering.

Some relatively former applications of the technique in
the realm of structural optimization and optimum control
design have been reported in Balling (1991), Chen et al.
(1991), Bennage and Dhingra (1995), Tzan and Pantelides
(1996), and Shim and Manoochehri (1997). Amongst recent
studies, Moh and Chiang (2000) developed an improved SA
algorithm where design domain was successively reduced
in the course of the search process. The minimum cost
design of reinforced concrete retaining structures was stud-
ied in Ceramic et al. (2001) with SA. Hasançebi and Erbatur
(2001) touched issues on efficient use of SA for com-
plex structural optimization problems. Later in Hasançebi
and Erbatur (2002), they developed a SA based solution
algorithm for simultaneous optimum design of pin jointed
structures, where the optimum size, shape and topology
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of a structure was sought concurrently for minimizing its
structural weight. Another efficiency improvement of the
technique was attempted in Chen and Su (2002) based on
two different strategies. In the first one a feasible region
was estimated using linearized constraints and the algorithm
was enforced to carry out a search in the estimated feasible
region, whereas in the second one the search was initi-
ated from a region of the design space having high values
of design variables, and the search area was progressively
moved towards the optimum in the subsequent iterations. In
Erdal and Sönmez (2005), a set of current configurations
was used rather than one trial point for maximizing buck-
ing load capacity of composite laminates, and the approach
was also found very effective for shape optimization of
2D structures in Sönmez (2007). Değertekin (2007) com-
pared SA and genetic algorithm (GA) in optimum design
of nonlinear space steel frames formulated according to
AISC-LRFD (1986) specification. The study was concluded
that SA outperformed GA for this class of problems. Finally,
Lamberti (2008) implemented an advanced search mecha-
nism with SA for optimizing trusses, where each candidate
design was selected from a population of randomly gen-
erated trial points. It is clear from the above literature
survey that ongoing research with SA is mostly concen-
trated on enhancing performance of the technique as well
as on applying it to new problem areas.

This study is concerned with improvement of SA for
structural optimization problems that consist of many
design variables and constraints specified according to an
actual design code. It is observed that a standard SA algo-
rithm usually exhibits serious disadvantages when applied
to such problems, resulting in poor convergence charac-
teristics of the technique and inefficient search process.
Two novel and generic approaches are introduced in the
paper to eliminate the observed drawbacks of the standard
algorithm. A reformulation of the acceptance probability
parameter is proposed for non-improving solutions, plus
degeneration of the search process by extremely poor solu-
tions is avoided using a sigmoid function based update of the
Boltzmann parameter. Two design examples are used
mainly to test and compare numerical performances of the
standard and improved SA algorithms. These examples are
a 304-member braced planar steel frame and a 132-member
unbraced space steel frame. In both examples the frames
are sized for minimum weight considering stress, stabil-
ity and displacement limitations according to the provisions
of AISC-ASD (1989) specification. In addition, geomet-
ric constraints between beams and columns are considered
for practicality of the solutions obtained. The curves rep-
resenting the variation of average acceptance probability
parameter in both standard and improved SA algorithms are
plotted in each example to demonstrate the refinement of the
search process with the proposed strategies.

2 Mathematical model of the optimization problem

For a steel structure consisting of Nm members that are col-
lected in Nd design groups (variables), the optimum design
problem according to AISC-ASD (1989) code yields the fol-
lowing discrete programming problem, if the design groups
are selected from steel sections in a given profile list.

Find a vector of integer values I (1) representing the
sequence numbers of steel sections assigned to Nd member
groups

IT = [
I1, I2, . . . , INd

]
(1)

to minimize the weight (W ) of the frame

W =
Nd∑

i=1

ρi Ai

Nt∑

j=1

L j (2)

where Ai and ρi are the area and unit weight of the steel
section adopted for member group i , respectively, Nt is the
total number of members in group i , and L j is the length of
the member j which belongs to group i .

The members subjected to a combination of axial com-
pression and flexural stress must be sized to meet the
following stress constraints:
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If the flexural member is under tension, then the follow-
ing formula is used instead:

[
fa

0.60Fy
+ fbx

Fbx
+ fby

Fby

]
− 1.0 ≤ 0 (6)

In (3)–(6), Fy is the material yield stress, and fa =
(P/A) represents the computed axial stress, where A is the
cross-sectional area of the member. The computed flexural
stresses due to bending of the member about its major (x)

and minor (y) principal axes are denoted by fbx and fby ,
respectively. F ′

ex and F ′
ey denote the Euler stresses about

principal axes of the member that are divided by a fac-
tory of safety of 23/12. Fa stands for the allowable axial
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stress under axial compression force alone, and is calcu-
lated depending on elastic or inelastic bucking failure mode
of the member using Formulas 1.5-1 and 1.5-2 given in
AISC-ASD (1989). For an axially loaded bracing member
whose slenderness ratio exceeds 120, Fa is increased by a
factor of (1.6 − L/200r) considering relative unimportance
of the member, where L and r are the length and radii of
gyration of the member, respectively. The allowable bend-
ing compressive stresses about major and minor axes are
designated by Fbx and Fby , which are computed using the
Formulas 1.5-6a or 1.5-6b and 1.5-7 given in AISC-ASD
(1989). Cmx and Cmy are the reduction factors, introduced
to counterbalance overestimation of the effect of secondary
moments by the amplification factors

(
1 − fa/F ′

e

)
. For

unbraced frame members, they are taken as 0.85. For braced
frame members without transverse loading between their
ends, they are calculated from Cm = 0.6 − 0.4 (M1/M2),
where M1/M2 is the ratio of smaller end moment to the
larger end moment. Finally, for braced frame members
having transverse loading between their ends, they are deter-
mined from the formula Cm = 1 + ψ

(
fa/F ′

e

)
based on a

rational approximate analysis outlined in AISC-ASD (1989)
Commentary-H1, where ψ is a parameter that considers
maximum deflection and maximum moment in the member.

