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Abstract In RBDO, input uncertainty models such as
marginal and joint cumulative distribution functions
(CDFs) need to be used. However, only limited data
exists in industry applications. Thus, identification of
the input uncertainty model is challenging especially
when input variables are correlated. Since input ran-
dom variables, such as fatigue material properties, are
correlated in many industrial problems, the joint CDF
of correlated input variables needs to be correctly
identified from given data. In this paper, a Bayesian
method is proposed to identify the marginal and joint
CDFs from given data where a copula, which only
requires marginal CDFs and correlation parameters,
is used to model the joint CDF of input variables.
Using simulated data sets, performance of the Bayesian
method is tested for different numbers of samples and
is compared with the goodness-of-fit (GOF) test. Two
examples are used to demonstrate how the Bayesian
method is used to identify correct marginal CDFs and
copula.
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Nomenclature

n number of random variables
X vector of random variables, X = [X1, . . . ,

Xn]T

x realization of vector X, x = [x1, . . . , xn]T

FXi(·) marginal CDF of Xi

FX1···Xn(·) joint CDF of X1, . . . , Xn

fX1,··· ,Xn(·) joint probability density function (PDF)
of X1, . . . , Xn

θ matrix of correlation parameters of X1,
. . . , Xn

τ Kendall’s tau
C(·|θ) copula with θ

c(·|θ) copula density function with θ

�(·) marginal Gaussian CDF
�−1(·) inverse Gaussian CDF
ρij Pearson’s correlation coefficient between

Xi and X j

P covariance matrix consisting of ρij

�P (·|P) multivariate Gaussian CDF with P
C�(·|P) Gaussian copula with P

1 Introduction

For RBDO problems, even though input random vari-
ables such as material properties and fatigue properties
are correlated (Socie 2003; Annis 2004; Efstratios et al.
2004), these variables have often been assumed to be
independent because of the difficulty in constructing
the joint CDF of correlated input variables. Even when
the correlation is considered in the reliability analysis,
often the joint Gaussian CDF has been used while the
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correct input joint CDF could be non-Gaussian (Nataf
1962; Melchers 1999; Ditlevsen and Madsen 1996; Noh
et al. 2008). In addition, certain input variables are
known to follow a specific marginal CDF type; for
example, some fatigue material properties are known
to follow lognormal CDFs. However, when the input
marginal CDF type is not known, it is necessary to
identify a marginal CDF type from the given data. If an
incorrect input joint CDF or incorrect marginal CDFs
are used, wrong RBDO results will be obtained. Thus,
before carrying out the RBDO, accurate identification
of the joint CDF and marginal CDFs is necessary to
obtain accurate optimum design results.

To model the joint CDF of input variables, in this
paper, it is proposed to use the copula, which is a link
between a joint CDF and marginal CDFs. Since the
copula requires only marginal CDFs and correlation
parameters, which can be obtained from limited data,
a joint CDF can be readily modeled by the copula. Fur-
thermore, since the copula decouples marginal CDFs
and the joint CDF, it allows the joint CDF type to
be different from marginal CDF types. For example,
having Gaussian marginal CDFs does not necessarily
mean the joint CDF is Gaussian. Thus, it is necessary
to use the copula for constructing the input joint CDF
with various marginal CDF types.

To correctly identify the marginal CDFs and joint
CDF (copula), the Bayesian method, which selects a
marginal CDF or copula with the highest normalized
weight among candidates based on experimental data
(Huard et al. 2006), is used in this paper. By observ-
ing the normalized weight, the effectiveness of the
Bayesian method is studied for a different number of
samples and compared with that of the GOF test. Two
mathematical examples and a fatigue problem are used
to show how the Bayesian method effectively identifies
marginal CDFs and a joint CDF.

2 Modeling of joint CDFs using copulas

As mentioned earlier, when the input variables are
correlated, it is difficult to obtain the true joint CDF
using only limited experimental data. Thus, in this
paper, it is proposed to use the copula to model the
input joint CDF using marginal CDFs and correlation
measures, which can be obtained from the given ex-
perimental data. Section 2.1 provides the definition of
the copula, and correlation measures associated with
copulas are explained in Section 2.2. Section 2.3 de-
scribes commonly used copulas such as the Gaussian
and Archimedean copulas.

2.1 Definition of copulas

The word copula originated from a Latin word for
“link” or “tie” that connects different things. In sta-
tistics, the definition of copula is stated by Nelsen
(1999): “Copulas are functions that join or couple mul-
tivariate distribution functions to their one-dimensional
marginal distribution functions. Alternatively, copu-
las are multivariate distribution functions whose one-
dimensional margins are uniform on the interval [0, 1].”

According to Sklar’s theorem (Nelsen 1999), if the
random variables have marginal CDFs, then there ex-
ists an n-dimensional copula C such that

FX1,...,Xn (x1, . . . , xn) = C
(
FX1 (x1) , . . . , FXn (xn) |θ)

(1)

where θ is the correlation matrix between X1, . . . ,
Xn. If marginal CDFs are all continuous, then C is
unique. Conversely, if C is an n-dimensional copula
and FX1 (x1) , . . . , FXn (xn) are marginal CDFs, then the
joint CDF is an n-dimensional function of marginal
CDFs (Nelsen 1999). By taking the derivative of (1),
the joint PDF is obtained as

f (x1, . . . , xn) = c
(
FX1 (x1) , . . . , FXn (xn) |θ) n∏

i=1

fXi (xi)

(2)

where c (u1, . . . , un) = ∂nC(u1,...,un)

∂u1...∂un
with ui = F(xi), and

fXi (xi) is the marginal PDF for i = 1, . . . , n. To model
the joint CDF using the copula, the correlation matrix
θ needs to be obtained from experimental data. Since
various types of copulas have their own correlation pa-
rameters, it is desirable to have a common correlation
measure to obtain the correlation parameters from the
experimental data.

