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Abstract In this paper a general framework for topol-
ogy optimization of structures in unilateral contact is
developed. A linear elastic structure that is unilater-
ally constrained by rigid supports is considered. The
supports are modeled by Signorini’s contact conditions
which in turn are treated by the augmented Lagrangian
approach as well as by a smooth approximation. The
latter approximation must not be confused with the
well-known penalty approach. The state of the sys-
tem, which is defined by the equilibrium equation and
the two different contact formulations, is solved by a
Newton method. The design parametrization is ob-
tained by using the SIMP-model. The minimization of
compliance for a limited value of volume is considered.
The optimization problems are solved by SLP. This is
done by using a nested approach where the state equa-
tions are linearized and sensitivities are calculated by
the adjoint method. In order to avoid mesh-dependency
the sensitivities are filtered by Sigmund’s filter. The
final LP-problem is solved by an interior point method
that is available in Matlab. The implementation is done
for a general design domain in 2D as well as in 3D
by using fully integrated isoparametric elements. The
implementation seems to be very efficient and robust.
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1 Introduction

A proper modeling of boundary conditions is crucial
when performing topology optimization of machine
components. Improper modeling will result in poor
concepts. Often it is not sufficient to use the same
boundary conditions in an optimization as in a direct
finite element analysis of the state problem. For in-
stance, a boundary which can appropriately be consid-
ered fixed in a direct finite element analysis might be
too stiff in a topology optimization analysis, resulting
in a too weak design concept. In many optimization
situations one must also include contact conditions in
order to set up a proper model.

In this work a method for topology optimization that
includes frictionless contact is proposed. This is mod-
eled by utilizing Signorini’s contact conditions: letting ξ

stand for a contact force and η for a contact gap, these
can be written as

ξ ≥ 0, η ≥ 0, ξη = 0. (1)

A main difficulty with these conditions is that ξ cannot
be seen as a function of η or vice versa. On the other
hand it is possible to find functions � of both variables
such that �(ξ, η) = 0 is equivalent to (1). However,
see Christensen and Klarbring (1999) and references
therein, such reformulations will be either non-smooth
or have a singular Jacobian at the origin (intermediate
contact states). Thus, the standard theory of Newton’s
method will not be applicable, but, nevertheless, since
the critical points are isolated, this method may still
work in practice. We have implemented the smooth
function �(ξ, η) = (ξ − η)2 − ξ |ξ | − η|η|, suggested by
Mangasarian (1976), and the non-smooth function
�(ξ, η) = −ξ + (ξ − η)+, related to the augmented
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Fig. 1 �μ plotted for different values of μ. A plot similar to the right one is obtained by plotting 2 min(ξ, η)

Lagrangian approach. The index + means that the
bracket is zero if the argument is negative. This lat-
ter function is equivalent to �(ξ, η) = − min(ξ, η). It
turns out that an approach based on the non-smooth
reformulation of Signorini’s contact conditions is sig-
nificantly more stable and efficient than that based
on the smooth reformulation and the presentation in
this paper, therefore, concentrates on the non-smooth
function.

As a third approach to the treatment of (1), we have
also investigated a smoothing technique suggested by
Facchinei et al. (1999) and used by Hilding (2000) for
solving contact problems. It should not be confused
with the more familiar penalty approach, but is instead
based on the fact that the smooth relationship

�μ = �μ(ξ, η) = ξ + η −
√

(ξ − η)2 + 4μ2 = 0 (2)

is equivalent to ξ ≥ 0, η ≥ 0, ξη = μ2, which in turn
approximates (1) for small values of μ, see Facchinei
et al. (1999). Furthermore, if μ → 0, then �μ =
2 min(ξ, η). This is also illustrated in Fig. 1, where �μ

is plotted for different values of μ.
A review of papers concerning topology optimiza-

tion of structures in unilateral contact gives the conclu-
sion that the number of such papers is surprisingly few.
The list is longer, however, if one considers structural
optimization for contact problems in general. A review
on that subject can be found in Hilding et al. (1999). A
pioneering work on topology optimization of structures
in unilateral contact is Petersson and Patriksson (1997).
A more recent work is Fancello (2006). Another recent
work is Mankame and Ananthasuresh (2004), where
compliant mechanisms were generated by including
contact conditions.