For computation of allowable compression and Euler
stresses, the effective length factors K are required. For
beam and bracing members, K is taken equal to unity.
For column members, alignment charts are furnished in
AISC-ASD (1989) for calculation of K values for both
braced and unbraced cases. In this study, however, the
following approximate effective length formulas are used
based on Dumonteil (1992), which are accurate to within
about −1.0 and +2.0% of exact results (Hellesland 1994):

For unbraced members:

K =
√

1.6G AG B + 4 (G A + G B) + 7.5

G A + G B + 7.5
(7)

For braced members:

K = 3G AG B + 1.4 (G A + G B) + 0.64

3G AG B + 2.0 (G A + G B) + 1.28
(8)

where G A and G B refer to stiffness ratio or relative stiffness
of a column at its two ends.

It is also required that computed shear stresses ( fv) in
members are smaller than allowable shear stresses (Fv), as
formulated in (9).

fv ≤ Fv = 0.40Cv Fy (9)

In (9), Cv is referred to as web shear coefficient. It is taken
equal to Cv = 1.0 for rolled I-shaped members with h/tw ≤
2.24E/Fy , where h is the clear distance between flanges, E

is the elasticity modulus and tw is the thickness of web. For
all other symmetric shapes, Cv is calculated from Formulas
G2-3, G2-4 and G2-5 in ANSI/AISC 360-05 (2005).

Apart from stress constraints, slenderness limitations are
also imposed on all members such that maximum slen-
derness ratio (λ = K L/r) is limited to 300 for members
under tension, and to 200 for members under compression
loads. The displacement constraints are imposed such that
the maximum lateral displacements are restricted to be less
than H /400, and upper limit of story drift is set to be h/400,
where H is the total height of the frame building and h is
the height of a story.

Finally, we consider geometric constraints between
beams and columns framing into each other at a common
joint for practicality of an optimum solution generated. For
the two beams B1 and B2 and the column shown in Fig. 1,
one can write the following geometric constraints:

b f b

b f c
− 1.0 ≤ 0 (10)

b
′
f b(

dc − 2t f
) − 1.0 ≤ 0 (11)

where b f b, b′
f b and b f c are the flange width of the beam B1,

the beam B2 and the column, respectively, dc is the depth of
the column, and t f is the flange thickness of the column.
Equation (10) simply ensures that the flange width of the
beam B1 remains smaller than that of the column. On the

bfbk

bfck
b'fbk

B1

B2

dcl

tfl

Fig. 1 Beam-column geometric constraints
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other hand, (11) enables that flange width of the beam B2
remains smaller than clear distance between the flanges of
the column (dc − 2t f ).

3 Simulated annealing algorithm

The solution of the optimum design problem formulated
in (1)–(11) necessitates the selection of appropriate steel
sections for each member group (design variable) of the
structure from the standard steel sections list. Hence, before
initiating the design process, a set of steel sections selected
from the available section list are collected in a design pool.
Each steel section is then assigned a sequence number that
varies between 1 to total number of sections in the list.
During optimization process the selection of sections for
member groups is carried out using these numbers. In the
following, basic computational steps of a standard SA algo-
rithm are outlined based on the enhancement of the tech-
nique for optimum structural design problems by Balling
(1991). Various applications of this algorithm in structural
optimization can be found in Balling (1991), Bennage and
Dhingra (1995), Hasançebi and Erbatur (2001, 2002), Chen
and Su (2002), Değertekin (2007), and Lamberti (2008).

Step 1. Cooling schedule The first step is the setting of an
appropriate cooling schedule. After choosing suitable val-
ues for the starting acceptance probability (Ps), the final
acceptance probability (Pf ), and the number of cooling
cycles (Nc), the cooling schedule parameters are calculated
as follows:

Ts = − 1

ln (Ps)
, T f = − 1

ln
(
Pf

) , η =
[

ln (Ps)

ln
(
Pf

)

]1/Nc−1

(12)

In (12), Ts , T f and η are referred to as starting tem-
perature, final temperature, and the cooling factor, respec-
tively. The starting temperature is assigned as the current
temperature of the process, i.e., T = Ts .

Step 2. Initial Design The next step is the generation of
an initial design. The initial design is generated randomly
such that each design variable represents the sequence num-
ber of the steel section selected from the profile list. This
design is assigned as the current design of the optimiza-
tion process. The analysis of the structure is performed with
the standard steel sections selected in the current design and
the force and deformation responses are obtained under the
applied loads. If the design violates some of the problem

constraints, it is penalized and its objective function value
(φc) is calculated according to (13).

φ = W

[

1 + α

(
∑

i

gi

)]

(13)

In (13), φ is the constrained objective function value, gi

is the i-th problem constraint and α is the penalty coefficient
used to tune the intensity of penalization as a whole. This
parameter is set to an appropriate static value of α = 1.

Step 3. Generating candidate designs A number of can-
didate designs are generated in the close vicinity of the
current design. This is performed as follows: (a) a design
variable (Ii ) is selected, (b) the selected variable is given a
small perturbation in a predefined neighborhood (14), and
(c) finally, a candidate design is generated by assuming the
perturbed value (I ′

i ) of the variable, while keeping all oth-
ers same as in the current design. It follows that a candidate
design differs from the current one in terms of one design
variable only. It is important to note that each design vari-
able is selected only once in a random order to originate
a candidate design. Hence, the total number of candidate
designs generated in a single iteration of the cooling cycle
is equal to the number of design variables.