2.2 Correlation measure

To measure the correlation between two random vari-
ables, Pearson’s rho and Kendall’s tau, can be used.
Pearson’s rho, which is also called a product moment
correlation coefficient, was first discovered by Bravais
(1846) and was developed by Pearson (1896). Pearson’s
rho indicates the degree of linear relationship between
two random variables as

ρXY = Cov (X, Y)

σXσY
(3)

where σ X and σ Y are standard deviations of X and Y,
respectively, and Cov(X, Y) is the covariance between
X and Y. Since Pearson’s rho only indicates the linear
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relationship between two random variables, it is valid
only when the joint CDF is Gaussian. Therefore, it
is not a good measure for a nonlinear relationship
between two random variables, which often occurs in
practical engineering applications.

Unlike Pearson’s rho, Kendall’s tau does not assume
that the relationship between two random variables
is linear. Since the Kendall’s tau measures the cor-
respondence of rankings between correlated random
variables, it is called a rank correlation coefficient. The
Kendall’s tau was first introduced by Kendall (1938)
and is defined as

τ = 4
∫ ∫

I2
C (u, v |θ ) dC (u, v) − 1 (4)

where I2 = I × I (I = [0, 1]), and u = FX1 (x1) and v =
FX2 (x2) are marginal CDFs of X1 and X2. Equation (4)
is the population version of Kendall’s tau. The sample
version of Kendall’s tau is

t = c − d
c + d

= (c − d)/

(
ns
2

)
(5)

where c represents the number of concordant pairs, d
is the number of discordant pairs, and ns is the number
of samples. Using the estimated Kendall’s tau, the cor-
relation parameter of the copula, θ , can be calculated
because Kendall’s tau can be expressed as a function of
the correlation parameter as shown in (4). The explicit
functions of (4) for some copulas are presented in
Table 1. More detailed information on Kendall’s tau is
presented by Kruskal (1958).

2.3 Commonly used copulas

There are various types of copulas, such as the elliptical
copula and the Archimedean copula. In this section,

Table 1 Kendall’s tau and its domain

Copula τ = g(θ) τ ∈ �τ

Clayton 1 − 2

2 + θ
(0, 1]

AMH 1 − 2

3

(θ − 1)2 ln (1 − θ) + θ

θ2
[−0.181726, 1/3]

Gumbel 1-θ−1 [0, 1]

Frank 1 − 4

θ

(
1 − 1

θ

∫ θ

0

t
et − 1

dt
)

[−1, 1]\{0}

A12 1 − 2

3θ
[1/3, 1]

A14 1 − 2

1 + 2θ
[1/3, 1]

FGM 2θ /9 [−2/9, 2/9]
Gaussian

2

π
arcsin θ [−1, 1]

Table 2 Copula functions and their parameter domains

Copula C(u, v |θ) θ ∈ �θ

Clayton
(
u−θ + v−θ − 1

)−1/θ (0, ∞)

AMH uv
/

[1 − θ (1 − u) (1 − v)] [−1, 1)

Gumbel exp
{
− [

(− ln u)θ + (− ln v)θ
]1/θ

}
[1, ∞)

Frank − 1

θ
ln
[
1 + (

e−θu − 1
) (

e−θv − 1
)
/
(
e−θ − 1

)]
(−∞, ∞)

A12

{

1 +
[(

u−1 − 1
)θ +

(
v−1 − 1

)θ
]1/θ

}−1

[1, ∞)

A14

{

1 +
[(

u−1/θ − 1
)θ +

(
v−1/θ − 1

)θ
]1/θ

}−θ

[1, ∞)

FGM uv + θuv (1 − u) (1 − v) [−1, 1]

Gaussian
∫ �−1(u)

−∞

∫ �−1(v)

−∞

exp
(

2θsw−s2−w2

2(1−θ2)

)

2π
√

1 − θ2
dsdw [−1, 1]

the Gaussian copula, which belongs to an elliptical
copula family, and several Archimedean copulas, such
as Clayton, Ali-Mikhail-Haq (AMH), Gumbel, Frank,
A12, and A14, are introduced as shown in Table 2.

The Gaussian copula is defined as the joint
Gaussian CDF of standard Gaussian variables
�−1 (u1) , . . . , �−1 (un) as

C� (u1, · · · , un |P )

= �P
(
�−1 (u1) , . . . , �−1 (un) |P)

, u ∈ In (6)

where ui = FXi (xi) is the marginal CDF of Xi for i =
1, . . . , n, and P is the covariance matrix consisting of
correlation coefficients, Pearson’s rho, between cor-
related input variables. �(·) represents the marginal

standard Gaussian CDF, �(x) = 1√
2π

exp
(
− x2

2

)
, and

�P(·) is the joint Gaussian CDF defined as �P(x) =
1

(2π)n/2 exp
[
− 1

2 (x − μ)T (P)−1 (x − μ)
]

for x = [x1, . . . ,

xn]T with a mean vector μ = [μ1, . . . , μn]T . If the mar-
ginal CDFs are Gaussian, then the joint CDF modeled
by the Gaussian copula is the joint Gaussian CDF.

An Archimedean copula is constructed in a com-
pletely different way from the Gaussian copula. An im-
portant component of constructing Archimedean cop-
ulas is a generator function ϕθ with θ . For example, the
generator function of the Clayton copula is ϕθ (t) = tθ −
1. If ϕθ is a continuous and strictly decreasing function
from [0,1] to [0,∞) such that ϕθ (0) = ∞ and ϕθ (1) = 0
and the inverse ϕ−1

θ is completely monotonic on [0,∞),
then the Archimedean copula can be defined as

C (u1, · · · , un |θ ) = ϕ−1 [ϕθ (u1) + · · · + ϕθ (un)] (7)

Each Archimedean copula has a corresponding unique
generator function, and the generator function provides
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a multivariate copula, as shown in (7). Once the gen-
erator function is provided, Kendall’s tau can be ob-
tained as

τ = 1 + 4
∫ 1

0

ϕθ (t)
ϕ′

θ (t)
dt (8)

The Archimedean copula can have a multivariate
CDF, but it is hard to expand to an n-dimensional
copula because, as shown in (7), it has one generator
function and thus has only one correlation parameter
even if n variables are correlated. Therefore, most
copula applications consider bivariate data. For multi-
variate data, the data are analyzed pair by pair using
the bivariate copula. This paper also considers only the
bivariate copula and paired samples.

