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Abstract In this paper we study the unconfined poten-
tial steady flow through a porous media with semiper-
meable bottom. We propose a model that leads to a
free boundary-value-problem with complementarities
conditions on the bottom. The shape of a part of the
domain boundary, called free boundary, is one of the
unknown of the problem. The pressure of the flow as
well as the flow velocity on the another part of the
boundary, that is a one way permeable bottom, are
also unknowns and satisfy a complementarity condi-
tion. We present the numerical implementation of the
model based on an optimization approach. Performing
a boundary-element discretization we get a nonlinear
mathematical programming problem with complemen-
tarities conditions. To solve it we use Herskovits’s
interior point algorithm. Numerical examples are
presented.
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1 Introduction

The phenomenon of unconfined steady flow through
porous media belongs to the category of free boundary
value problems. A part of the boundary is a priori
unknown and can be found as a component of the so-
lution (Friedman 1982; Polubarinova-Kochinab 1962).
Let R be an open and, for the sake of convenience,
rectangular domain with base length � occupied by the
porous media, h1 and h2 the fluid piezometric levels
on the left and on the right sides of R respectively
and h1 ≥ h2, see Fig. 1. The classical formulation looks
for the location of the phreatic surface (water table)
Γλ and their associated seepage surface Γσ as well as
for the flow velocity potential u into the domain Ω

with the frontier Γ = Γλ ∪ Γσ ∪ Γ◦ ∪ Γ1 ∪ Γ2. The fluid
is assumed to be ideal, the dam is homogeneous and
isotropic with the permeability coefficient k = 1, fluid
specific weight γ = 1 and assume that the external
pressure is equal to zero.

The classical unconfined seepage flow problem was
widely analyzed from the theoretical and the numer-
ical points of view. The analytical solution can be
obtained with the theory of analytical functions for
linear ordinary differential equations (Polubarinova-
Kochinab 1962). In the iterative approach proposed
in Liggett (1997), one of the two conditions defined
at the free boundary is chosen to solve, at each it-
eration, the direct value problem. Guessing an initial
approximation, the location of the free boundary is
adjusted at each iteration to make the other boundary
condition hold, then the direct problem is re-solved, etc.
The method of transformation known as “Baiocchi’s
transformation” (Baiocchi and Capelo 1984) consists in
changing the problem variables to transform the free
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Fig. 1 Seepage problem geometry

boundary domain into a fixed domain. The problem on
this new domain becomes a variational inequality. The
optimization method consists in the interpretation of
the free boundary as an optimal boundary and applying
mathematical programming techniques (Leontiev and
Huacasi 2001). The seepage problem can be considered
also as a “codimentional-two free boundary problem”
(Howison et al. 1997), in which the only geometri-
cal unknowns are the “free points” which mark the
points at which the free boundary meets the top of
the dam. Employing a penalization technique, known
as extended pressure method, the seepage interval can
be identified through Signorini conditions imposed at
the part of the boundary of a fixed (extended) domain
where appearance of seepage is expected (Zheng et al.
2009).

All these methods were proposed to solve the classi-
cal seepage problem, i.e. the problem without any evap-
oration or infiltration effect on the boundary. Some
unconfined steady flow problems with a a piori pre-
scribed evaporation zone were considered by Jensen
(1980) and Pozzi (1974). We mention also a problem
of unconfined flow in porous media with possible fluid
discharge (evaporation) through the water table due
to tree roots suction, called “forest impact problem”
(Leontiev et al. 2004). The location of the water table
under the forest suction effect, the flow characteristics
as well as the region of contact of the aquifer with the
tree roots are the unknowns of this problem.

In this paper we consider the model of unconfined
steady flow through a porous media with semiperme-
able bottom. We impose Signorini boundary conditions
in order to ensure one way permeability of the bottom.
Moreover, the bottom becomes permeable for the flow
when the pressure of the flow reaches a certain value.
So, the permeable region of the bottom is unknown

a priori. An equivalent formulation of the problem in
terms of the quasivariational inequality can be given
and the existence and uniqueness of the solution can
be proved (Piermatei Filho 2006).

We reformulate this complementarity problem as
a bilinear mathematical program. This approach in-
terprets the free boundary is an optimal boundary.
An interior point algorithm for non linear optimiza-
tion (Herskovits 1998) is employed to solve this prob-
lem. Numerical results for test problems with different
permeability properties of the bottom are presented.