I ′
i = Ii ± zi (14)

In (14), zi refers to the amount of perturbation applied to
the i-th design variable, and is sampled randomly within an
integer neighborhood [1, nw] specified, where nw indicates
the width of the neighborhood assigned to a constant value
during optimization.

Step 4. Evaluating a candidate design and Metropolis
test Each time when a candidate is generated, its objec-
tive function (φa) is computed according to (13) and is set to
compete with the current design. If the candidate provides a
better solution (i.e., �φ = φa − φc ≤ 0), it is automatically
accepted and replaces the current design. Otherwise, the so-
called Metropolis test is resorted to determine the winner,
in which the probability of acceptance of a poor candidate
design (P) is assigned as follows:

P = exp(−�φ/K T ) (15)

where K is referred to as Boltzmann parameter, and is
manipulated as the working average of �φ values during
the search process. Hence, whenever a non-improving can-
didate is sampled, this parameter is updated as formulated
as in (16), before its probability of acceptance is calculated
in Metropolis test.

K (u) = K (p)Na + �φ

Na + 1
(16)
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In (16), K (p)is the Boltzmann parameter value before
update; K (u) is the updated value of Boltzmann param-
eter, and Na is the number of previous poor candidates.
Metropolis test is finalized by generating a random number
(r) between 0 and 1, such that if (r ≤ P), the candidate
is accepted and it replaces the current design. Otherwise
(r > P), the candidate is rejected and the current design
maintains itself.

Step 5. Iterations of a cooling cycle A single iteration
of a cooling cycle is referred to the case where all design
variables are selected once and perturbed to generate candi-
date designs. Generally, a cooling cycle is iterated a certain
number of times in the same manner to ensure that objec-
tive function is reduced to a reasonably low value associated
with the temperature of the cooling cycle. Having selected
the iterations of the starting and final cooling cycles (is and
i f ), the iteration of a cooling cycle (ic) is determined by a
linear interpolation between is and i f , as follows:

ic = i f + (
i f − is

)
(

T − T f

T f − Ts

)
(17)

Step 6. Reducing temperature When the iterations of a
cooling cycle are completed, the temperature is reduced by
the ratio of the cooling factor η, and the temperature of the
next cooling cycle is set.

T k+1 = T k .η (18)

In (18), T k and T k+1 represent the temperatures at the k
and (k + 1)-th cooling cycles, respectively.

Step 7. Termination criterion The steps 3 through 6 are
repeated until the whole cooling cycles are implemented.

4 Proposed strategies

In the following subsections the problems associated with
the standard SA algorithm in optimum design of struc-
tural systems with many design variables and irregular
design spaces are explained, and the strategies proposed to
overcome these drawbacks are introduced.

4.1 Acceptance probability correction factor

The three main principles of the Metropolis test can be
stated as follows: (a) due to elevated temperature in the
beginning of the process, poor candidates are assigned high
values of acceptance probability to facilitate design transi-
tions for a thorough exploration of design space at early
stages, (b) low values of �φ (small uphill moves) are
regarded more promising and thus higher acceptance proba-
bilities are assigned to them in comparison to the large ones,

and (c) when the temperature drops as the cooling proceeds,
the probability of accepting uphill moves is reduced pro-
gressively towards zero so that toleration of the algorithm to
transitions to infeasible or non-improving regions is aggra-
vated in time to achieve a more exploitative search at later
stages. These three principles of the Metropolist test play
the major role in the success of the technique.

It is noted that Boltzmann parameter K is manipulated
as the working average of �φ values for non-improving
candidates sampled in the optimization process, i.e., K =
�φave. Hence, it might be expected that if the acceptance
probabilities of all candidates subjected to Metropolis test
are averaged at each cooling cycle, the resulting values
would follow the theoretical curve identified by the function
exp (−1/T ). As far as the optimum design of large struc-
tural systems is concerned, however, it is observed that such
expectancy does not comply with the theoretical prospect at
all. This situation is clearly illustrated in Fig. 2, which dis-
plays the variation of acceptance probability in a typical run
with standard SA algorithm. It is seen from this figure that
average acceptance probability in practice assumes much
higher values than does the theory indicate when accep-
tance probabilities of poor candidates are calculated directly
from (15). Since transitions to non-improving solutions are
still tolerated to a large extent, convergence to a favourable
design region cannot be achieved. To surmount this draw-
back of the standard algorithm, a reformulation of (15) has
been considered in the present study, where a correction
factor (ψ) is introduced as formulated in (19)–(20).

P = ψ. exp(−�φ/K T ) (19)

ψ = 3

√√
√
√ �P (k−1)

t

�P (k−1)
p

, 0.9 ≤ ψ ≤ 1.1 (20)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 40 80 120 160 200 240 280 320

Cooling Cycle

A
ve

ra
ge

 P
ro

ba
bi

lit
y 

of
 A

cc
ep

ta
nc

e

P (in theory)

P (in practice)

Fig. 2 Average acceptance probability (P) in practice and in theory



194 O. Hasançebi et al.

In (20),
(�Pt

)(k−1)
and

(�Pp
)(k−1)

represent the theoretical
and practical (operational) average acceptance probabilities
at the (k − 1)-th cooling cycle, respectively. Accordingly,
the acceptance probabilities of poor candidates at the k-th
cooling cycle are modified based on the observed value of
the ψ in the preceding cycle. By this way, it is ensured
that acceptance probabilities assigned to poor candidates on
average remain approximately in the same level with the
theoretical idealization. The upper and lower bounds on the
correction term ψ are imposed to facilitate a steady change
in the value of this parameter in a controlled manner. Oth-
erwise, immediate fluctuations would occur owing to rapid
and highly irregular variation tendency of this parameter in
successive cooling cycles.

