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Abstract The purpose of this brief note is to derive
the KS global constraint function. The first derivation
based on the maximum entropy theory elaborates the
statistical significance of KS function. The second one
points out the relationship between KS and the p-norm
global function. The properties of these two global
functions validate these substitutions are reasonable.
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1 Introduction

In topology design of structures, the optimum distrib-
ution of material is sought in a given design domain.
Topology optimization has been developed to effi-
ciently deal with compliance formulations. This com-
pact type model can be solved conveniently, although
it has a few shortcomings in the mathematical and
engineering meaning.

In most engineering situations, pointwise failure
criteria need to be considered, usually based on the
stress tensor. There are two main questions in topology
optimization with stress constraints. One is the singu-
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larity phenomenon, which has been proposed by Kirsch
(1990). This phenomenon arises from the relaxation
of primary discrete 0–1 formulation. Once the element
becomes zero, the permissible stress in the correspond-
ing stress constraints jumps suddenly from a finite value
to infinity. This difficulty has been dealt with by the
smooth envelope functions (SEF’s) method (Rozvany
and Sobieszczanski-Sobieski 1992; Rozvany et al. 1995;
Rozvany 1996) or the ε-relaxation technique (Cheng
and Guo 1997; Duysinx and Bendsoe 1998; Duysinx
and Sigmund 1998). About singular topologies,
Rozvany (2001) has provided a comprehensive review.
It was shown in this that the SEF method proposed
by Rozvany and Sobieszczanski-Sobieski (1992) and
the epsilon-relaxation method give very similar results
in handling singular topologies. The other question is
the large number of local constraints in the discretized
finite elements. A large scale optimization problem
created by these local constraints and the large number
of design variables, however, is still a challenge to the
optimization algorithm. In the following sections, we’ll
endeavor to overcome this obstacle.

Some different techniques have been proposed in an
attempt to deal with the large number of local con-
straints. For example, Pereira et al. (2004) used the aug-
mented Lagrangian method to the optimization model
with the local material failure constraints. But most of
researches prefer transforming the local constraints to a
global function, such as Yang and Chen (1996), Duysinx
and Sigmund (1998), París et al. (2009). The optimiza-
tion problem with the global function becomes easier
to solve since the number of constraints is drastically
reduced.

Nowadays, p-norm and KS function (Kreisselmeier
and Steinhauser 1979) are two common global
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functions. They both can tend to the maximum local
stress constraint along with the change of the para-
meter. KS function is also called aggregate function
by Li (1992) as its’ global properties. And the smooth
KS function is very suitable for the optimization algo-
rithms. But we can’t find any derivative process of the
KS function in the references of the structural optimiza-
tion. We don’t know where it comes from and what it
means. In this paper, we give two different derivations
by means of the Jeynes’ maximum entropy principle
(Jaynes 1957) and exponential transaction of p-norm.
Furthermore, the significance of KS global function and
the relationship between these two functions are also
elaborated, while the rationality of these substitutions
is validated.

2 Topology optimization with stress constraints

Topology optimization is defined as finding the material
distribution in the given domain so that an objective
function is minimized, while a set of constraints are
satisfied. The objective maybe minimum weight, maxi-
mum fundamental frequency or the other wanted prop-
erties. Generally, the discrete variables are replaced by
the continuous ones, and Solid Isotropic Microstruc-
ture with Penalty (SIMP) scheme is used to show the
stiffness or Young’s Module attenuation of the medium
density (Bendsoe 1989; Rozvany et al. 1992). SIMP
was also applied to stress design by Rozvany et al.
(1992), who assumed that the permissible stress value
is proportional to the varying material density, but
penalized intermediate densities. We use this idea in
the stress constraint of this paper. So the common stress
constraint can be formulated as

σVM (ρe) ≤ ρη
e σl e = 1, · · · , Ne

0 < ρmin ≤ ρe ≤ 1 (1)

where ρe is the material density at element e, σ VM(ρe)

is the von Mises stress at element e, σ l is the material
yielding stress, Ne is the number of finite elements in
the discretized domain and ρmin is the prescribed lower
bound of the material density. Based on experience, we
use the penalization factor η = 3.

Because of the continuation of the discrete vari-
ables, singularity phenomenon appears in the topology
optimization with stress constraints. It results in the
impossibility for the optimization algorithm to create
or to remove materials during the optimization process.
The ε-relaxation technique proposed by Cheng and
Guo (1997) is used to circumvent this difficulty. For
the continuum type topology optimization problem,

Duysinx and Sigmund (1998) developed a more perfect
relaxation form

ge = σVM,e

ρ
η
e σl

+ ε − ε

ρe
≤ 1

1 ≥ ρe ≥ ε2 e = 1, · · · , Ne

⎫
⎬

⎭
(2)

where σ VM,e is the abbreviation of σ VM(ρe), ε > 0 is the
small relaxation factor.

The relaxation form (2) can be rewritten as the
equivalent maximum form

gmax = max
e=1,··· ,Ne

(

ge = σVM,e

ρ
η
e σl

+ ε − ε

ρe

)

≤ 1

1 ≥ ρe ≥ ε2, e = 1, · · · , Ne

⎫
⎪⎪⎬

⎪⎪⎭

(3)

or the relaxed surrogate form

gs =
Ne∑

e=1

λege ≤ 1

λ ∈ � =
{

λe ≥ 0,

Ne∑

e=1

λe = 1

}

ge = σVM,e

ρ
η
e σl

+ ε − ε

ρe

1 ≥ ρe ≥ ε2

e = 1, · · · , Ne

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

This is because gs ≤ gmax when λ ∈ �. The factor λe is
called surrogate multipliers.