2 Problem formulation

The classical seepage model does not suppose any evap-
oration or infiltration effects on the water table Γλ. The
dam bottom Γ◦ is considered impermeable. The model
can be formulated as a free boundary problem:

Problem 1 Find the potential u(x, y) and the decreas-
ing function ψ(x) that defines the location of the water
table Γλ, satisfying
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δu = 0 in Ω,

u = h1 on Γ1,

u = h2 on Γ2,

u = y on Γσ ∪ Γλ,

q = 0 on Γ◦ ∪ Γλ,

where q ≡ ∂u/∂n and n is the outward normal to
Γ◦ ∪ Γλ.

In the unknown part Γλ of the boundary, the func-
tion u(x, y) has to fulfill two boundary conditions,
called free boundary conditions, u = y and q = 0.
Problem 1 admits a unique solution pair {ψ, u}, where
ψ(x) is smooth and u ∈ H1(Ω) ∩ C◦(Ω), Kinderlehrer
and Stampacchia (1980).

Performing the Baiocchi transformation

w(x, y) =
∫ ψ(x)

y
(u(x, t) − t)dt,

a variational inequality equivalent to Problem 1 can be
obtained (Baiocchi and Capelo 1984):

w ∈ K, ∀v ∈ K,

∫

R
(wx(v−w)x+wy(v−w)y)dxdy ≥−

∫

R
(v−w)dxdy.

Here K = {v ∈ H1(R) | v ≥ 0 in R and v = g on ∂R},
the function g depends on h1, h2 and �, and the subscript
x (or y) denotes the derivative with respect to x (or y).
From the solution w of this inequality, the velocity
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potential is defined as u = y − wy and Γλ is determined
as the curve that separates the areas with w = 0 and
w > 0. To obtain this variational formulation it is neces-
sary to know the discharge across any vertical section of
the aquifer, Q(x) ≡ − ∫ ψ(x)

0 ux(x, t)dt. The Dupuit for-
mula Q(x) = (

h2
1 − h2

2

)
/2� is used in the classical case.

In our model, since we suppose that the bottom
of the dam is one way permeable, we put at Γ◦ the
Signorini conditions:

q ≤ 0, u ≤ p◦, q(u − p◦) = 0.

The unilateral character of these conditions guaran-
tees that only one side of the bottom is permeable
and only outgoing flux is possible. Moreover, the bot-
tom becomes permeable for the flow when u = p◦. If
u < p◦ the flux through the bottom is equal to zero.
We note that the region of permeability of the bottom
is unknown a priori and is a part of the solution. This
model can be formulated in the following way:

Problem 2 Let be p◦ ≥ 0. Find the potential u(x, y)

and the decreasing function ψ(x) that defines the loca-
tion of the water table Γλ, satisfying
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Δu = 0 in Ω,

u = h1 on Γ1,

u = h2 on Γ2,

u = y on Γσ ∪ Γλ,

q = 0 on Γλ,

q ≤ 0, u ≤ p◦, q(u − p◦) = 0 on Γ◦.

Employing the Baiocchi transformation, a variational
formulation equivalent to Problem 2 can be obtained
(Piermatei Filho 2006):

w ∈ K,

∫

R
∇w · ∇(v − w) ≥ −

∫

R
(v − w), ∀ v ∈ K,

where K ⊂ H1(R) is a non empty subset:

K = {
v ∈ H1(R) | v ≥ 0 in R, v = G on ∂R and

vy + p◦ ≥ 0, (vy + p◦)vxx = 0 on Γ◦
}
,

with G(x, y) ∈ W2,∞(R):

G(x, y)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
(h1−y)2+ [k(x)−k(0)]

2[k(�)−k(0)]
[
(h2 − y)2−(h1 − y)2

]
,

0 ≤ y ≤ h2,

1

2
(h1−y)2− [k(x)−k(0)]

2[k(�)−k(0)] (h1−y)2,

h2 ≤ y ≤ h1.

and

k(x) = 1

2
h2

1 − x
�

(
h2

1 − h2
2

2
−

∫ �

0
(� − t)q(t, 0)dt

)

−
∫ x

0
(x − t)q(t, 0)dt.

By the definition of the function k(x), the subset K
depends implicitly on the flow through the bottom. This
flow is unknown a priori and is defined by the function
w. Hence, the variational formulation of our problem
is a quasivariational inequality. To prove the existence
of a solution, we construct a family of variational in-
equalities and indicate a sequence of its solutions that
converges to the solution of our quasivariational in-
equality. Under some reasonable assumptions the so-
lution of this quasivariational inequality is unique
(Piermatei Filho 2006).