4.2 Updating Boltzmann parameter using transformed �φ

Boltzmann parameter has the following functions that are of
significance for a successful search process: (a) it serves to
normalize �φ values for the Metropolis test, which in turn
enables a fruitful implementation of the algorithm irrespec-
tive of problem type; and (b) the search experience gained
over the design space is stored in this parameter; and (c) this
experience is then used to govern the acceptance criterion of
the next candidates in connection with the formation of the
previous ones. Note that while acceptance probability of an
average poor candidate is exp(−1/T ), this value decreases
and increases for candidates with �φ > K and �φ < K ,
respectively.

Occasionally, extremely poor candidate designs are gen-
erated and sampled in the natural course of the optimum
design process. Such designs yield exceptionally high �φ

values that are far from reflecting general characteristics of
the search space. A direct update of Boltzmann parame-
ter as per such designs with (16) drives this parameter out
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of its usual range required for a successful process. Once
this happens, the majority of subsequent candidates that are
subjected to Metropolis test are accepted even if they pro-
duce substandard solutions, just because their �φ values
are lower than the operating value of Boltzmann parameter.
The optimization turns into a random search process lacking
necessary convergence characteristics. To this end, limiting
the degree of infeasibility or inferiority (range of �φ) of
poor candidates treated in Metropolis test is essential for an
efficient implementation of Boltzmann parameter, although
a direct interference to this parameter might be impractical
or inefficient due to the lack of prior knowledge about the
design space. To overcome this problem in a more efficient
way, we consider transformation of �φ values using the sig-
moid function given in (21) and also shown graphically in
Fig. 3, where �φtra represents the transformed value of �φ.

�φtra = tanh

(
0.35 ∗ �φ

K

)
(21)

In this method, whenever a candidate design is gener-
ated, its �φ value is first calculated in a usual manner and
proportioned to the current value of Boltzmann parameter.
Next, its transformed value �φtra is calculated from (21).
It can be observed from Fig. 3 that for all positive entries
(�φ/K ) to the function, it returns a value between 0 and
1. It has a sensitive range for some values of �φ/K (say
between 0 and 6) over which the degree of weakness of a
design is properly accounted for. Yet, as �φ/K increases
further, it becomes less and less sensitive to variations in
�φ/K and finally converges towards a value of 1.0 for the
poorest candidates with �φ >> K . Hence, no matter how
poor a candidate design is, the sigmoid function maps it to
a limiting value of �φtra = 1.0 to make its degree of inferi-
ority trivial after a point. Finally, acceptance probability of
the candidate is computed from (22), where Ktra represents
the working average of �φtra values, i.e.K = (�φtra)ave.

P = ψ. exp(−�φtra/Ktra T ) (22)

5 Numerical examples

Two numerical examples with practical design considera-
tions are studied to test and compare performances of the
standard and improved SA algorithms as well as to verify
effectiveness of the proposed strategies. These examples are
a 304-member braced planar steel frame and a 132-member
unbraced space steel frame. They are designed for minimum
weight considering cross-sectional areas of the members
being the design variables. In both design examples, the fol-
lowing material properties of the steel are used: modulus of
elasticity (E) = 29,000 ksi (203,893.6 MPa) and yield stress
(Fy) = 36 ksi (253.1 MPa).
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Table 1 Gravity loading on the
beams of 304-member braced
planar steel frame

Beam type Uniformly distributed load

Outer span beams Inner span beams

(lb/ft) (kN/m) (lb/ft) (kN/m)

Roof beams (dead + snow loads) 1,011.74 14.77 1,193.84 17.42

Floor beams (dead + live loads) 1,468.40 21.49 1,732.70 25.29

Solutions to these problems are also sought using two
other metaheuristic search techniques, namely tabu search
and harmony search methods in order to achieve compa-
rability between the results of SA and other techniques.
Tabu search (TS) is a metaheuristic search method origi-
nally developed by Glover (1989). The method implements
a simple yet an efficient iterative based local search strategy
for solving combinatorial optimization problems. At each
step a number of candidate solutions are sampled in the
close vicinity of the current design by perturbing a single
design variable called a move. The best candidate is cho-
sen and replaced with the current design even if it offers a
non-improving solution, and the move leading to this can-
didate is recognized as a successful move. To protect the
search against cycling within the same subset of solutions,
information regarding most recently visited solutions is col-
lected in a list referred to as tabu list. A candidate is allowed
to replace the current design provided that its move is not
in tabu list; otherwise the search is preceded with the cur-
rent solution. Harmony search (HS) is another metaheuristic
algorithm recently developed by Lee and Geem (2004).
The method is based on natural musical performance pro-
cesses that occur when a musician searches for a better state
of harmony. The resemblance, for example between jazz
improvisation that seeks to find musically pleasing harmony
and the optimization is that the optimum design process
seeks to find the optimum solution as determined by the
objective function. The pitch of each musical instrument
determines the aesthetic quality just as the objective func-
tion is determined by the set of values assigned to each
design variable. The design algorithms developed for HS
and TS methods are discussed in Hasançebi et al. (2009)
with their complete computational steps.