In this work the minimization of compliance for a
linear elastic structure in unilateral contact with a rigid
support that is modeled by Signorini’s contact condi-
tions is considered. As discussed above, Signorini’s con-

tact conditions are treated by the smoothing approach
of Facchinei as well as by the augmented Lagrangian
approach. The state equations are then solved by the
Newton method that was used in Strömberg (1997)
for solving an augmented Lagrangian formulation of
frictional contact. This approach has also been used to
solve 3D contact problems (Strömberg 1999), thermo-
mechanical friction problems (Ireman et al. 2002), dy-
namic stick-slip problems (Strömberg 2003), gear noise
problems (Klarbring et al. 2004), rigid body impact
problems (Johansson 2001) and frictional contact in
non-linear elasticity (Strömberg 2005, 2006).

A density approach for the design parametrization,
where the SIMP-model is used for penalization of inter-
mediate values, is utilized. The resulting optimization
problem is treated by SLP, using an interior point
method for the corresponding LP-problem. The sensi-
tivities of the objective function are obtained by the ad-
joint method. This implies linearizing the state problem
as seen in Klarbring and Rönnqvist (1995). The stiffness
is calculated by using fully integrated isoparametric
elements and Sigmund’s filter (Sigmund 2001) is used
in order to avoid mesh dependency and checkerboards.
The method is implemented in the in-house toolbox
Topo2D/3D by using Matlab and Intel Fortran.

The outline of the paper is as follows: in Section 2
the governing equations of the state problem are given,
in Section 3 the optimization problem is defined, in
Section 4 the numerical treatment is discussed, in
Section 5 numerical examples in both 2D and 3D are
considered and, finally, some concluding remarks are
presented.

2 The state equations

Let us consider a linear elastic body that is represented
by a stiffness matrix K obtained by using finite ele-
ments. The body is constrained by at least one rigid
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Fig. 2 A linear elastic body unilaterally constrained by a rigid
support

support as shown in Fig. 2. The contact between the
support and the elastic body is considered to be fric-
tionless. The potential contact surface is defined by
a set of potential contact nodes. The normal of the
contact surface at contact node A is denoted nA. The
undeformed distance between the contact node and
the support in the normal direction is given by gA.
The kinematic constraint representing impenetrability
of the rigid support can now be formulated as

d A · nA − gA ≤ 0, (3)

where d A is the displacement vector of node A. These
conditions for all contact nodes can be summarized as
the following inequality:

CN d − g ≤ 0, (4)

where d is the displacement vector, CN is a transfor-
mation matrix containing the normal directions nA and
the column vector g contains all gaps gA. We will also
use the notation CA

N to represents a row of CN such that
CA

N d = d A · nA.
The equilibrium equation1 of the system reads

Kd + CT
N P N = F, (5)

where F is the external forces and P N is a column
vector containing normal contact forces PA

N , which are

1Sliding friction might be added by modifying the equilibrium
equation as Kd + CT

N P N + μCT
T P N = F, where μ is a friction

coefficient and CT is a transformation matrix containing tangen-
tial contact directions.

subject to Signorini’s contact conditions. As discussed
in the introduction these conditions read

PA
N ≥ 0, CA

N d − gA ≤ 0, PA
N

(
CA

N d − gA
)

= 0. (6)

The displacement state of the contact system is de-
fined by the solution of (5) and (6), which turn out to be
the Karush-Kuhn-Tucker conditions for the following
minimization problem:
{

min
d

�(d)

s.t. CN d ≤ g,
(7)

where

�(d) = 1
2

dT Kd − FT d (8)

is the potential energy of our system.

3 The optimization problem

We are interested in minimizing the compliance

c = FT d (9)

for the system defined in the previous section. The de-
sign parametrization is made by using the SIMP-model,
which we briefly describe below; for a more complete
presentation we refer to Bendsøe and Sigmund (2003)
or Christensen and Klarbring (2009). Thus, the stiffness
matrix K = K(ρ) is generated by the following assem-
bly procedure:

K(ρ) =
∏

e

ρn
e ke, (10)

where
∏

is an assembly operator, the vector ρ contains
density (design) variables ρe, such that ε ≤ ρe ≤ 1 for
each element e. Here ε is a small positive number
that is set to 0.001 in the calculations. The value ρ = 1
represents presence of material and ρ = ε represents
no material. The reason for not using ε = 0 is that
such a choice gives singular stiffness matrices for some
designs. ke is the stiffness matrix of element e for a unit
value of ρe. In order to obtain close to “0-1”-designs
experience has shown n = 3 to be a good choice.