3 Methods for identification of marginal CDFs

The two most commonly used methods that determine
a marginal CDF for the given data are the GOF test
and the Bayesian method. The GOF test has been
developed and widely used to identify the marginal
CDF and calculate its parameters, such as mean and
standard deviation. However, since the GOF test re-
lies on the parameters estimated from samples, if the
parameters are incorrectly estimated, then the wrong
marginal CDF might be identified. On the other hand,
since the Bayesian method calculates weights to iden-
tify the marginal CDF by integrating the likelihood
function over the parameter, it is less dependent on the
estimation of the parameter than the GOF test. Thus,
the Bayesian method is preferred over the GOF test.

3.1 Goodness-of-fit test

The most natural way of checking the adequacy of a
hypothesized CDF is to compare the empirical CDF
and the hypothesized CDF. There are several types
of GOF tests: Chi-square, Cramér-von Mises, and
Kolmogorov–Smirnov (K-S), etc. The Chi-square test,
which compares the difference between the empirical
PDF and the hypothesized PDF, requires sufficient
data, so that it can be used only for a large number
of data. The Cramér–von Mises test is based on the
integrated difference between an empirical CDF and
a hypothesized CDF, weighted by the hypothesized
PDF. The Cramér–von Mises test is known as a more
powerful method than the K-S test, but its application
is limited to the symmetric and right-skewed CDFs,
unlike the K-S test, which is applicable to all types of
CDFs (Cirrone et al. 2004). Thus, in this paper, the K-S
test is compared with the Bayesian method.

The K-S test compares the empirical CDF and the
hypothesized (or theoretical) CDF as

Dn = max
x

|FX (x) − Gn (x)| (9)

where FX(x) and Gn(x) are the hypothesized CDF and
the empirical CDF, respectively. Since Dn is a mathe-
matically random variable, the CDF of Dn is related to
a significance level α as

P
(
Dn ≤ Dα

n

) = 1 − α (10)

for the confidence level, 1 − α. Dα
n is a critical value

obtained from a standard mathematical table presented
by Haldar and Mahadevan (2000). The maximum dif-
ference between FX(xi) and Gn(xi) of the ith sample xi

for i = 1, . . . , ns is calculated as

Dmax
n = max

1≤i≤ns
|FX (xi) − Gn (xi)| (11)

If the maximum difference Dmax
n calculated from sam-

ples is smaller than Dα
n , the null hypothesis that the

given samples come from the hypothesized CDF is
accepted; otherwise, it is rejected. Likewise, a p-value
can be used as a measure to test the null hypothesis.
The p-value is a measure of how much evidence we
have against the null hypothesis, and is calculated as a
Kolmogorov CDF value of Dmax

n in the K-S test. If the
p-value is larger than α, then the null hypothesis is ac-
cepted; otherwise, it is rejected. The larger the p-value,
the more strongly the test accepts the null hypothesis.
Much like the Bayesian method uses calculated weights
of candidate marginal CDFs to identify a marginal
CDF, which will be explained in Section 3.2, the K-
S test uses calculated p-values of candidate marginal
CDFs to identify a marginal CDF in this paper. Accord-
ingly, using the calculated p-values, a marginal CDF
with the highest p-value among candidates is selected
as the best fitted marginal CDF in the K-S test.

3.2 Bayesian method

In this paper, the Bayesian method is used to identify
the correct marginal CDF from candidate CDFs by
calculating the weights of the candidate CDFs to select
the one with the highest weight. Consider a finite set
sq ⊂ s consisting of candidate marginal CDFs Mk, k =
1, . . . , q, where s is a set of all marginal CDFs and q
is the number of the candidate marginal CDFs. The
Bayesian method consists of defining q hypotheses:

hk: The data come from the marginal CDF Mk, k = 1,
. . . , q.
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Table 3 Mean and variance

Distribution μ and σ 2

Gaussian μ, σ 2

Weibull μ = a� (1 + 1/b) , σ 2 = a2� (1 + 2/b) − μ2

Gamma μ = ab , σ 2 = ab2

Lognormal μ = ea+b2/2, σ 2 = (eb2 − 1)e2a+b2

Gumbel μ = a + 0.5772b , σ 2 = b2π2/6
Extreme μ = a − 0.5772b , σ 2 = b2π2/6
Extreme type-II μ = b�(1 − 1/ a),

σ 2 = b2[�(1 − 2/b) − �2(1 − 1/b)]

The probability of each hypothesis hk given the data
D is defined as

Pr (hk |D, I ) = Pr (D |hk, I ) Pr (hk |I )

Pr (D |I )
(12)

where Pr(D|hk,I) is the likelihood function, Pr(hk|I)
is the prior on the marginal CDF, and Pr(D|I) is the
normalization constant with any relevant additional
knowledge I. The additional knowledge I is explained
in detail in Section 3.2.2.

3.2.1 Likelihood function

Under the hypothesis hk that the data D come from the
marginal CDF Mk, the probability of drawing the data
D for the hypothesis on Mk is expressed as a likelihood
function as

Pr (D |hk, μ, σ, I ) =
ns∏

i=1

fk (xi |a (μ, σ ) , b (μ, σ )) (13)

where xi is the ith sample value. Since each marginal
PDF fk has its own parameters a and b , common
parameters, such as mean or standard deviation, need
to be used. For most marginal CDFs, their own para-
meters (a and b) are expressed as functions of mean
and standard deviation as shown in Table 3, and thus
the likelihood function can be expressed in terms of
mean and standard deviation for the given samples. In
Table 3, the domains of mean for Gaussian, Gumbel,
and Extreme type-II distributions have �μ = (−∞, ∞)

and those for other distributions have �μ = (0, ∞). All
distributions have the same domain of the standard
deviation, �σ = (0, ∞).