3 The numerical algorithm

Since in our problem the constraints are imposed on
the boundary, it is quite suitable to look for a nu-
merical solution by means of the direct boundary ele-
ment method (BEM). The unknown boundary values
are the potential and the flux, which are considered
as primary variables in the BEM. Then, their values
are obtained directly. As a consequence, the BEM
yields higher accuracy as compared with the finite el-
ement method. Boundary variational inequality formu-
lations for potential problems with Signorini boundary
conditions were studied by many authors (Han 1990;
Simunovic and Saigal 1992; Spann 1993). Usually, these
kind of conditions are applied for contact problems in
solid mechanics (Eck et al. 1999; Eck and Wendland
2003). Some variational principles of the BEM for con-
tact problems in elasticity were obtained by Polizzotto
(1993), for the direct determination of the unknown
boundary quantities, considering the relative displace-
ments in a contact region as independent variables.
Other authors developed variational formulations of
the BEM for contact problems based on the use of
Green’s functions (Alliney et al. 1990). In general, all
these approaches lead to a solution of linear comple-
mentarity problems. Depending on the method, linear
complementarity problems have different properties
(non symmetric matrix (Alliney et al. 1990), symmetric
sign-definite matrix (Polizzotto 1993), etc.).

We apply a technique recently developed to solve
boundary value problems with the Signorini conditions
(Leontiev et al. 2002) and a one way permeable thin ob-
stacle situated inside of the flow domain (Leontiev and
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Khludnev 2006). Performing the boundary elements
discretization we obtain a mixed linear complementar-
ity problem.

In the two-dimensional case for Problem 2 the flux
and potential satisfy the following integral equation on
the boundary Γ :

1

2
u(ξ) +

∫

Γ

q∗(ξ, χ)u(χ)dΓ =
∫

Γ

u∗(ξ, χ)q(χ)dΓ, (1)

where χ = (x, y) ∈ Γ , u∗(ξ, χ) is the fundamental so-
lution of the Laplace equation, q∗(ξ, χ) its normal
derivative, and ξ ∈ Γ is the collocation point (Brebbia
et al. 1984).

In the present approach, we make first a boundary
element discretization based on the (1) and then intro-
duce the semipermeability conditions for the discrete
model.

Let N be the number of (geometrical) nodes and

elements Γi such that Γ =
N∑

j=1
Γ j. Assuming that the

flux and the potential are approximated by constant
functions for each Γ j, j = 1, ..., N, we perform the fol-
lowing discretization of the integral equation:

1

2
ui +

N∑

j=1

⎛

⎜
⎝

∫

Γ j

q∗
i dΓ j

⎞

⎟
⎠ u j =

N∑

j=1

⎛

⎜
⎝

∫

Γ j

u∗
i dΓ j

⎞

⎟
⎠ q j,

where i = 1, ..., N, ui = u(ξi), u∗
i = u∗(ξi, χ), q∗

i =
q∗(ξi, χ), ξi ∈ Γi and u j = u(χ), q j = q(χ), χ ∈ Γ j, j =
1, ..., N. Using the notations Hij = ∫

Γ j

q∗
i dΓ j for i �= j,

Hii = 0.5 + ∫

Γi

q∗
i dΓi and Gij = ∫

Γ j

u∗
i dΓ j, we can write

this equation in the matrix form:

Hu = Gq,

where H, G ∈ RN×N and u, q ∈ RN .
Let (xi, yi) be the coordinates of the geometrical

nodes, i = 1, ..., N, and xN+1 = x1, yN+1 = y1. Then,
we can obtain explicit formulas for the elements of G
and H:

When i �= j :

Gij = −
4∑

k=1

1

2
ωk

(
a2

x + a2
y

)1/2
ln

× (
(xc − axγk − b x)

2 + (yc − ayγk − by)
2) , (2)

Hij =−
4∑

k=1

ωk

(
ay(axγk+b x−xc)−ax(ayγk+by−yc)

)

(
xc−axγk−b x

)2+
(

yc−ayγk−by

)2 ,

(3)

and when i = j:

Gii = 2
(

a2
x + a2

y

)(
1 − ln

(
a2

x + a2
y

)1/2)
, (4)

Hii = π, (5)

where ax = 0.5(x j+1 − x j), b x = 0.5(x j+1 + x j), ay =
0.5(y j+1 − y j), by = 0.5(y j+1 + y j), xc = 0.5(xi + xi+1),

yc = 0.5(yi + yi+1), and γk, ωk are the abscissa and
weight of the Gauss quadrature.