3 Derivation of KS function (aggregate function)
by maximum entropy principle

In information theory, Shannon’s entropy is a measure
of the uncertainty associated with a random variable.
The formulation of Shannon’s entropy is

H (λ) = −
m∑

i=1

λi ln (λi)

λi ≥ 0,

m∑

i=1

λi = 1 (5)

Comparing with the surrogate constraint form (4) and
the maximum constraint form (3), we can see

gs =
Ne∑

e=1

λege ≤ gmax (6)
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So gs must be maximized to make (6) become an equal-
ity, that is, it solves a maximization problem:

max
λ∈�

gs =
Ne∑

e=1

λege (7)

Unfortunately, this linear optimization problem rarely
has an explicit solution λ∗ for the design variables. In
search of a smooth solution, we regard the surrogate
multiplier λe as the probability of gs = gmax. That is to
say, every local stress constraint maybe the maximum
one, and the probability is denoted by λe. Furthermore,
the maximum entropy principle can provide a means
to obtain least-biased statistical inference when insuffi-
cient information is available. In order to get fair result
for every local constraint, the formulation of maximum
entropy is used

max
λ∈�

H (λ) = −
Ne∑

e=1

λe ln (λe) (8)

If satisfaction of the objects (7) and (8) are demanded
at the same time, we can construct a composite maxi-
mization problem with the weighting coefficient p

max
λ∈�

gp = gs + H (λ)
/

p (9)

Shannon’s entropy H(λ) is always nonnegative, so the
effect of the entropy term on the solution of (9) will di-
minish as p approaches infinity. By a simple calculation,
we can get an analytical solution

λe = exp
[

pge
]
/

Ne∑

e=1

exp
[

pge
]

(10)

Substituting (10) for λe into gp eliminates λ and yields
a function

gp = 1

p
ln

{
Ne∑

e=1

exp
[

pge
]
}

(11)

This is KS global constraint function, and we often call
it aggregate function.

4 Relationship with the p-norm function
and properties of global functions

If p is a real number, p ≥ 1, the p-norm of vector x =
{x1, x2, ..., xn} is defined by

‖x‖p =
(

n∑

i=1

|xi|p

)1/p

(12)

When p tends to infinity, p-norm has the property

‖x‖p ≥ max
i

|xi|
lim

p→∞ ‖x‖p = max
i

|xi| = ‖x‖∞ (13)

Compared with the maximum stress constraint form
(3), we can get the p-norm global constraint function

[
Ne∑

e=1

(max {0, ge})p

]1/p

≤ 1 (14)

Since ge maybe negative, max {0, ge} is used as the
component of p-norm.

Now, we construct a new function � with the expo-
nent of every local constraint component

ψe = exp (ge) , e = 1, · · · , Ne (15)

Since any component of � is positive, the p-norm of
� is

‖�‖p =
{

Ne∑

e=1

[ψe]p

}1/p

=
{

Ne∑

e=1

exp
[

pge
]p

}1/p

(16)

By taking a logarithmic operation on both sides of (16),
we immediately get

ln ‖�‖p = 1

p
ln

{
Ne∑

e=1

exp
[

pge
]
}

= gp (17)

From the above-mentioned formulations, KS function
can be derived from exponential transaction of p-norm.
According to the property of p-norm, we have

lim
p→∞ gp = lim

p→∞ ln ‖�‖p = ln
[
max

e
ψe

]

= max
e

ln [ψe] = gmax (18)

The following inequality is evident

gp − gmax = ln ‖	‖p − ln {exp (gmax)}

= 1

p
ln

Ne∑

e=1

exp
{

p
[
ge − gmax

]} ≥ 0 (19)

Then if gp ≤ 1, we can get gmax ≤ 1 immediately. So
when we use KS global function in the constraint, the
property (19) can ensure the maximum form (3) is
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strictly followed. In a similar way, based on the prop-
erty (13), the p-norm global function can keep (3) valid.

The stress constraint with KS global function can be
written as

gp = 1

p
ln

{
Ne∑

e=1

exp
[

pge
]
}

≤ 1

ge = σVM,e

ρ
η
e σl

+ ε − ε

ρe

1 ≥ ρe ≥ ε2

e = 1, · · · , Ne

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(20)

Based on the property (18), this formulation is trans-
formed into the maximum form (3) as p approaches
infinity. So it’s equivalent to the local constraints for-
mulation (2). Moreover, maximum entropy principle
can ensure this global constraint formulation is fair to
every local constraint.

5 Conclusions

In this paper, two different derivations of the global
KS stress constraints function are proposed. The first
one is based on the maximum entropy principle. Since
this principle can provide a least-biased statistical infer-
ence with the known information, the local constraints
are distributed fairly in KS global constraint function.
The second one applies the exponential transaction of
p-norm. This derivation points out the relationship
between KS and the p-norm global constraint function.
Furthermore, both two functions are bigger than the
maximum local one. This property leads that the feasi-
ble domain is smaller than the primary local constraints
model. And they are equivalent to the primary local
constraints, as p approaches infinity. So these two sub-
stitutions are reasonable. Comparing these two global
functions, we can see the smooth KS function is more
adaptive for the optimization algorithms.
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