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Abstract Stacking sequence optimization (SSO) of lami-
nate will greatly improve its mechanical properties without
weight penalty. In this paper, a novel permutation dis-
crete particle swarm optimization (PDPSO) method was
proposed to perform SSO. To improve the efficiency of
the algorithm, the concepts and techniques of valid/invalid
exchange, checking memory and Self-escape were intro-
duced into the PDPSO. In total 11 examples were presented.
First, eight examples were carried out by employing the
proposed method. The results show that the computational
efficiency of PDPSO is greatly improved compared with
standard discrete particle swarm optimization (SDPSO),
and is comparable with that of gene rank crossover (GR) and
partially mapped crossover (PMX). Then, three extra exam-
ples were presented, in which the outermost plies in the opti-
mum design are not ±45◦ plies. The results show that the
PDPSO has better stability and potential which demonstrate
the better performance of PDPSO for laminates.
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1 Introduction

Composite materials are preferred in aircraft structures
because of their high strength to weight ratio, high stiffness
to weight ratio and other designable properties compared
with metals. As composites are increasingly used in next
generation aircraft, optimization technique becomes more
and more important in the design of laminate because of the
complexity and enormous design space. Thickness of lami-
nates, fibber orientation angles and stacking sequence are
usually taken as common design variables in the design of
the laminates. For the composite wing box optimization prob-
lem, the global–local optimization strategy was adopted by
many researchers (Faggiani and Falzon 2007; Herencia et al.
2007; Seresta et al. 2006). However, the stacking sequence
optimization was always conducted independently because
it is a discrete combinatorial optimization problem.

Composite laminates consist of layers of one or more
materials stacked at different orientations. The layer thick-
ness for each material is usually fixed and fibre orientation
angles are often limited to discrete values set as 0, ±45, and
90◦ due to manufacturing constraints. Hence, the stacking
sequence optimization should be treated as a discrete opti-
mization problem to which the conventional optimisation
methodologies are difficult to apply. Intelligent optimiza-
tion methods, for example, genetic algorithm (GA), have
been applied to composite stacking sequence optimization
problem because of its excellent ability and better chances to
find global optima (Park et al. 2001; Sciuva et al. 2003; Muc
and Gurba 2001; Walker and Smith 2003; Liu et al. 2000a;
Kameyama and Fukunaga 2007). GA is an evolutionary al-
gorithm based on Darwin’s principle of survival of the fittest
and mimics the process of natural selection. Nowadays, the
particle swarm optimization (PSO) which is also an evolu-
tionary algorithm has become more and more popular. It
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was first proposed by Kennedy and Eberhart (Eberhart and
Kennedy 1995; Shi and Eberhart 1998) and could be used
to carry out continuous global optimization problem with
non-linear objective functions. PSO algorithm is based on
a simplified social model and it mimics the behaviour of
a group of fish or birds in searching for food. PSO has
been successfully applied to some engineering and struc-
tural optimization problems (Fourie and Groenwold 2001;
Venter and Sobieszczanski-Sobieski 2004). PSO is similar
to GA in some aspects. For example, both PSO and GA
start with a randomly generated population, evaluate the
population by fitness values, update the population and use
random methods to search for the optimum. Although nei-
ther of the two methods guarantees an optimal result, they
are both capable of finding the “global minimum” by jump-
ing across the given design space. In addition, PSO may
obtain the same high quality solution as a GA at lower com-
putational cost (Suresh et al. 2007). Very recently, PSO has
been used in composite optimization. Mark W. Bloomfield,
J. Enrique Herencia and Paul M. Weaver developed a two-
level optimization approach for the composite optimization
problem, in which a particle swarm optimization algorithm
is used at the second level to determine laminate stacking
sequences (Bloomfield et al. 2008).

To solve the discrete combinatorial optimization prob-
lem, a new PSO named discrete particle swarm optimization
(DPSO) (Kennedy and Eberhart 1997; Rameshkumar et al.
2005) has been employed to deal with the typical travel-
ling salesman problems (TSP) (Li et al. 2006). However,
stacking sequence optimization (SSO) is not equivalent to
TSP. For example, the exchange between two plies with
the same fibber orientation will not change the properties
of laminated panels. Hence, if we handle the SSO problem
in the same way with TSP, there will be a large amount
of unnecessary evaluation or simulation, thus expensive
cost in computational time will occur, especially for thicker
laminates.