Introducing the mean or standard deviation as the
nuisance variable, (12) can be rewritten as

Pr (hk |D, I )

=
∫ ∞

−∞
Pr (hk, μ, σ |D, I ) dμ

=
∫ ∞

−∞
Pr (D|hk, μ, σ, I) Pr(hk |μ, I ) Pr (μ |I )

Pr (D |I )
dμ (14)

or

Pr (hk |D, I )

=
∫ ∞

0
Pr (hk, μ, σ |D, I ) dσ

=
∫ ∞

0

Pr (D |hk, μ, σ, I ) Pr (hk |σ, I ) Pr (σ |I )

Pr (D |I )
dσ

(15)

In (14), Pr(hk, μ, σ |D, I) is a function of mean with
the standard deviation calculated from samples. Con-
versely, in (15), Pr(hk, μ, σ |D, I) is a function of stan-
dard deviation with the mean calculated from samples.
To calculate (12), (13) is used as the likelihood function,
and the candidate marginal CDFs in the set sq are
Gaussian, Weibull, Gamma, Lognormal, Gumbel, Ex-
treme, and Extreme Type II in this paper. The formulas
of candidate marginal PDFs are shown in Table 4 with
domains �a and �b of parameters a and b , respectively.

3.2.2 Priors

Let the additional information I be as follows:

I1: Mean or standard deviation belongs to the set μ

or σ , respectively, and each estimated μ ∈ μ or
σ ∈ σ is equally likely;

I2: For given μ or σ , all marginal CDFs satisfying μ ∈
�

μ

k or σ ∈ �σ
k are equally probable, where �

μ

k and
�σ

k are domains of μ and σ for the marginal CDF
Mk.

The set μ or σ provides information on the inter-
val of mean or standard deviation, respectively, that the
user might know. For example, if the user knows the
specific domain of μ or σ , the domain can be used
to integrate the likelihood function for calculation of
the weights of each candidate marginal CDF. However,
if information on the specific domain of μ or σ is
not known, it can be assumed that μ = (−∞, ∞) or
σ = (0, ∞). In that case, the infinite domain cannot
practically be used to integrate the likelihood function,
and thus a finite range of μ or σ needs to be de-
termined from samples such that μ or σ cover the
wide range of the parameter. Using the first additional
information I1, the prior on μ or σ can be defined as

Pr (μ| I1) =
⎧
⎨

⎩

1

λ (μ)
, μ ∈ μ

0, μ /∈ μ
(16)

or

Pr (σ | I1) =
⎧
⎨

⎩

1

λ (σ )
, σ ∈ σ

0, σ /∈ σ
(17)
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Table 4 Marginal PDFs and
domains of parameters

Distribution f (x | a, b) a ∈ �a b ∈ �b

Gaussian
1

b
√

2π
exp

[

−1

2

(
x − a

b

)2
]

(−∞, ∞) (0, ∞)

Weibull
b
a

( x
a

)b−1
exp

[
−
( x

a

)b
]

(0, ∞) (0, ∞)

Gamma xa−1 exp
[−x

/
b
]

� (a) ba (0, ∞) (0, ∞)

Lognormal
1

b x
√

2π
exp

[

−1

2

(
ln x − a

b

)2
]

(−∞, ∞) (0, ∞)

Gumbel
1

b
exp

[
− x − a

b
− exp

[
− x − a

b

]]
(−∞, ∞) (0, ∞)

Extreme
1

b
exp

[
x − a

b
− exp

[
x − a

b

]]
(−∞, ∞) (0, ∞)

Extreme type-II
a
b

[
b
x

]a+1

exp

[
−
(

b
x

)a]
(−∞, ∞) (0, ∞)

where λ(·) is the Lebesgue measure, which is the in-
terval length of μ or σ . Likewise, since all marginal
CDFs are equally probable for μ ∈ �

μ

k or σ ∈ �σ
k , the

prior on the marginal CDF, Mk, is defined as

Pr (hk |μ, I2 ) =
{

1, μ ∈ �
μ

k
0, μ /∈ �

μ

k
(18)

or

Pr (hk |σ, I2 ) =
{

1, σ ∈ �σ
k

0, σ /∈ �σ
k

(19)

In this paper, it is assumed that the prior follows a uni-
form distribution, which means there is no information
on the distribution of μ or σ . If it is known that the prior
of μ or σ follows a specific distribution, Pr(μ) or Pr(σ )
might be expressed as a PDF and can be used as the
prior instead of (16) or (17). However, since the prior of
μ or σ is usually unknown and the effect of the prior is
negligible when the number of samples is enough (i.e.,
larger than 100 samples), (16) or (17) can be used in
most cases.

3.2.3 Normalization of weights

Substituting (13) and (16)–(19) into (14) and (15), (14)
and (15) can be rewritten as

Pr (hk |D, I ) =
∫
�

μ

k ∩μ

ns∏

i=1
fk (xi |a (μ, σ ) , b (μ, σ ))dμ

λ (μ) Pr ( D| I)

(20)

or

Pr (hk |D, I ) =
∫
�σ

k ∩σ

ns∏

i=1
fk (xi |a (μ, σ ) , b (μ, σ ))dσ

λ (σ ) Pr ( D| I)

(21)

In (20) and (21), Pr(D|I) can be expressed as

Pr (D |I ) =
q∑

k=1

Pr (D |hk, I ) Pr (hk |I ) (22)

Since Pr(D|I) is a constant, for convenience, it is not
included to calculate weights in this paper. Accordingly,
(20) and (21) can be expressed as

Wk = 1

λ (μ)

∫

�
μ

k ∩μ

ns∏

i=1

fk (xi |a (μ, σ ) , b (μ, σ ))dμ

(23)
or

Wk = 1

λ (σ )

∫

�σ
k ∩σ

ns∏

i=1

fk (xi |a (μ, σ ) , b (μ, σ ))dσ

(24)

The normalized weight for the marginal CDF Mk is
calculated as

wk = Wk
q∑

i=1
Wi

(25)

In the Bayesian method for identifying the marginal
CDF, there are two approaches that use mean or stan-
dard deviation as variables for calculating normalized
weights, and thus it might be necessary to select one
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Table 5 Averaged normalized weights over 100 trials using two
Bayesian approaches

Original distribution ns μ = 2 μ = 10
Mean Std. Mean Std.