Let n, m, l, k and r be the numbers of the boundary
elements located at the segments Γσ , Γλ, Γ1, Γ◦ and Γ2,
respectively, see Fig. 2, and K := n + m, L := K + l,
M := L + k, N := M + r, P := N + n, R := P + m and
S := R + k − 1.

We consider as independent variables n − 1 y-
coordinates of the seepage surface nodes:

X1, ..., Xn−1,

m y-coordinates of the free boundary nodes:

Xn, ..., XK−1,

the flux at the boundary elements of Γ1:

XK, ..., XL−1,

the potential at the boundary elements of Γ◦:

XL, ..., XM−1,

the flux at the boundary elements of Γ2, Γσ , Γλ and Γ◦:

XM, ..., XN−1, XN, ..., XP−1, XP, ..., XR−1 and
XR, ..., XS,

respectively.

Fig. 2 The BEM discretization
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Let be

X = (X1...XS),

U = (u1...ul, XL...XM−1, ul+k−1...uN),

Q = (XK...XL−1, XM...XS),

where the values of the potential u on the segment
Γσ ∩ Γλ are defined using the boundary conditions of
the problem

Ul+k+r+i = 0.5(Xi−1 + Xi), i = 2, ..., K − 1,

Ul+k+r+1 = 0.5(h2 + X1), UN = 0.5(h1 + XK−1).

as well as the remaining values of u and q.
For the complementarity conditions we have:

XL+i ≤ p◦, XR+i ≤ 0, (XL+i − p◦) · XR+i = 0,

i = 0, .., k − 1.

It follows from (2–5) that H and G are functions of
X, more precisely, of the y-coordinates of the free
boundary and seepage surface nodes:

H(X) ≡ H(X1, ..., Xn+m−1),

G(X) ≡ G(X1, ..., Xn+m−1).

Then, the discrete problem can be formulated as the
following mixed linear complementarity problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(X)u − G(X)q = 0,

XL+i ≤ p0, XR+i ≤ 0, i = 0, .., k − 1,

(XL+i − p◦) · XR+i = 0, i = 0, .., k − 1,

Xi = 0, i = P, ..., R − 1,

Ul+k+r+i = 0, 5(Xi−1 + Xi), i = 2, ..., K − 1,

Ul+k+r+1 = 0, 5(h2 + X1), UN = 0, 5(h1 + XK−1),

h2 ≤ Xi ≤ h1, i = n, ..., n + m.

Different techniques can be employed to solve lin-
ear complementarity problems. We mention Lemke’s
method (Bazaraa and Shetty 1979), gradient projec-
tion, quasi-Newton and conjugate gradient projection
algorithms (Xiao et al. 1999), the decomposition-
coordination techniques (Spann 1993), and some
heuristic iterative procedures with trial and error.
Another approach to treat the linear complementarity
problem is their reformulation as optimization prob-
lems (Friedlander et al. 1995). The most convenient
way is to exploit a bilinear mathematical program

(Cottle et al. 1992). We consider the equivalent bilinear
mathematical program:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
X

F(X)

H(X)u − G(X)q = 0,

XL+i ≤ p◦, XR+i ≤ 0, i = 0, .., k − 1,

(XL+i − p◦) · XR+i = 0, i = 0, .., k − 1,

Ul+r+k+i = 0.5(Xi−1 + Xi), i = 2, ..., K − 1,

Ul+r+k+1 = 0.5(h2 + X1), UN = 0.5(h1 + XK−1),

h2 ≤ Xi ≤ h1, i = n, ..., n + m.

with the objective functional:

F(X) =
R−1∑

i=P

X2
i .

To find a solution of this problem, we use the interior
point algorithm for nonlinear mathematical program-
ming, FAIPA (Herskovits 1998). This algorithm solves
the Karush-Kuhn-Tucker conditions without need to
employ any penalization functions or to solve quadratic
programming sub-problems. Some of the advantages of
FAIPA in the case of inequality constrains is that all the
iterated points are feasible and the objective function
is reduced at each iteration. In the case of equality
constraints a feasible initial point is not required. Even
if the complementarity conditions are non-convex, the
iterates given by FAIPA belong to a convex region
defined by the inequality constraints. In consequence,
we have global convergence. The search along an arc
improves theoretical and numerical convergence. This
algorithm is widely used to solve engineering optimiza-
tion problems (Herskovits et al. 2005; Canelas et al.
2008a, b; Herskovits and Mazorche 2008).