Although the genetic algorithm (GA) could be used to
solve this optimisation problem, GA has drawbacks of
complex operation procedures and low efficiency. Only if
certain complicated repair strategies are implemented, can
the efficiency of GA be improved. In this paper, As the
difference between SSO and TSP mentioned above, the
definitions of both valid and invalid exchanges are intro-
duced in DPSO. If the exchange occurs between two plies
with different fibber orientations, the exchange is valid.
Then, the result of exchange is counted as a new design
and will be evaluated. Otherwise, when the exchange hap-
pens between two plies with the same fibber angles it is
invalid, and this design is discarded. Furthermore, the con-
cepts of self-escape and memory checking are introduced to
the permutation DPSO in this paper to prevent premature
convergence and improve the ability of global searching.
To validate the algorithm, 11 cases under different load-
ing cases are calculated to achieve the maximum combined
buckling load.

2 Problem formulation

In laminated composite design, ply orientations are gener-
ally restricted to 0, 90, ±45◦. In this paper, the stacking
sequence of an orthotropic laminate was optimized for max-
imum buckling load. The numbers of plies with 0_, ±45_,
and 90_◦ respectively in the laminate were fixed. And the
laminate was assumed to be symmetric and balanced. Fur-
thermore, more than four contiguous plies with the same
orientation were not allowed. Take the numerical example
in Liu et al. (2000b), an unstiffened, simply supported, lam-
inated panel with dimension a × b (Fig. 1) is subjected to
normal loads per unit length Nx and Ny , and a shear load per
unit length Nxy . The material of the plies is graphite-epoxy.

Fig. 1 Laminate plate geometry
and load; a laminate plate
geometry and applied loading;
b ply stacking sequence

(a) (b)
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Under biaxial loading, the laminate may buckle into m
and n half waves in the x and y directions, respectively. And
the buckling factor λ

(m,n)
n is given by

λ
(m,n)
n

π2

= D11(m/a)4+2(D12+2D66)(m/a)2(n/b)2+D22(n/b)4

(m/a)2 Nx +(n/b)2 Ny

(1)

The smallest value of λ
(m,n)
n , which is called the critical

buckling load factor, is resulted from a given combination
of a pair of (m, n). Under shear loading, modelling of this
buckling mode for a finite plate is computationally expen-
sive. Therefore, the plate is assumed to have an infinite
length, and the analytical solutions are used as approxima-
tions (Whitney 1985). The critical shear buckling load factor
is given by

λs =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4β
(
D11 D3

22

)1/4

b2 Nxy
1 ≤ � ≤ ∞

4β1
√

D22(D12 + 2D66)

b2 Nxy
0 ≤ � ≤ 1

(2)

And the variable � can be expressed as

� =
√

D11 D22

D12 + 2D66
(3)

The values of β1 are given in Table 1.
When normal and shear loads are applied simultaneously

to the panel, the combined critical buckling load factor is
approximated by

1

λ
(m,n)
c

= 1

λ
(m,n)
n

+ 1

λ2
s

(4)

Table 1 Coefficient β1 for
shear buckling load factor
(Liu et al. 2000b)

� β1

0.0 11.71

0.2 11.80

0.5 12.20

1.0 13.17

2.0 10.80

3.0 9.95

5.0 9.25

10.0 8.70

20.0 8.40

40.0 8.25

∞ 8.13

From the above equation, the combined buckling load factor
λ

(m,n)
c is always more critical than the normal buckling load

factor λ
(m,n)
n . Thus, the buckling load factor λ is the smallest

load factors as shown in (5).