Gaussian 30 0.300 0.273 0.264 0.232
100 0.462 0.454 0.347 0.308
300 0.731 0.702 0.427 0.389

Weibull 30 0.328 0.261 0.300 0.310
100 0.544 0.484 0.495 0.477
300 0.706 0.705 0.636 0.573

Gamma 30 0.240 0.213 0.246 0.200
100 0.410 0.322 0.339 0.301
300 0.750 0.617 0.347 0.337

Lognormal 30 0.240 0.233 0.253 0.200
100 0.362 0.362 0.332 0.291
300 0.597 0.558 0.399 0.383

Gumbel 30 0.230 0.224 0.308 0.327
100 0.395 0.388 0.465 0.440
300 0.636 0.590 0.651 0.616

Extreme 30 0.552 0.602 0.374 0.403
100 0.885 0.927 0.497 0.527
300 0.993 1.000 0.584 0.565

Extreme type-II 30 0.481 0.586 0.338 0.392
100 0.778 0.787 0.465 0.516
300 0.875 0.916 0.605 0.669

method. To compare the performance of the two ap-
proaches, averaged normalized weights over 100 trials
are used.

Let “Mean” and “Std.” be the methods using mean
and standard deviation, respectively, as variables for
the calculation of weights. Table 5 shows the averaged
normalized weights for different means and for differ-
ent samples when Gaussian, Weibull, Gamma, Lognor-
mal, Gumbel, Extreme, and Extreme Type II are the
original CDFs. The larger the normalized weights, the
better identified each original CDF is. When Gaussian,
Weibull, Gamma, Lognormal, and Gumbel are the
original CDFs, the normalized weights using “Mean”
are slightly better than those using “Std.” On the other
hand, when Extreme and Extreme Type II are the
original CDFs, the normalized weights using “Std.” are
slightly better than those using “Mean.” For all cases,
since one method is not always better than the other
approach and the normalized weights calculated from
two approaches are similar, both approaches can be
used. However, “Mean” is better than “Std.” in more
cases, so “Mean” is used in this paper.

3.3 Comparison of two methods

It is stated that the Bayesian method performs better
in identifying the correct marginal CDF than the GOF

test, but it is still valuable to compare the two methods
numerically.

Consider a set of random data with a different num-
ber of samples: ns = 30, 100, and 300, given that the
original distribution is Gamma with GM (400, 0.025).
The Gaussian, Weibull, Gumbel, Lognormal, Extreme,
and Extreme Type II are selected as candidate distribu-
tions. All parameters of each CDF are calculated from
μ = 10.0 and σ = 0.5 using Table 3. The PDF shapes of
the candidate distributions are shown in Fig. 1. In the
GOF test, p-values are calculated and used to test the
null hypothesis of each candidate CDF. In the Bayesian
method, normalized weights are calculated to identify
the correct CDF. To compare the two methods, the p-
value and normalized weights should be comparable,
but they are not. The p-value is the probability of
obtaining a value of the test statistic (Dn) at least as
extreme as the actually observed value, given that the
null hypothesis is true. On the other hand, it is not the
probability of the hypothesis (Sterne and Smith 2000)
from which the normalized weights originate. Thus,
instead of directly using two values, it might be better
to observe how many p-values and normalized weights
are assigned to correct marginal CDF or CDFs with
shapes similar to the correct one.

Table 6 shows the sum of p-values and normalized
weights over 100 trials when both methods are used.
For a small number of samples, such as 30, the Bayesian
method assigns most normalized weights to Gaussian,
Gamma, and Lognormal distributions because the PDF
shapes of Gaussian and Lognormal are very close to
Gamma for the given mean μ = 10, as shown in Fig. 1.
On the other hand, the GOF test assigns p-values to all
candidate distributions almost evenly, which means the

Fig. 1 Marginal PDFs for μ = 10.0 and σ = 0.5
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Table 6 Comparison of GOF with Bayesian method for identifi-
cation of gamma marginal CDF

Distribution ns = 30 ns = 100 ns = 300
GOF Bay. GOF Bay. GOF Bay.

Gaussian 16.3 24.1 21.9 32.9 29.3 31.0
Weibull 13.1 8.59 10.4 1.12 3.29 0.00
Gamma 16.4 24.6 22.0 33.0 30.8 34.2
Lognormal 16.5 24.7 21.9 32.4 30.7 34.8
Gumbel 13.4 7.46 9.78 0.42 3.01 0.00
Extreme 12.2 6.08 8.01 0.20 1.56 0.00
Extreme type II 12.0 4.45 5.97 0.00 1.39 0.00

GOF test does not identify correct CDFs for a small
number of samples. Further, since the p-values of all
distributions are larger than 5 for a given significance
level, 5%, the GOF test accepts all distributions as
correct even though the PDF shapes of Weibull, Gum-
bel, Extreme, and Extreme Type II are quite different
from Gamma (original), as shown in Fig. 1. For a
large number of samples, such as 300, the GOF test
correctly identifies Gaussian, Gamma, and Lognormal
CDFs. Still, the Bayesian method shows better perfor-
mance than the GOF tests in this example. It might
be some concern that the normalized weight of the
original distribution is still not high, even for a large
number of samples. However, the PDF shapes of those
distributions are almost identical even at the tail end,
which lead to similar RBDO results. Thus, it does not
matter which of the three distributions is selected for
this example.

4 Methods for identification of copulas

Just as two methods—the GOF test and the Bayesian
method—can be used to identify marginal CDFs, two
methods can be used to identify the correct copula.

4.1 Goodness-of-fit test

The GOF test compares the empirical copula Cns cal-
culated from the given ns samples and a theoretical
copula Cθns with some parameter θns calculated from
the data. The GOF test for identification of copula
can be carried out by using the parametric bootstrap
(Genest and Rémillard 2005). Using the Cramér–von
Mises statistic Sns, the null hypothesis H0 (that is, the
data follow a specific copula type Ck) can be tested by

Sns =
ns∑

i=1

{
Cns

(
Ûi

)
− Cθns

(
Ûi

)}2
(26)

where Ûi = Ri/(ns + 1) for i = 1, . . . , ns is the empirical
marginal CDF value, and Ri = [Ri1, . . ., Rin]T is the
rank of the samples for X1, . . . , Xn, and the empirical
copula is defined as

Cns (u) = 1

ns

ns∑

i=1

1
(

Ûi ≤ u
)
, u ∈ [0, 1]n (27)

where 1
(

Ûi ≤ u
)

indicates “1” if Ûi ≤ u; otherwise, it
is “0”. After obtaining the Cramer–von Mises statistic
Sns from the samples, the empirical copula C∗

ns,k and the
Cramér–von Mises statistic S∗

ns,k need to be repeatedly
estimated for every k = 1, . . . , N where N is a large
number (e.g., 1,000–10,000).