5.1 Example 1: 304-member braced planar steel frame

Figure 4 shows plan and elevation views of a 20-story, 304-
member braced (non-swaying) planar steel frame, which
actually represents one of the interior frameworks of a steel
building along the short side. It is assumed that all the beams
and columns of the frame are rigidly connected, while the

diagonals of K-braced truss are pin connected. The 304
members of the frame are grouped into 32 independent
size variables to satisfy practical fabrication requirements.
That is, except the first story exterior columns are grouped
together as having the same section over three adjacent
stories, as are interior columns, beams and diagonals, as
indicated in Fig. 4. The complete wide-flange (W) profile
list consisting of 297 ready sections is used to size column
members, while beams and diagonals are selected from dis-
crete sets of 171 and 147 economical sections selected from
W-shape profile list based on area and inertia properties
in the former, and on area and radii of gyration proper-
ties in the latter. The frame is subjected to a single loading

Table 2 Wind forces on 304-member braced planar steel frame

Floor no Windward Leeward

(lb) (kN) (lb) (kN)

1 2,250.16 10.01 3,105.47 13.81

2 2,573.56 11.45 3,105.47 13.81

3 2,889.65 12.85 3,105.47 13.81

4 3,137.20 13.95 3,105.47 13.81

5 3,343.73 14.87 3,105.47 13.81

6 3,522.52 15.67 3,105.47 13.81

7 3,681.13 16.37 3,105.47 13.81

8 3,824.29 17.01 3,105.47 13.81

9 3,955.18 17.59 3,105.47 13.81

10 4,076.05 18.13 3,105.47 13.81

11 4,188.57 18.63 3,105.47 13.81

12 4,294.01 19.10 3,105.47 13.81

13 4,393.34 19.54 3,105.47 13.81

14 4,487.35 19.96 3,105.47 13.81

15 4,576.69 20.36 3,105.47 13.81

16 4,661.86 20.74 3,105.47 13.81

17 4,743.31 21.10 3,105.47 13.81

18 4,821.41 21.45 3,105.47 13.81

19 4,896.47 21.78 3,105.47 13.81

20 2,484.38 11.05 1,552.74 6.91
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condition of combined gravity (dead, live and snow loads)
and lateral (wind) loads that are computed as to ASCE
7-05 (2005) based on the following design values: a design
dead load of 60.13 lb/ft2 (2.88 kN/m2), a design live load
of 50 lb/ft2 (2.39 kN/m2), a ground snow load of 25 lb/ft2

(1.20 kN/m2) and a basic wind speed of 105 mph (65 m/s).
The resulting gravity loads on the outer and inner beams of
the roof and floors are listed in Table 1, and lateral (wind)
loads acting at each floor level on windward and leeward
faces of the frame are tabulated in Table 2. The combined
stress and stability limitations of the members are calcu-
lated according to the provisions of AISC-ASD (1989),

as explained in Section 2. In addition, the displacements
of all nodes in any direction are restricted to a maximum
value of 7.29 in (18.52 cm), which is equal to height of
frame/400. Furthermore, story drift constraints are applied
to each storey of the frame which is equal to height of each
story/400.

The frame is optimized for minimum weight using three
variants of the SA algorithm. In the first one the standard
SA algorithm (sSA) is implemented as outlined in Section 3
using the following values of control parameters in line with
the recommendations of the former studies (Balling 1991;
Bennage and Dhingra 1995; Hasançebi and Erbatur 2001,

Table 3 Final best designs of
304-member braced planar steel
frame obtained with iSA, TSO
and HS methods

Size iSA TS HS
variables

Ready section Area, cm2(in2) Ready section Area, cm2(in2) Ready section Area, cm2(in2)