λ = min
{|λs | , λ(m,n)

c

}
(5)

In this paper, we will focus on solving the stacking sequence
optimization (SSO) problem by using a permutation DPSO
algorithm. As explained above, the objective of the opti-
mization is to maximize the critical buckling load of the
laminated panel. Additionally, to reduce chances of matrix
cracking, we do not allow more than four contiguous plies
with the same orientation. This is the so called contiguity
constraint. The objective function is equal to maximizing
the failure load factor λ penalized by violations of the lim-
itation of contiguity constraint. So the objective function to
be maximized is given as (Li et al. 2006)

� = λ

pNcont
cont

(6)

Pcont is penalty parameter(set to 1.05 here) for violation
of the contiguity constraint. Ncont is total number of con-
tiguous plies in excess of four. To improve convergence and
reduce permutation operations, we assume that the laminate
is composed of pairs of 0◦ plies, 90◦ plies, or ±45◦ plies.
It should be noted that the contiguity constraint just applied
to 0 and 90◦ plies only. The ±45◦ plies alternate between
+45 and −45◦, so they do not have any contiguity problem.
Meanwhile, the ±45◦ plies always appear in the laminate
together as a ±45◦ pair, so the balanced constraint is sat-
isfied automatically. The symmetric constraint is solved
implicitly because only half laminate stacking sequence is
used as design variables.

3 Permutation discrete particle swarm optimization

In this section, the detailed procedures of permutation dis-
crete particle swarm optimization (PDPSO) for solving the
SSO problem of laminate are presented. Examples are pro-
vided for better understanding. A standard PSO mimics the
behaviour of a bird flock in searching for food. Each parti-
cle updates velocity and position value via the memory and
clue from the flock. The basic steps in the PSO algorithm
are as follows (Kathiravan and Ganguli 2007):

1. Initialize the swarm with random position values and
random initial velocities.

2. Determine the velocity vector for each particle in the
swarm using the knowledge of the best position attained
by each particle, the swarm as a whole, and the previous
position of each particle in the swarm.
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3. Modify the current position of each particle using
the velocity vector and the previous position of each
particle.

4. Repeat from step 2 until the stop criterion is satisfied.

The velocity vector and position value of each particle can
be expressed as:

Vi
k = wVi

k−1 + c1r1
(
Pbesti − Xi

k−1

)

+ c2r2
(
Gbestgk−1 − Xi

k−1

)

Xi
k = Xi

k−1 + Vi
k

⎫
⎪⎬

⎪⎭
(7)

where the superscript i denotes the particle and the sub-
script k denotes the iteration number; V denotes the velocity
and X denotes the position; r1 and r2 are uniformly dis-
tributed random numbers in the interval [0,1]; c1 and c2 are
the acceleration constants; w is the inertia weight; Pbesti is
the best position attained by the particle i in the swarm so
far and Gbestgk−1 is the global best position attained by the
swarm at iteration k − 1.

3.1 Calculating rules of permutation discrete particle
swarm optimization

As the design variables are discrete, the calculating rules
should be revised. A detailed description of rules that should
be used in (7) is stated as follows:

(1) Definition of particle’s position

The position of particles, which represents the stacking
sequence of the laminate (upper to mid-plane), is noted by
a vector Xi

k−1, shown in (8).

Xi
k−1 =

(
xi

k−1,1, xi
k−1,2, · · · , xi

k−1, j · · · xi
k−1,N

)
,

1 ≤ j ≤ N , 1 ≤ x j ≤ N (8)

where N is number of plies in the half laminate; xi
k−1, j is

the integer code representing the fibre orientation angle of
the j th ply.

(2) Subtraction of particle’s position

Xq
k−1 subtracts from X p

k−1 can be stated as

�X = X p
k−1 − Xq

k−1

=
(

x p
k−1,1, x p

k−1,2, · · · , x p
k−1, j · · · x p

k−1,N

)

−
(

xq
k−1,1, xq

k−1,2, · · · , xq
k−1, j · · · xq

k−1, j

)
(9)

The value of �X can be calculated element by element as
follows

�xj = x p
k−1, j−xq

k−1, j =
{

0 i f x p
k−1, j = xq

k−1, j

x p
k−1, j otherwise

(10)

x p
k−1, j and xq

k−1, j are the j th element of X p
k−1 and Xq

k−1,

respectively. So
(
Pbesti − Xi

k−1

)
and

(
Gbestgk−1 − Xi

k−1

)

can be evaluated by (10).