As a result, an approximate p-value for the test
based on the Cramer–von Mises statistic Sns is given by

p = 1

N

ns∑

k=1

1
(
S∗

ns,k > Sns
)

(28)

where 1
(
S∗

ns,k > Sns
)

indicates “1” if S∗
ns,k > Sns; other-

wise, it is “0”. For some significance levels, such as 5%,
according to the p-value, the null hypothesis H0 might
be accepted or rejected. When the number of random
variables is larger than three, a two-level parametric
boot strap similar to the previously described one-level
boot strap needs to be used. The detailed algorithm is
implemented by Genest and Rémillard (2005).

In recent years, various other GOF tests have been
developed. For Archimedean copulas, a GOF test
statistic that compares the one-dimensional empirical
function Kns and the theoretical function Kθns is pro-
posed as (Genest and Rivest 1993; Genest and Favre
2007)

K (t) = √
ns

{
Kns (t) − Kθns (t)

}
(29)

where Kθ (t) = Pr (C (u, v |θ ) < t) and Kns (t) =
1

ns

ns∑

k=1
1
(
Vk,ns ≤ t

)
with Vk,ns = 1

ns

ns∑

j=1
1
(
R1 j ≤ R1k,

R2 j ≤ R2k
)
. As in the previous parametric bootstrap,

using another type of the statistic K, the p-value can
be calculated.

The GOF tests suggest a way to identify the cor-
rect copula, but it depends on the estimation of the
correlation parameter θns. Further, for the second
method, since the function K is explicitly expressed
only for Archimedean copulas, it cannot be used for
non-Archimedean copulas because the function K can-
not be algebraically formulated for non-Archimedean
copulas (Genest and Rémillard 2005).
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4.2 Bayesian method

Just as the Bayesian method is used to identify the
correct marginal CDFs, it can also be used to identify
the correct copula by calculating the weights of the
candidate copulas to select the one with the highest
weight. To calculate the normalized weights, Kendall’s
tau is used as the variable for integrating the likelihood
function.

Let a finite set SQ ⊂ S consist of candidate copulas
Ck, k = 1, . . . , Q where S is a set of all copulas and Q
is the number of the candidate copulas. The Bayesian
method consists of defining Q hypotheses (Huard et al.
2006):

Hk: The data come from copula Ck, k = 1, . . . , Q.

The probability of each hypothesis Hk given the data D
is defined as

Pr (Hk |D, I ) = Pr (D |Hk, I ) Pr (Hk |I )

Pr (D |I )
(30)

where Pr(D|Hk, I) is the likelihood function, Pr(Hk|I)
is the prior on the copula family, and Pr(D|I) is the
normalization constant with any relevant additional
knowledge I, which will be explained in Section 4.2.2.

4.2.1 Likelihood function

Under the hypothesis Hk that the data D come from the
copula Ck, the probability of drawing the data D for the
hypothesis on Ck is expressed as a likelihood function
as

Pr (D |Hk, τ, I ) =
ns∏

i=1

ck (ui, vi |θ ) (31)

where (ui, vi) are ns mutually independent pairs of
the data and calculated as ui = FX(xi) and vi = FY(yi),
where FX(xi) and FY(yi) are the marginal CDF values
obtained from the given paired data (xi, yi). Since it
is assumed that the data D come from the copula
Ck, the probability of drawing D from the copula Ck

(likelihood function) is expressed as a copula density
function ck. The paired data are independent of each
other, so that the likelihood function is expressed as
multiplications of the copula density function values
evaluated at all the data. Since each copula Ck has its
own correlation parameter θ , a common correlation
measure, Kendall’s tau, needs to be used. Using the
relationship between the parameter and Kendall’s tau
τ = gk(θ) for k = 1, . . . , Q, as shown in Table 1, the
correlation parameter can be expressed as θ = g−1

k (τ ).

Using the Kendall’s tau as the nuisance variable, (30)
can be rewritten as (Huard et al. 2006)

Pr (Hk |D, I )

=
∫ 1

−1
Pr (Hk, τ |D, I ) dτ

=
∫ 1

−1

Pr (D |Hk, τ, I ) Pr (Hk |τ, I ) Pr (τ |I )

Pr (D |I )
dτ (32)

where (31) is used as the likelihood function and
the candidate copulas in the set SQ are Clayton,
AMH, Gumbel, Frank, A12, A14, Farlie–Gumbel–
Morgenstern (FGM), Gaussian, and independent.

4.2.2 Priors

Let the additional information I on the copula be as
follows:

I1: Kendall’s tau belongs to the set τ , and each
estimated τ ∈ τ is equally likely;

I2: For a given τ , all copula families satisfying τ ∈ �τ
k

are equally probable, where �τ
k is the domain of τ

for Ck.

The set τ provides information on the interval of
Kendall’s tau that the user might know. For example,
based on the user’s experience, it might be known
that the range of Kendall’s tau estimated between two
interesting variables can have only a positive range
τ = [0, 1]. However, if information on the correlation
parameter between variables is not known, it can be
assumed as τ = [−1, 1]. Using the first additional in-
formation I1, the prior on τ can be defined as (Huard
et al. 2006)

Pr (τ | I1) =
{ 1

λ(τ )
, τ ∈ τ

0, τ /∈ τ
(33)

where λ(·) is the Lebesgue measure, which is the inter-
val length of τ .

Likewise, since all copula families are equally proba-
ble for τ ∈ �r

k, the prior on the copula family is defined
as

Pr (Hk |τ, I2 ) =
{

1, τ ∈ �τ
k

0, τ /∈ �τ
k

(34)

If it is known that the prior distribution of τ follows
a certain distribution, Pr(τ ) might be expressed as a
specific distribution and can be used as the prior instead
of (33). However, the prior of τ is usually unknown, so
that (33) is commonly used in practical applications.
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Table 7 Comparison of GOF test with Bayesian method for
identification of copula

Copula ns = 30 ns = 100 ns = 300
GOF Bay. OF Bay. GOF Bay.