1 W14X20 227.74 (35.3) W14X132 250.32 (38.8) W36X160 303.23 (47)

2 W30X191 361.94 (56.1) W21X182 345.81 (53.6) W18X192 363.87 (56.4)

3 W16X40 76.13 (11.8) W18X40 76.13 (11.8) W18X60 113.55 (17.6)

4 W8X24 45.68 (7.08) W8X28 53.22 (8.25) W12X58 109.68 (17)

5 W14X99 187.74 (29.1) W21X111 210.97 (32.7) W24X131 248.39 (38.5)

6 W18X175 330.97 (51.3) W21X166 314.84 (48.8) W27X194 367.74 (57)

7 W18X40 76.13 (11.8) W16X45 85.81 (13.3) W16X45 85.81 (13.3)

8 W8X24 45.68 (7.08) W6X25 47.37 (7.34) W8X28 53.23 (8.25)

9 W10X77 145.81 (22.6) W12X79 149.68 (23.2) W24X104 195.48 (30.6)

10 W21X147 278.71 (43.2) W36X135 256.13 (39.7) W21X132 250.32 (38.8)

11 W21X44 83.87 (13) W18X46 87.10 (13.5) W18X46 87.10 (13.5)

12 W6X25 47.35 (7.34) W8X24 45.68 (7.08) W12X30 56.71 (8.79)

13 W10X49 92.90 (14.4) W10X54 101.94 (15.8) W12X79 149.68 (23.2)

14 W33X118 223.87 (34.7) W30X124 235.48 (36.5) W18X119 226.45 (35.1)

15 W27X84 159.99 (24.8) W27X84 159.99 (24.8) W24X76 144.52 (22.4)

16 W10X60 113.55 (17.6) W10X60 113.55 (17.6) W10X60 113.55 (17.6)

17 W12X45 85.16 (13.2) W10X45 85.81 (13.3) W12X50 94.84 (14.7)

18 W21X101 192.26 (29.8) W16X100 189.68 (29.4) W24X104 195.48 (30.6)

19 W18X50 94.84 (14.7) W18X55 104.51 (16.2) W18X65 123.22 (19.1)

20 W6X15 28.58 (4.43) W5X16 30.19 (4.68) W8X21 39.74 (6.16)

21 W10X33 62.65 (9.71) W8X31 58.90 (9.13) W18X65 123.22 (19.1)

22 W12X58 109.68 (17) W10X60 113.55 (17.6) W18X71 134.18 (20.8)

23 W16X40 76.13 (11.8) W18X40 76.13 (11.8) W18X50 94.84 (14.7)

24 W6X15 28.58 (4.43) W5X16 30.19 (4.68) W8X18 33.94 (5.26)

25 W6X20 37.87 (5.87) W6X20 37.87 (5.87) W8X40 75.48 (11.7)

26 W12X40 76.13 (11.8) W14X43 81.29 (12.6) W21X62 118.06 (18.3)

27 W18X40 76.13 (11.8) W18X40 76.13 (11.8) W18X40 76.13 (11.8)

28 W6X15 28.58 (4.43) W4X13 24.71 (3.83) W6X25 47.35 (7.34)

29 W8X31 58.9 (9.13) W8X31 58.90 (9.13) W24X94 178.71 (27.7)

30 W8X31 58.9 (9.13) W10X39 74.19 (11.5) W10X60 113.55 (17.6)

31 W18X55 104.52 (16.2) W18X55 104.51 (16.2) W24X76 154.52 (22.4)

32 W8X31 58.9 (9.13) W8X31 58.90 (9.13) W12X40 76.13 (11.8)

Weight 232,811.88 lb (105,603.47 kg) 236,586.49 lb (107,315.63 kg) 269,055.45 lb (122,043.55 kg)
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Fig. 5 The variation of feasible best design in sSA, pSA and iSA
algorithms for 304-member braced planar steel frame

2002): Ps = 0.50, Pf = 10−7, is = 1, i f = 7, nw = 10,
Nc = 320. This led to the following cooling schedule param-
eters from (12): Ts = 1.4427, T f = 0.1448 and η = 0.9902.
In the second algorithm, to see the effect of sigmoid function
transformation based update of Boltzmann parameter on the
optimization process alone, this strategy is solely integrated
into solution procedure. The resulting algorithm is referred
to as partially improved SA (pSA) and is executed under the
same values of parameter set with the former. Finally, both
of the strategies developed in Section 4 are incorporated
to yield the improved SA algorithm (iSA) proposed in the
study. The improved SA is employed with the same values
of the parameter set, except that final acceptance probability
is set to Pf = 10−3, which results in the following cooling
schedule parameters: Ts = 1.4427, T f = 0.0620 and η =
0.9928.

Considering stochastic nature of the technique, the frame
is separately designed a number of times with each SA algo-
rithm, and the best performance is considered. The sSA
algorithm performed very poorly and located a final design
weight of 357,358.91 lb (162,098.00 kg) that is very far
from the optimum solution of the problem. This design has
been improved to a certain extent with pSA, which obtained
a final design weight of 289,914.76 lb (131,505.34 kg)
that could still be treated as poor. Compared to these two
solutions, the iSA algorithm yielded a much better design
that weighs 232,811.88 lb (105,603.47) only. This design
is tabulated in Table 3 with section designations attained
for each member group. In all the cases a total of approx-
imately 50,000 function evaluations (structural analyses)

were performed to reach the final designs reported above.
In an effort to compare the solution of iSA with those of
other metaheuristic technqiues, the same example has been
studied with harmony search (HS) and tabu search (TS)
methods using the design algorithms developed for them
in Hasançebi et al. (2009). When executed over the same
number of function evaluations, a solution of 269,055.45 lb
(122,043.55 kg) was achieved with HS method, whereas
TS has resulted in a final design weight of 236,586.49 lb
(107,315.63 kg), which is very close to that of iSA. These
two designs are also reported in Table 3.

In Fig. 5, the variation of feasible best design obtained
so far during the search is plotted against the number of
function evaluations for the three variants of SA algorithm.
In addition, the variation of average acceptance probability
parameter in these runs is displayed in Fig. 6. As discussed
in Section 4, the average acceptance probability at a cooling
cycle is obtained by averaging the acceptance probabili-
ties of all candidates subjected to Metropolis test at that
cooling cycle. It is clear from these two figures that aver-
age acceptance probability in sSA has not been reduced to
a level required for effective exploitative search. The fact
that a high percentage of poor candidates are still accepted
towards the end of the process has prevented the algo-
rithm from convergence to favourable design regions. As
a result, a randomized search was carried out mostly by
allowing transitions in wide design regions. A refinement
in the operation of Boltzmann parameter with transformed
�φtra values in pSA has recovered the situation in some
measure. A better convergence characteristic was exhibited
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by the algorithm under the effect of slightly aggravated tran-
sitions to non-improving regions, yet its performance was
still far from being satisfactory. Besides the refinement of
Boltzmann parameter, the use of correction factor ψ in iSA
enforced the algorithm to keep track of the idealized (theo-
retical) acceptance probability curve as observed in Fig. 6.
As a consequence of this, a rapid and reliable convergence
of the algorithm was achieved towards the optimum.

5.2 Example 2: 132-member unbraced space
steel structure

The second example shown in Fig. 7 is a three dimensional
unbraced (swaying) steel frame consisting of 70 joints and
132 members that are grouped into 30 independent size vari-
ables (Fig. 7b) to satisfy practical fabrication requirements.
The columns are selected from the complete W-shape pro-
file list consisting of 297 ready sections, whereas a discrete
set of 171 economical sections selected from W-shape pro-
file list based on area and inertia properties is used to size
beam members. Both gravity and lateral loads are consid-
ered in designing the frame. Gravity loads are calculated
the using the same design considerations as in the previous
example, yielding uniformly distributed loads on the outer
and inner beams of the roof and floors given in Table 4.
As for lateral forces, earthquake loads (E) are considered.
These loads are computed as to equivalent lateral force
procedure outlined in ASCE 7-05 (2005), resulting in the
values given in Table 4 that are applied at the center of
gravity of each story as joint loads. Gravity (G) and earth-
quake (E) loads are combined under two loading conditions
for the frame: (a) 1.0G + 1.0E (in x-direction), and (b)
1.0G + 1.0E (in y-direction). The combined stress, stabil-
ity and geometric constraints are imposed as explained in
Section 2. The joint displacements in x and y direction are
restricted to 1.53 in (3.59 cm) which is obtained as height of
frame/400. Furthermore, story drift constraints are applied
to each storey of the frame which is equal to height of each
story/400.