(3) Definition of particle’s velocity

The velocity of a particle is used to adjust the particle
position. The velocity is given by

Vk−1 = (
X p

k−1 − Xq
k−1

)
/�t = ΔX/�t (11)

Each element value of Vk−1 can be calculated by

vk−1, j =
(

x p
k−1, j − xq

k−1, j

)
/

�t =
{

0 i f x p
k−1, j = xq

k−1, j

x p
k−1, j otherwise

(12)

where �t denotes the time interval. So velocity = distance
(space)/time. Note that here �t = 1 and it is used to pro-
vide physical meaning. vk−1, j is the value of j th element in
vector Vk−1.

(4) Procedures for calculating the velocity

Multiply velocity by a constant is given as

V ′
k−1 = C · Vk−1 C ∈ [0, 1] (13)

where C is user-defined constant (just like the c1 or c2 in
(7)). V ′

k−1 is the result of velocity Vk−1 multiply a constant
C . An array of random numbers rand1( j), where j = 1..N ,
corresponding to each element in vector Vk−1 should be ran-
domly generated. Note that the random numbers rand1( j)
should be confined within interval [0, 1]. Here rand1( j) just
like r1 and r2 in (7).

The value of each element in V ′
k−1is given by the

following equation:

v′
k−1, j =

{
vk−1, j rand1 ( j) ≥ C

0 otherwise
(14)

In (7), we can find the sum of velocities was denoted as the
next generation velocity of the particle. Therefore, the sum
of two velocities can be stated as:

Vk = V1k−1 + V2k−1 (15)
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The value of each element in Vk is defined as shown in (16)

vk, j =
{

v1k−1, j rand2 ( j) > 0.5

v2k−1, j otherwise
(16)

where V1k−1 and V2k−1 represent two different veloci-
ties. The subscript j denotes the j th element of velocity.
rand2( j)( j = 1..N ) is another array of random number
corresponding to each component of the velocity. 0.5 is the
threshold of rand2( j). When rand2( j) is great than 0.5, vk, j

is set to equal to v1k−1, j , otherwise, vk, j is set to equal to
v2k−1, j . The Vi

k in (7) can be calculated using above (9–16).

(5) Procedures for updating position

The new position can be determined by

Xi
k = Xi

k−1 + Vi
k (17)

If vi
k, j = 0, xi

k, j = xi
k−1, j ; otherwise, search xi

k−1,l in Xi
k−1,

which satisfy xi
k−1,l = vi

k, j , then swap xi
k−1,l and xi

k−1, j

to form the Xi
k .. The Xi

k in (7) can be calculated by using
(17). And the detailed process of evaluating new position
Xi

k is illustrated in the Fig. 2. Therefore, the discrete veloc-
ity and position vector in (8) are all obtained by following
abovementioned procedures.

To improve convergence and reduce the number of per-
mutations, we assume that the laminate is composed of pairs
of 0◦ plies, 90◦ plies, or ±45◦ plies. If the 02, ±45, and
90◦

2 plies group are used directly as code in the DPSO, it
will tend to produce chaos when we interchange the position
of elements of particles in (16). To overcome this problem,
the permutation coding is represented by a list of distinct

Step 5

Step 4

Step 3

Step 2 

Step 1

1
i
k –X

[1/2/4/9/8/3/5/7/6] [4/0/6/0/0/0/2/1/1] 

[4/2/1/9/8/3/5/7/6] 

[4/2/6/9/8/3/5/7/1] 

[4/5/6/9/8/3/2/7/1] 

[4/5/6/9/8/3/2/7/1] 

[4/5/6/9/8/3/2/1/7] 

i
kV

Fig. 2 Process of calculating new position

integers, such as 1, 2, 3. . . , coding the orderings of 02, ±45,
and 902 stacks referenced to baseline laminate. As explained
in Liu et al. (2000b), we selected the baseline laminate to
have all the specified 90◦ stacks on the outside, followed
by the ±45◦ plies and then the 0◦ stacks. For example, the
stacks [(902)5/(±45)3/(02)4]s is described as

Encoding : 1 2 3 4 5 6 7

8 9 10 11 12

Decoding : 902 902 902 902 902 ±45 ±45

±45 02 02 02 02

To explain the evaluation process more clearly, an example
is given below

Xi
k−1 = [

1/2/4/9/8/3/5/7/6
] ;

Gbestgk−1 = [
4/3/6/9/8/5/2/7/1

] ;
Pbesti = [

4/2/3/9/8/6/5/1/7
] ;