Clayton 17.5 39.7 34.8 53.4 41.7 68.0
Gumbel 13.4 5.55 0.39 0.00 0.00 0.00
Gaussian 16.3 9.95 0.07 2.13 0.00 0.00
Frank 16.2 9.81 2.58 2.45 0.00 0.00
A12 18.2 20.1 31.0 25.9 34.9 21.6
A14 18.3 14.9 30.5 16.0 23.3 10.4

4.2.3 Normalization of weights

Substituting (31), (33), and (34) into (32), (32) can be
rewritten as

Pr (Hk |D, I ) =
∫
�τ

k∩τ

ns∏

i=1
ck

(
ui, vi

∣
∣g−1

k (τ )
)

dτ

λ (τ ) Pr ( D| I)
(35)

where Pr(D|I) is expressed as (Huard et al. 2006)

Pr (D |I ) =
Q∑

l=1

Pr (D |Hk, I ) Pr (Hk |I ) (36)

In this paper, since Pr(D|I) is a constant, it is not in-
cluded for convenience. Accordingly, the computation
of (35) can be expressed as the computation of the
weights as

Wk = 1

λ (τ )

∫

�τ
k∩τ

ns∏

i=1

ck
(
ui, vi

∣
∣g−1

k (τ )
)
dτ (37)

The normalized weight of Ck is calculated as

wk = Wk

Q∑

i=1
Wk

(38)

Since the Bayesian method selects one marginal
CDF or copula that best describes the given data among
candidates, the identified marginal CDF, or copula
might not be the correct one. On the other hand, since
some commonly used marginal CDFs are known and
the total number of marginal CDF types is not large, it
is easy to determine the candidate marginal CDFs and
identify a correct CDF among them. However, since
there exist plenty of copula types, it might be possible
that the data come from an unknown copula that is not
among the given candidate copulas. A way of solving
this problem is presented by Bretthorst (1996).

4.3 Comparison of two methods

Just as the GOF test and the Bayesian method are
compared for identification of marginal CDFs, two
methods for identification of copulas are compared
in this section. Consider a set of random data with
a different number of samples: ns = 30, 100, and 300
for the original copula as Clayton with τ = 0.4 where
Clayton, Gumbel, Gaussian, Frank, A12, and A14 are
selected as candidate copulas.

Table 7 shows the sum of p-values and normalized
weights over 100 trials. As shown in the table, for a
small number of samples, the Bayesian method assigns
39.7 to the Clayton copula, which is the original copula,
whereas the GOF test assigns only 17.5 to the correct
copula. Further, the Bayesian assigns the normalized
weights according to the similarity of the copula shape,
i.e., A12 is the most similar with Clayton, A14 is the
second most similar, and so on.

On the other hand, the GOF test accepts all can-
didate copulas as correct copulas on the average (p-
values are larger than 5), even though some copulas
such as Gumbel have very distinct shapes with the
Clayton copula. As the number of samples is increased
to 300, the performance of the GOF test is improved,
but the Bayesian method is still better than the GOF
test at identifying the copula in this example.

5 Effectiveness of Bayesian method

In this section, the effectiveness of the Bayesian
method for identification of marginal CDFs and cop-
ulas is studied for different numbers of samples.

5.1 Identification of marginal CDF

Given Gaussian, Weibull, Gamma, Lognormal, Gum-
bel, Extreme, and Extreme type II CDFs, the Bayesian
method is tested to identify original CDFs using nor-
malized weights over 100 trials where the number of
samples is 30, 100, and 300. Figure 2 shows the sum of
normalized weights over 100 trials for different num-
bers of samples when original CDFs, indicated by boxes
on the name of the marginal CDFs, are given with μ =
2.0 and σ = 0.5. For example, when the Gaussian CDF
is original, samples are randomly generated from the
Gaussian CDF 100 times. Using the Bayesian method,
the normalized weights can be calculated from the 100
data set. Adding up the normalized weights over 100
trials, the sum of normalized weights is approximately
30 for Gaussian, 25 for Weibull, and 45 for the rest
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Fig. 2 Sum of normalized weights over 100 trials for μ = 2.0 and
σ = 0.5

of the CDFs when ns = 30. Since the PDF shapes of
Gaussian and Weibull CDFs are similar, as shown in
Fig. 3, the Weibull distribution has the second highest
sum of normalized weight among candidate marginal
CDFs. Likewise, when Weibull is the original CDF, the
Gaussian distribution has the second highest sum of
normalized weight. On the other hand, when the CDFs
with distinct PDF shapes such as Extreme and Extreme
Type II are original, it is much easier to identify the
original CDF.

Fig. 3 Marginal PDFs for μ = 2.0 and σ = 0.5

Fig. 4 Sum of normalized weights over 100 trials for μ = 10.0
and σ = 0.5

When μ = 2.0 is changed to 10.0 with the same σ =
0.5, the PDF shapes become different than those shown
in Fig. 3. Figure 4 shows the sum of normalized weights
over 100 trials when μ = 10.0 and σ = 0.5. For the
CDFs with distinct PDF shapes, such as Weibull, Gum-
bel, Extreme, and Extreme Type II, it is easy to identify
the correct CDF. However, when Gaussian, Gamma,
and Lognormal Distributions are original, since the
Gaussian, Gamma, and Lognormal CDFs are almost
identical even at the tail ends, as shown in Fig. 1, it is
difficult to identify the correct CDF among three CDFs,
and their normalized weights are rather similar to each
other even if the number of samples is increased to 300.
The similar PDF shapes provide similar RBDO results,
so that it does not matter which of the three CDFs is
selected in this case.