Again the three variants of SA algorithm are tested to
minimize the frame weight. Each algorithm is run a certain
number of times independently, and only the best perfor-
mances are considered. For sSS and pSA, the following
control parameters are selected to sample approximately
50,000 designs during the search process: Ps = 0.50,
Pf = 10−7, is = 1, i f = 7, nw = 10, Nc = 300. The
same values of parameter set are also used for iSA except
that final acceptance probability is set to Pf = 10−3. Once
again the sSA algorithm exhibited a very poor performance,
as anticipated. The lack of convergence characteristics has
guided the casual search towards a final design weight of
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201,234.87 lb (91,280.14 kg) that is very far from the opti-
mum. A certain improvement of this design was achieved
with the proposed reformulation of Boltzmann parameter,
such that pSA resulted in a final design of 148,590.60 lb
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Table 4 The gravity and lateral
loading on 132-member
unbraced space steel frame

Beam type Uniformly distributed load Floor Earthquake design load

Outer span beams Inner span beams
number

(lb/ft) (kN/m) (lb/ft) (kN/m) (kips) (kN)

Gravity loads

Roof beams 1,011.74 14.77 1,193.84 17.42

(dead + snow loads)

Floor beams 1,468.40 21.49 1,732.70 25.29

(dead + live loads)

Lateral loads

1 6.57 29.23

2 12.43 55.28

3 18.52 82.35

4 24.76 110.15

Table 5 Final best designs of
132-member unbraced space
steel frame obtained with iSA,
TSO and HS methods

Size variables iSA TS HS

Ready section Area, cm2(in2) Ready section Area, cm2(in2) Ready section Area, cm2(in2)

1 W8X35 66.45(10.3) W8X31 58.9 (9.13) W14X53 100.65 (15.6)

2 W18X86 163.23 (25.3) W12X65 123.33 (19.1) W12X120 227.74 (35.3)

3 W12X79 149.68 (23.2) W27X129 243.87 (37.8) W30X48 280.65 (43.5)

4 W18X65 123.26 (19.1) W8X58 110.32 (17.1) W16X77 145.81 (22.6)

5 W12X65 123.26 (19.1) W12X79 149.68 (23.2) W18X119 226.45 (35.1)

6 W27X161 305.81 (47.4) W12X106 201.29 (31.2) W24X104 197.42 (30.6)

7 W24X117 221.94 (34.4) W18X97 183.87 (28.5) W30X148 280.65 (43.5)

8 W10X54 101.94 (15.8) W8X58 110.32 (17.1) W10X68 129.03 (20.0)

9 W18X86 163.23 (25.3) W12X72 136.13 (21.1) W18X158 298.71 (46.3)

10 W12X96 181.94 (28.2) W14X90 170.97 (26.5) W12X120 227.74 (35.3)

11 W10X60 113.55 (17.6) W36X135 256.13 (39.7) W36X150 285.16 (44.2)

12 W10X49 92.90 (14.4) W10X49 92.90 (14.4) W16X67 127.10 (19.7)

13 W12X87 165.16 (25.6) W12X96 181.93 (28.2) W10X112 212.26 (32.9)

14 W12X50 94.84 (14.7) W10X49 92.90 (14.4) W24X117 221.94 (34.4)

15 W24X55 104.52 (16.2) W24X55 104.52 (16.2) W18X40 76.13 (11.8)

16 W24X55 104.52 (16.2) W10X33 62.65 (9.71) W14X61 115.48 (17.9)

17 W12X58 109.68 (17.0) W18X76 143.87 (22.3) W12X65 123.23 (19.1)

18 W12X67 127.1 (19.7) W21X83 156.77 (24.3) W18X119 226.45 (35.1)

19 W12X40 76.13 (11.8) W8X40 75.48 (11.7) W14X82 155.48 (24.1)

20 W10X49 92.90 (14.4) W14X61 115.48 (17.9) W18X86 163.23 (25.3)

21 W12X72 136.13 (21.1) W18X76 143.87 (22.3) W14X90 170.97 (26.5)

22 W12X79 149.68 (23.2) W12X72 136.13 (21.1) W18X97 183.87 (28.5)

23 W8X48 90.97 (14.1) W12X40 76.13 (11.8) W21X73 138.71 (21.5)

24 W24X68 129.68 (20.1) W24X76 144.52 (22.4) W12X87 165.16 (25.6)

25 W14X61 115.48 (17.9) W10X77 145.80 (22.6) W18X71 134.19 (20.8)

26 W21X50 94.84 (14.7) W16X50 94.84 (14.7) W27X102 193.55 (30.0)

27 W8X40 75.48 (11.7) W10X49 92.90 (14.4) W8X48 90.97 (14.1)

28 W8X67 127.10 (19.7) W14X61 115.48 (17.9) W24X117 221.94(34.4)

29 W10X39 74.19 (11.5) W18X97 183.87 (28.5) W18X97 183.87 (28.5)

30 W21X44 83.87 (13.0) W16X45 85.81 (13.3) W16X40 76.13 (11.8)

Weight 138,874.67 lb (62,993.55 kg) 142,710.96 lb (64,733.69 kg) 143,135.29 lb (64,926.17 kg)
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(67,400.70 kg). The optimum design of the frame tabu-
lated in Table 5 was attained with iSA again, and weighs
138,874.67 lb (62,993.55 kg) only. The attempts to opti-
mize the frame with HS and TS methods over the same
number of function evaluations yielded the slightly higher
final design weights of 143,135.29 lb (64,926.17 kg) and
142,710.96 lb (64,733.69 kg), respectively, which are also
tabulated in Table 4 for comparison purposes.