C1 = 0.6, c2 = 0.4;

The main procedure of the (7) can be given as follows:

Pbesti − Xi
k−1 = [

4/0/3/0/0/6/0/1/7
]

Gbestgk−1 − Xi
k−1 = [

4/3/6/0/0/5/2/0/1
]

Vi
k = c1

(
Pbesti − Xi

k−1

)
+ c2

(
Gbestgk−1 − Xi

k−1

)

= [
4/0/0/0/0/0/0/1/7

] + [
0/3/6/0/0/0/2/0/1

]

= [
4/0/6/0/0/0/2/1/1

]

Xi
k = Xi

k−1 + Vi
k = [

1/2/4/9/8/3/5/7/6
]

+ [
4/0/6/0/0/0/2/1/1

]

The process of calculating new position can be described by
Fig. 2.

From the above figure, we can see the first integer code
of velocity Vi

k,1 = 4 in step 1. We find the third integer

code Xi
k−1,3 = Vi

k,1 = 4, therefore, we swap them and the
changes are highlighted by using bold text. Other steps are
same as in the step 1.

3.2 Ratio of valid permutation

In this section, the ratio of valid permutations is defined as
the number of valid permutations in the laminate divided
the total number of permutations of its integer code. We
will take a 24-layer laminate as an example to calculate the
ratio of valid permutation in the SSO .Only 12 plies will be
considered for a symmetrical problem.
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Begin 

while 

 Generate a new design string; 

 Search for the given design in the memory;

if found 

Renew a design string; 

else  

Add the design string into memory; 

Break; 

end if  

end while 

end 

Fig. 3 Pseudocode of checking memory

Theoretically, the number of valid permutations of
the stack [0/0/0/45/45/45/−45/−45/−45/90/90/90], in
which the plies of 45 and −45◦ are treated separately, can
be given as

C3
12 ×C1

4 ×C3
9 ×C1

3 ×C3
6 ×C1

2 ×C3
3 ×C1

1 = 8870400 (18)

Similarly, the number of total permutation of the encoding
[1/2/3/4/5/6/7/8/9/10/11/12] can be given as

P12
12 = 479001600 (19)

The ratio of valid permutations is stated as

8870400/479001600 = 1.85% (20)

From the above example, it is clear that there is a great
amount of invalid exchanges in the stacking sequence opti-
mization problem. Therefore, the evaluation of exchanges
is of rather importance, which could avoid unnecessary
analyses and thus improve the computational efficiency
significantly.

3.3 Concepts of checking memory and self-escape idea

The validity of exchanges is finally evaluated by mem-
ory checking. The generated stacking permutations in the

Table 2 Material properties

E11/psi E22/psi G12/psi υ12

18.5 × 106 1.89 × 106 0.96 × 106 0.3

Table 3 Loading and parameters of laminated panels

Case Loading (lb/in) Given number of stacks

Nx Ny Nxy n0 n45 n90 ntotal

1 −20,000 −2,000 1,000 9 18 9 36

2 −15,000 −2,000 1,000 8 17 8 33

3 −10,000 −2,000 1,000 7 15 7 29

4 −5,000 −2,000 1,000 6 12 6 24

5 0 −2,000 1,000 4 8 4 16

6 0 −16,000 8,000 8 16 8 32

7 15,980 −14,764 10,160 9 8 13 30

8 −16,657 1,963 828 13 7 15 35

optimization process are stored in the memory. The memory
should be checked whenever a new design string is created.
If the design is not found in the memory, this design string is
taken to be an eligible particle. And it is then stored into the
memory. Otherwise, the programming should regenerate a
design string. The procedure can be stated as in (Fig. 3).