The total volume of the design V = V(ρ) is obtained
as

V =
∑

e

ρeVe, (11)

where Ve represent the volume of element e. This total
volume is constrained by

V(ρ) − V0 ≤ 0, (12)
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where V0 is the amount of material that can be distrib-
uted over the design domain.

Summarizing, the following optimization problem is
considered:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min
ρ,d

FT d

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎧
⎨

⎩
min

d

1
2

dT K(ρ)d − FT d

s.t. CN d ≤ g

V(ρ) − V0 ≤ 0
ε ≤ ρ ≤ 1,

(13)

where εT = {ε, . . . , ε} and 1T = {1, . . . , 1}.

4 The numerical treatment

The optimization problem in (13) is solved by SLP. This
is done by using a nested approach, such that the prob-
lem is solved in the density variables only. A lineariza-
tion is performed at the current iteration point by using
the adjoint method in order to obtain an approximating
LP-problem. However, since (13) has the form of a
bilevel optimization problem, the linearization is better
performed on an alternative system that is equivalent
to (13) in the sense that it has the same solution.
This is achieved by first using the Karush-Kuhn-Tucker
equations (5) and (6) instead of the optimization prob-
lem (7), and then reformulating the second of these
equations (Signorini’s contact conditions) by means of
non-linear equations as discussed in the introduction.
We will consider two such reformulations: the first one,
suggested by Facchinei et al. (1999), is approximate
but smooth and has consequently no critical points;
the second one, related to the augmented Lagrangian
method, is non-smooth, exact and has already been
used in a large number of papers on contact, friction
and wear as discussed in the introduction. The former
may be seen as a regularization of the latter and has
theoretical advantages, but as will be seen in the nu-
merical examples, the exact non-smooth reformulation
turns out to be slightly more efficient at least for the
problems considered in this paper.

In the approach of Facchinei et al. (1999), Signorini’s
contact conditions, for node A, are replaced by the
following smooth approximation:

	A
1 = �μ

(
PA

N, r
(
gA − CA

N d
)) = 0, (14)

where r > 0 is any constant and the function �μ was
introduced in (2). The value of μ could possibly be

decreasing during the optimization iterations. We have
also found that a proper value of r > 0 is important
for the numerical performance. This is only a small
modification of what was used in Hilding (2000). All 	A

1
are collected in the column vector �1 = �1(x), where
x = (d, P N).

The exact but non-smooth reformulation of
Signorini’s contact conditions that is related to the
augmented Lagrangian approach is as follows:

	A
2 = −PA

N + (
PA

N + r
(
CA

N d − gA))
+ = 0. (15)

All 	A
2 are collected in the column vector �2 = �2(x).

In conclusion, the Karush-Kuhn-Tucker equations in
(5) and (6) can now be replaced by the following two
equation systems:

H i = H i(ρ, x) =
{

K(ρ)d + CT
N P N − F

�i(x)

}
= 0, (16)

where i = 1 or i = 2, and the optimization problem in
(13) can be rephrased as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
ρ,x

FT d

s.t.

⎧
⎨

⎩

H i(ρ, x) = 0
V(ρ) − V0 ≤ 0
ε ≤ ρ ≤ 1.

(17)

In the following, no summation convention is applied
on index i, which should be set to 1 or 2.

When (17) is solved by using SLP, it is first rewritten
such that it is formulated in the design variables only.
This step reads
⎧
⎪⎨

⎪⎩

min
ρ

c = c(ρ) = RT x(ρ)

s.t.
{

V(ρ) − V0 ≤ 0
ε ≤ ρ ≤ 1,

(18)

where R = (F, 0) and x = x(ρ) is implicitly defined
by the state equations in (16). Explicitly, for a given
density distribution ρ = ρ̂, the corresponding solution
x̂ = x(ρ̂) is obtained by using a Newton algorithm with
an Armijo line-search, see Strömberg (1997).