Figure 8 displays the variation of feasible best design in
the best runs of the three variants of SA algorithm, whereas
the variation of average acceptance probabilities in these
runs is plotted in Fig. 9. Again an improvement in con-
vergence characteristics of the algorithm by means of the
proposed strategies can easily be observed from these two
figures. It is noted that the effect of refinement of Boltzmann
parameter is more pronounced for this example than the pre-
vious one. This argument can be verified by the observation
that the degree of reformation of average acceptance prob-
ability parameter with pSA in Fig. 9 is remarkably higher
than its corresponding curve in Fig. 6. This is also clear from
the fact that although the final design weight reached with
pSA in the first example is still very far from the optimum,
it is somewhat higher than the optimum in the second exam-
ple. The 3D geometry of the frame in the second example
increases the problem complexity, plus especially geometric
constraints become much more effective for this example.
It follows that a vast number of extremely poor designs
are generated during the course of the search process, and
thereby the influence of refinement of Boltzmann parameter
is better emphasized in the second example.
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algorithms for 132-member unbraced space steel frame example
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sSA, pSA and iSA algorithms for 132-member unbraced space steel
frame example

6 Conclusions

This study is concentrated on enhancing performance of SA
algorithm in real-size structural optimization applications
with practical design considerations. It is emphasized and
clearly demonstrated through the Figs. 2, 6 and 9 that when
optimum design of such systems is required, the standard
SA algorithm gets incongruous with theoretical consider-
ation and faces serious convergence problems. Hence, a
reformulation of the technique has been conducted by two
generic parameters to eliminate the observed drawbacks of
the standard algorithm. A correction term ψ is first defined
in (20)–(21) to modify acceptance probability of a non-
improving candidate based on observed value of average
acceptance probability in theory and in practice. Secondly, a
sigmoid function based transformation of �φ values is pro-
posed (21) for the update of Boltzmann parameter (22) to
avoid the degeneration of the search process by extremely
poor candidates. The resulting algorithm (iSA) has been
tested and compared with the standard one (sSA) on two
numerical examples (Figs. 4 and 7) chosen from size opti-
mum design of large scale steel frameworks. The final
designs obtained with iSA are lower than those of sSA as
much as 35% in the first example and 31% in the second
example. A comparison of optimum designs in Tables 3
and 5 appraises and evinces optimality of the solutions
attained with iSA. The variations of average acceptance
probability parameter in these examples are also plotted in
Figs. 5 and 8 to rationalize enhancement in convergence
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characteristics of the algorithm. It has been found that the
correction term ψ is mainly responsible for the improve-
ment achieved in the first example, whereas refinement of
Boltzmann parameter seems to be more effective in the
second one.
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Appendix

Notation List:

Ai area of the steel section adopted for member
group i

b f b flange width of a beam
b f c flange width of a column
Cmx a reduction factor to counterbalance overestima-

tion of the effect of secondary moments
Cmy a reduction factor to counterbalance overestima-

tion of the effect of secondary moments
Cv web shear coefficient
dc depth of a column
E elasticity modulus
fa computed axial stress
fbx computed flexural stress due to bending of the

member about its major (x) axis
fby computed flexural stress due to bending of the

member about its minor (y) axis
fv computed shear stress
Fa allowable axial stress under axial compression

force alone
Fbx allowable bending compressive stress about

major (x) axis
Fby allowable bending compressive stress about

minor (y) axis
F ′

ex Euler stress about principal x-axis of a member
F ′

ey Euler stress about principal y-axis of a member
Fv allowable shear stress
Fy material yield stress
gi i-thproblem constraint
G A stiffness ratio or relative stiffness of a column at

one end
G B stiffness ratio or relative stiffness of a column at

the other end
h clear distance between flanges
h height of a story
H total height of the frame building

ic iteration of a cooling cycle
i f iteration of final cooling cycle
is iteration of starting cooling cycle
Ii current value of i-th design variable
I ′
i perturbed value of i-th design variable

I a design vector of integer values representing the
sequence numbers of steel sections assigned to
member groups

K effective length factor
K Boltzmann parameter
K (p) Boltzmann parameter value before update
K (u) updated value of Boltzmann parameter
L j length of the member j which belongs to

group i
nw width of the neighborhood
Na number of previous poor candidates
Nc number of cooling cycles
Nd number of design groups (variables)
Nm number of members in a structural system
Nt total number of members in group i
P acceptance probability of a poor candidate
Ps starting acceptance probability
Pf final acceptance probability
(�Pt

)(k−1)
theoretical average acceptance probability at the
(k−1)-th cooling cycle

(�Pp
)(k−1)

practical (operational) average acceptance prob-
ability at the (k− 1)-th cooling cycle

r radii of gyration of a member
t f flange thickness of a column
tw thickness of web
T f final temperature
Ts starting temperature
T k temperature at k-th cooling cycle
W weight of the frame
zi amount of perturbation applied to the i-th design

variable
ρi unit weight of the steel section adopted for

member group i secondary moments
λ slenderness ratio
η cooling factor
φ constrained objective function value
φc constrained objective function value of current

design
φa constrained objective function value of candi-

date (alternative) design
α penalty coefficient
�φ difference between the objective function values

of current and candidate designs
ψ correction factor in acceptance probability
�φtra transformed value of �φ
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