It is well known that the particles will generally move
to a local area in searching space in standard PSO. The
proposed DPSO has the same characteristic. As a result,
the optimization algorithm will prematurely converge to a
local optimum. To solve this problem, the most direct and
effective approach is to define a variable CI which denotes
the dispersed grade of particles. If the C I < ε, we should
expand the searching space and regenerate the particles. In
this paper, the CI is defined as the arithmetic average of
differences between best position attained by particle and
global best position in the whole swarm. For a given limit
ε, the conditions C I ≤ ε and the PSO iterations i ter = n

Table 4 Comparison of computational efficiency of the four
algorithms

Case Number of analyses required for 80% reliability

SGA GR PMX SDPSO PDPSO

1 10,432 1,184 1,328 8,764 2,336

2 8,600 856 1,224 7,780 1,564

3 5,216 776 1,024 4,532 1,140

4 3,304 608 824 2,564 880

5 1,672 408 560 1,100 580

6 7,984 1,328 1,480 5,380 1,524

7 23,944 11,840 5,784 14,800 4,640

8 26,320 2,216 2,504 22,440 2,716

SGA standard GA, PMX partially mapped crossover, GR gene rank
crossover, refer to Liu et al. (2000b)
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Table 5 Optimum lay-up
for laminates Case λ Optimum stacking sequence

1 0.948 [(±45)17/902/±45/(902)2/02/(902)2/((02)2/902)4]s

2 0.948 [(±45)17/902/02/902/(02)2/(902)2/02/902/(902/(02)2)2]s

3 0.909 [(±45)15/((902)2/02)2/(02/902)3/(02)2]s

4 0.870 0.8707 [(±45)12/((902)2/02)2/(02/902/02)2]s

5 0.778 [(±45)8/((902)2/(02/902)2/(02)2]s

6 0.773 [(±45)16/((902)2/02)2/(902/(02)2)2/((902)2/02)2]s

7 1.112 [(902)2/02/(902)2/±45/902/±45/902/02/(902)2/(02)2/

(902/±45)2/±45/02/902/02/(902)2/02/(±45)2/(02)2/±45]s

8 1.093 [(±45)6/902/02/(902)2/±45/02/902/(902/02)3/(902)2/

(02/902/02)2/902/(902/02)3/02]s

are trigger of particles self-escape. The procedure can be
stated as

i f

CI = 1

Swarm×Dim

Swarm∑

i=1

∣
∣
∣Gbestg

k−1−Pbesti
∣
∣
∣≤ε & iter =n

then

rand (Swarm, Dim) (21)

where Swarm is the number of particles; Dim is the dimen-
sion of each particle. In this work, a new approach is
adopted in the calculation of arithmetic average due to the
discrete characteristic of Pbesti and Gbestgk−1, which is
illustrated by the following example.

Pbesti = [
0/0/0/45/45/−45/90

]
,

Gbestgk−1 = [
0/90/0/45/−45/45/0

]

∣
∣
∣Gbestgk−1 − Pbesti

∣
∣
∣ = |(0, 1, 0, 0, 1, 1, 1)| = 4 (22)

Gbestg
k−1, j denotes j th element of Gbestgk−1, Pbestij

denotes j th element of Pbesti , if Gbestg
k−1, j = Pbesti

j ,

then the j th element of the result is zero; otherwise, it is
one. And the sum of element generates the final result of∣
∣Gbestgk−1 − Pbesti

∣
∣.

3.4 Programming procedure

The simulation procedures of the improved DPSO can be
described as following:

1. Obtain the loads and number of plies used in the panel
optimization based on the overall wing design.

2. Set the number of particles Swarm, dimension of
searching space Dim, dispersed grade index ε and n.
Randomly generate the initial particles in terms of the

encoding rule given in Section 3.1. Set the current PSO
iteration t = 1.

3. Decoding; checking memory; calculate the fitness
value. Then evaluate all of the particles; renew the best
positions of each individual Pbesti and best positions of
the whole swarm Gbestgk−1.

4. Calculate the new velocity vector and position of the
particles. Evaluate the validity of exchanges. If it is
valid exchange, the optimizer would calculate fitness
value of the particle. Then, update Pbesti and Gbestgk−1.

5. Calculate CI and iter; if CI and iter satisfy (17), the
optimizer would generate new particle population and
go to step 3; if not, go to step 6.

6. If the stop criterion is achieved, finish the PSO loop; if
not, set t = t + 1 and go to step 3.

4 Numerical example and discussion

To show the efficiency of the proposed algorithm, a 24-
inch square graphite-epoxy plate from Liu et al. (2000b)
is taken as an example. The material properties and load-
ing conditions of the plate are shown in Tables 2 and 3,
respectively.