The search direction in the Newton algorithm is
given by

z = {zd, zN} = − (Ji(x))−1 H i(ρ̂, x), (19)

where J1 = J1(x) = ∇x H1(ρ̂, x) is a Jacobian matrix
for the smooth reformulation. In particular,

∂�μ

∂ξ
= 1 − (ξ − η)

√
(ξ − η)2 + 4μ2

,

∂�μ

∂η
= 1 + (ξ − η)

√
(ξ − η)2 + 4μ2

. (20)
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Furthermore, the Jacobian J2 = J2(x), used in the
non-smooth reformulation, is defined by the following
relationship:

J2(x)z =

⎧
⎪⎨

⎪⎩

Kzd + CT
N zN

−{
zA

N

}
A∈�1{

rCA
N zd

}
A∈�2

⎫
⎪⎬

⎪⎭
(21)

and the following index sets:

�1 =
{

A : PA
N + r

(
CA

N d − gA) ≤ 0
}

,

�2 =
{

A : PA
N + r

(
CA

N d − gA)
> 0

}
. (22)

Note that non-smooth points are treated by picking
one out of two possible directional derivatives, see
Strömberg (1997) for more details regarding this imple-
mentation.

The sensitivity of the compliance,

∂c
∂ρe

= RT ∂x
∂ρe

, (23)

is determined by introducing the following two adjoint
equations:

Ji(x̂)Tϒ i = R. (24)

The transpose of (24) in (23) yields

∂c
∂ρe

= ϒT
i Ji

∂x
∂ρe

. (25)

Furthermore, taking the derivative of (16) yields

Ji
∂x
∂ρe

= −∂ H i

∂ρe
, (26)

where, in particular,

∂ K
∂ρe

= nρn−1
e ke. (27)

By putting (26) into (25), we obtain

si
e = ∂c

∂ρe
= −ϒT

i
∂ H i

∂ρe
. (28)

Finally, before formulating the approximating LP-
problem, we make a filtering of the sensitivities si

e to
avoid well-known difficulties of mesh-sensitivity and
checkerboards. We use Sigmund’s direct filtering of
sensitivities which consist of the following formula:

ŝi
e =

nel∑

f=1

δ f ρ f si
f

/

ρe

nel∑

f=1

δ f , (29)

where

δ f = (rmin − dist(e, f ))+ . (30)

Here dist(e, f ) denotes the distance between the cen-
ters of element e and f , and rmin is a parameter. All ŝi

e
are collected in the column vector ŝi.

By using ŝi to linearize (18) according to the proce-
dure discussed above, we obtain the following two LP-
problems (i = 1 or i = 2) at an iteration point ρ = ρ̂:
⎧
⎪⎨

⎪⎩

min
ρ

ŝT
i ρ

s.t.
{

V(ρ) − V0 ≤ 0
ρ̂ + ρl ≤ ρ ≤ ρ̂ + ρu,

(31)

where ρl and ρu define lower and upper move limits,
respectively. In the numerical examples we let ρl

e =
−0.025 and ρu

e = 0.025. Furthermore, we also check
that the global limits are satisfied. For instance, if ρ̂e +
0.025 > 1, then ρu

e = 1 − ρ̂e instead of ρu
e = 0.025.

The problem in (31) is solved by the interior point
method (Mehrotra 1992) that is available in Matlab.
The optimal solution to the problem in (31) defines a
new design point ρ̂ where we define a new LP-problem
by following the procedure above. In this way a se-
quence of LP-problems are generated and the sequence

Fig. 3 The design domain,
loads and boundary
conditions are shown to the
left. The graph to the right
presents the convergence
in compliance for the first
load case
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(0,-1E4) (0,1E4)

(1E4,0) (-1E4,0)

All loadsTwo first loads

Fig. 4 Different optimal designs for different load cases. Here,
g = 0

continues until a solution of (31) is also believed to
solve the problem in (13).

5 Numerical examples

The method presented above is implemented in
Topo2D/3D which is a toolbox developed by using
Matlab and Intel Fortran. The method is most efficient
and robust. This is demonstrated here by first pre-
senting the solutions for a lug unilaterally constrained
by a rigid pin as shown in Fig. 3. The figure shows
the design domain, loads and boundary conditions of
the examples. All units are SI-units. The geometry is

discretized by using fully integrated isoparametric ele-
ments, Young’s modulus is 2.1E5 and Poisson’s ratio is
0.3. The number of elements for the lug is 6949 and rmin

is set to 9.4. It is assumed that 50 percent of the design
domain can be filled by material. Four different load
cases are considered F =(0,-1E4), (0,1E4), (1E4,0) and
(-1E4,0), respectively. Optimal designs are also found
for the weighted compliance of the two first load cases
as well as for all load cases. Equal weights are used. The
weighted compliance problem with equal weights reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ρ,d j

Nl∑

j=1

FT
j d j

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎧
⎨

⎩
min

d j

1
2

dT
j K(ρ)d j − FT

j d j

s.t. CN d j ≤ g
∀ j ∈ {1, .., Nl}

V(ρ) − V0 ≤ 0
ε ≤ ρ ≤ 1,

(32)

where Nl is the number of load cases. We have here
utilized that the kinematic constraints are identical for
all load cases.