4 Numerical results

As an example, we describe the numerical results for
the test problem with h1 = 6.3014, h2 = 1.2359 and
� = 6.1592. The discretization includes 90 boundary
elements (n = 4, m = 13, l = 7, r = 62, k = 4), see
Fig. 2. The y-coordinates of the nodes 1-3 at the seepage
interval Γσ and the y-coordinates of the nodes 4-16, that
define location of the water table Γλ, are the variables
of the problem. The coordinates of the rest of the nodes
are fixed. The mathematical program has 168 variables,
152 nonlinear equality constraints and 137 ”box” con-
straints. We adopt the algorithm stopping criterion with
precision 10E−6, (Herskovits 1998). With different ini-
tial data points, the convergence of the algorithm was
obtained in no more than 30 iterations. The algorithm
converges to the same solution with absolute error less
that 10E−6 for pressure, flux and the y-coordinates
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Table 1 Seepage interval
height (S.P.) and bottom
permeability interval length
(�◦) coordinates for different
values of the p◦

p◦ S.P. �◦
6.5 2.5129 0.0
6.0 2.4934 0.2
5.5 2.4661 0.8
5.0 2.4074 1.3
4.5 2.3423 1.8
4.0 2.2490 2.3
3.5 2.1361 2.8
3.0 1.9691 3.4
2.5 1.8034 3.9
2.0 1.5878 4.4
1.7 1.4482 4.9
1.6 1.4103 5.0

of the water table and the seepage interval. FAIPA
proved to be very strong for this kind of applications,
solving all the test problems very efficiently with the
same set of parameters. The boundary elements mesh
at Γ◦ has the uniform step equal to 0.1, except for the
last element. Thus, the location of the non zero flux
interval at the bottom (permeable part of the bottom)
is defined with absolute error less than 0.2. We perform
the tests for the following values of p◦: 6.5, 6.0, 5.5, 5.0,
4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.7 and 1.6.

The computed values of the seepage interval height
and the bottom permeability interval length are given in
Table 1. These results show the monotone decreasing of
the water table and, at the same time, the enlargement
of the permeability interval at the bottom with decreas-
ing of p◦. For p◦ = 6.5 the bottom is impermeable and
we have the solution of the classical seepage problem,
see Fig. 3. Our numerical results in this case are con-
sistent with the numerical results obtained in the paper
by Leontiev and Huacasi (2001). In the cited paper the

Fig. 3 Case p◦ = 6.5. The bottom is impermeable (classical seep-
age problem)

Fig. 4 Case p◦ = 4.0. The bottom is permeable at the interval
(0.0 − 2.3)

Fig. 5 Case p◦ = 1.6. The bottom is permeable at the interval
(0.0 − 5.0)

Fig. 6 Seepage interval height (S.P.) versus value of p◦
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Fig. 7 Permeability interval length (�◦) versus value of p◦

numerical results are compared with an analytical solu-
tion with very good compatibility. Figure 4 presents the
numerical result for p◦ = 4.0. In this case the perme-
able part of the bottom is the interval (0.0 − 2.3). The
numerical results for p◦ = 1.6 are given in Fig. 5. The
obtained permeability interval is (0.0 − 5.0). Figures 6
and 7 show the seepage interval height (S.P.) and
the bottom permeability interval length (�◦) versus the
value of p◦, respectively. These relations make possible
an approximate prediction of the location of the seep-
age interval and the length of the permeable part of the
bottom for a given value of p◦ in the case of the direct
problem, or the values of p◦ and �◦ observing the height
of the seepage interval for the inverse problem.

5 Conclusions

The optimization approach was employed to study the
unconfined seepage problem with one way permeable
bottom. The BEM avoids the need of mesh generation
for the domain discretization of the problems with free
boundary required by the FEM. The one way perme-
ability of the bottom turns the discrete problem into a
mixed linear complementarity program. Transforming
this problem to the bilinear mathematical program we
solve it using an interior point algorithm. Numerical
results allows to observe relations between bottom per-
meability parameter, length of the permeable part of
the bottom and height of the seepage interval.
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