“A typical number of particle is 20–40. For most of the
problems, 10 particles are enough to get good results. How-
ever, 100–200 particles were also used for some difficult
problems (Kathiravan and Ganguli 2007)”. In this work, for

Table 6 Three new load cases

Case Loading (lb/in) Given number of stacks

Nx Ny Nxy n0 n45 n90 ntotal

9 10,657 −14,850 10,000 14 10 15 39

10 10,657 −14,850 10,000 14 8 17 39

11 11,274 −18,960 8,000 10 8 12 30
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Table 7 Computational
efficiency and optimum lay-up
of three new load cases

Case λ Number of analyses required Optimum stacking sequence

for 80% reliability

9 2.708 5,480 [(902)2/02/902/±45/(902)2/±45/((902)2/(02)2)2/

(±45/(902)2)2/02/(±45)2/02/±45/902/

(±45/(02)2)2/902/02/±45/(02)2]s

10 2.734 5,964 [902/±45/((902)2/02)2/902/02/902/±45/902/(±45)2/

((902)2/02)2/02/(902)2/02/902/02/

(±45/02/902/02)2/02/(±45)2/02]s

11 0.919 4,380 [(902)2/±45/((902)2/02)2/(±45/902/02/902)2/902/02/

±45/02/(02/(±45)2)2/(02)2/902]s

comparing with Liu et al. (2000b) a particle size of 8 is
chosen and it gives reasonable good results, as illustrated
below. The inertia weight w is set linearly decreasing from
0.9 to 0.45. c1 = 0.4 and c2 = 0.6 are selected which give
higher efficiency in this work. The other PSO parameters
are: dispersed grade index ε = 0.2, iteration limit n = 20
and PSO evolution limit for the total optimization process is
500. The reliability is discussed here at some specified com-
putational cost. The reliability is measured by performing
100 optimization runs and checking how many of the 100
runs reached the optimum at any given point. For instance,
if 80 runs reached the global optimum after 500 analyses per
run, then the reliability of this algorithm is estimated to be
0.80 after 500 analyses. Similarly with Liu et al. (2000b), a
design is considered to be a practical optimum if the critical
load factor was within 0.5% of the global optimum.

Table 4 shows a comparison of the computational effi-
ciency by using permutation DPSO, standard DPSO and
other methods in Liu et al. (2000b). The results of SGA,
PMX and GR are quoted from Liu et al. (2000b). The
optimum lay-up for laminates is shown in Table 5.

From Table 4, it is clear that the computational efficiency
of PDPSO, which is comparable with that of GR and PMX,
has been greatly improved compared with SDPSO. Further-
more, the two permutation GAs perform a little better than
the PDPSO in the case 1–6 and 8. However, in case 7,
the efficiency of GR and PMX is lower than the permuta-
tion DPSO. From Table 5, for case 7 when the outermost
plies in the optimum design are not ±45, the computa-
tional efficiency of PDPSO seems not greatly affected by
the contiguity constraint. To explore the performance for
similar laminates, three new cases, defined in Table 6, were
selected.

The results summarized in Table 7 show that, as
expected, thicker laminates are computationally more
expensive to optimize. The proposed PDPSO demonstrates
higher stability and efficiency to optimize laminate of which
outermost plies in the optimum design are not ±45.

5 Conclusion

In this paper, the maximum buckling load factor of lam-
inates with 0, 45 and 90◦ layers were investigated under
different loading conditions. A novel optimization method
PDPSO, which originated from SDPSO method, was pro-
posed to solve the current stacking sequence optimization
problem more efficiently. The contiguity constraint was
implemented through a penalty function. To improve the
computational efficiency, the techniques of self-escape,
checking memory and valid/invalid exchanges were incor-
porated into present PDPSO.

From the numerical examples, it has been demonstrated
that the computational efficiency of PDPSO is comparable
with that of GR and PMX, and has been greatly improved
while compared to SDPSO. Moreover, the PDPSO is more
efficient than all other methods when dealing with laminates
whose outer plies are affected by the contiguity constraint
limit.

PDPSO is quite efficient in dealing with SSO problems
and it has great potential to be applied to aero-elastic tailor-
ing optimization problem and more combinatorial optimiza-
tion problems in future.
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