The optimal designs for g = 0 are presented in Fig. 4.
Convergence in compliance is presented for the first
load case in Fig. 3. This plot shows the typical con-
vergence behavior for the examples presented in this
paper. Figure 4 shows how the load influences the
optimal design. It is obvious that the optimal design
is not only depending on the direction of the load but
is also very sensitive to the sign of the load. This is
of course explained by the unilateral character of the
state equations. The solutions are obtained by using a
laptop with 2.00 GHz Intel dual core processor and 1.96
GB of RAM. The CPU-times for the three first prob-
lems are approximately 50–60 s using 30 iterations. The

All loadsTwo first loads

Fig. 5 Different optimal designs when a clearance of gA = 1.0 is
included at all contact nodes
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Fig. 6 The design domain,
loads, boundary conditions as
well as the optimal topology
are shown to the left. The
graph to the right presents the
convergence in compliance,
which is obtained after 44 s
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convergence is slower for the fourth problem depend-
ing on the tiny member to the right. The number of
iterations is now doubled. The CPU-time for the final
example with weighted compliance of four load cases is
218 s using 50 iterations.

The optimal designs might also be very sensitive to
the initial contact gaps gA. This is demonstrated in
Fig. 5. The only difference compared to the previous ex-
amples is that a small clearance gA = 1.0 is included at
all contact nodes. The explanation for this differences
in solutions is of course that the distribution in contact
pressure is very sensitive to the gap clearance, see e.g.
Strömberg (1999).

The next problem is motivated by a real application.
A bracket of extruded aluminum should carry load
in one direction but if the load direction is switched
the bracket should be removed easily from the sup-
port. The problem is depicted in Fig. 6. The number
of elements is 5484 and the number of contact nodes
is 177. A small clearance between the elastic bracket

and the rigid support is included in the formulation.
The optimal design is obtained after 45 iterations and
the CPU-time is 44 s when the augmented Lagrangian
approach is used. On the contrary, the CPU-time is 52 s
when Facchinei’s smooth approximation is used since
more Newton iterations are needed in this approach.
Of course, the solutions obtained are numerically
identical.

Finally, we also demonstrate that the method also
performs well on 3D-problems. Figure 7 shows the
design domain, load and boundary conditions for a 3D-
problem. The optimal design, which is obtained after 30
iterations, is also depicted in this figure. The problem
is very similar to the one presented in Fig. 3. The
2D geometry is identical, but here a width of 200 is
also included. There is only a small difference in the
boundary conditions. Instead of fixing the left corner
in the y-direction, we now fix the corresponding two
end-points in all directions, see the figure. Only the
first load case is considered and we apply this load

Fig. 7 A 3D-problem.
Elements with densities
greater than 0.95 after 30
iterations are plotted by
using Abaqus/CAE
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at the corresponding center-point. 8-noded fully inte-
grated isoparametric bricks are utilized. The number of
elements is 33820, rmin=20 and 588 contact nodes are
defined between the design domain an the rigid pin.

6 Concluding remarks

In this paper a general framework for topology opti-
mization of structures in unilateral contact with rigid
supports is presented. The approach is developed for a
linear elastic structure in unilateral contact. The contact
is frictionless and it is formulated by using a smooth
approximation of Signorini’s contact conditions as well
as by using the augmented Lagrangian approach. For
these type of structures the compliance is minimized.
The design parametrization is performed by utilizing
the SIMP-model. The state problem is solved by a
Newton method. The optimization problem is treated
by SLP where the LP-problem is solved by an inte-
rior point method. Sigmund’s filter is also utilized in
this procedure in order to avoid mesh dependency.
The methods are implemented in the in-house toolbox
Topo2D/3D and the performance is most efficient and
robust for both methods. The implementation of the
augmented Lagrangian approach seems to be slightly
more efficient than the approach of Facchinei.
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