On the other hand, since the identified distribution
generally fits to the given data, its tail behavior might
be different from the one of the original CDF partic-
ularly when the number of samples is small. If the tail
behavior of the identified distribution is quite different
from the one of the original distribution, different tail
behaviors yield different contours for a target reliability
index, which lead to different RBDO results. In practi-
cal applications, since experimental data is very limited,
it could be hard to select a distribution that has the
same tail as the original distribution. For this, RBDO
with a confidence level of the input model uncertainty
is currently being investigated so that reliable optimum
designs can be obtained.
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Fig. 5 PDF contours and scatter plots of samples (ns = 600) for Clayton, AMH, Gumbel, Frank, FGM, and Gaussian with τ = 0.2

5.2 Identification of copula

In this study, different values of Kendall’s tau, i.e., τ =
0.2, and 0.7, are used to study the effect of Kendall’s tau
on identification of the correct copulas. The candidate
copulas are selected as Clayton, AMH, Gumbel, Frank,
A12, A14, FGM, Gaussian, and an independent copula,
which can be expressed as the multiplication of mar-
ginal CDFs, C(u, v) = uv. Figures 5 and 6 show the PDF
contour and sum of normalized weights over 100 trials
when the original copula, which is indicated by a box on
the name of each copula for τ = 0.2. Likewise, Figs. 7
and 8 show the PDF contour and sum of normalized
weights for τ = 0.7.

For small correlation coefficients such as τ = 0.2,
since the PDF contours of most copulas are similar
to each other, except Clayton and Gumbel, as shown
in Fig. 5, it is not simple to identify the correct one.
For instance, even though the original copula is AMH,
the normalized weights of incorrect copulas such as
the independent copula are high, especially for a small
number of samples, ns = 30 as shown in Fig. 6. There-
fore, a large number of samples is generally required

Fig. 6 Sum of normalized weights over 100 trials for τ = 0.2 and
ns = 30, 300, and 600
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Fig. 7 PDF contours and scatter plots of samples (ns = 300) for Clayton, Gumbel, Frank, A12, A14, and Gaussian with τ = 0.7

to identify a correct copula when the Kendall’s tau is
small.

When the correlation between two variables is more
significant, e.g., τ = 0.7, it is easier to identify the cor-
rect copula because the copula shapes are quite distinct
from each other, as shown in Fig. 7. Accordingly, the
correct copula can be easily identified with the highest
normalized weight seen in Fig. 8.

In RBDO problems, if the shape of the selected
copula is significantly different from the true copula—
especially for high correlation—a wrong RBDO result
will be obtained. For instance, if the Clayton copula is
the original copula, and other copulas such the Frank
or Gaussian are wrongly selected, the RBDO result
will be very different from the true RBDO result (Noh
et al. 2007). However, if the correlation between input
variables is not high, copulas such as the AMH, Frank,
FGM, and Gaussian, which have similar copula shapes,
might provide quite similar RBDO results. Thus, 300
samples could be acceptable to identify the right cop-
ula even for small correlation coefficients. For large

correlation coefficients, 100, or even 30, samples could
be enough to identify correctly for copulas such as
Clayton, Gumbel, and Frank.

6 Examples

To show how the Bayesian method identifies marginal
CDFs and joint CDF, two problems are tested.

6.1 Mathematical example

Suppose that X1 ∼ LN(1.62, 0.08) and X2 ∼ N(5, 0.5)
with a joint CDF modeled by the Frank copula. The
Kendall’s tau is given as τ = 0.5. From the given mar-
ginal and joint CDFs, which are unknown, 100 samples
are generated to test the Bayesian method. A strategy
of generating the paired data from the given marginal
and joint CDF proceeds as follows:

First, U is randomly generated from a uniform dis-
tribution with an interval [0, 1]. Second, given U , V
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Fig. 8 Sum of normalized weights over 100 trials for τ = 0.7 and
ns = 30, 100, and 300

is calculated from a derivative of the copula func-
tion as

QU (V) = ∂C (U, V)

∂U
= W (39)

by setting V = Q−1
U (W) where W is randomly gener-

ated from a uniform distribution with an interval [0, 1],
which is independently generated from U . Employing
inverse CDFs of X1 and X2, X1 = F−1

X1
(U) and X2 =

F−1
X2

(V), paired samples are generated.

Fig. 9 Likelihood functions of μ for X1

Fig. 10 Likelihood functions of μ for X2

Using the generated 100 paired samples, the like-
lihood functions for candidate marginal distributions
for the first variable X1 are obtained. As shown in
Fig. 9, the lognormal CDF has the highest peak and
is widely spread, which means the normalized weight
of the lognormal CDF is the highest among candidate
marginal CDFs. Thus, the Bayesian method identifies
the lognormal CDF, which is the original CDF of X1,
as the correct marginal CDF. For the second variable
X2, as shown in Fig. 10, the likelihood function of μ for
the Gaussian CDF has the highest peak, which means
the Gaussian CDF has the highest normalized weights,
0.550 in Table 8. Thus, the Bayesian method correctly
identifies the original marginal CDF (Gaussian) of X2.

Using the identified marginal CDFs, a copula can
be identified using the Bayesian method. As shown
in Fig. 11, the Frank copula has the highest weight
among candidate copulas. Since the Frank copula has
a distinct PDF shape among candidate copulas, the
normalized weight is very high, 0.996 (Table 9), and
correctly identified. According to the PDF contour of
the Frank copula shown in Fig. 12, the Frank copula
well describes the given data.

Table 8 Normalized weights
of candidate marginal CDFs
for X1 and X2

Distribution X1 X2

Gaussian 0.166 0.550
Weibull 0.000 0.008
Gamma 0.378 0.285
Lognormal 0.449 0.158
Gumbel 0.007 0.000
Extreme 0.000 0.000
Extreme type-II 0.000 0.000
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Fig. 11 Likelihood functions of τ

In practical applications, since the true copula is
unknown, one of copulas that best describe the given
experimental data will be identified.

6.2 Strain fatigue life example

In fatigue problems, strain–life relationship is ex-
pressed as

�ε
′
f

2
= σ

′
f

E

(
2N f

)b + ε
′
f

(
2N f

)c (40)

where �ε
′
f is the strain amplitude, E is the Young’s

modulus, N f is the fatigue life, σ
′
f and b are the fatigue

strength coefficient and exponent, and ε
′
f and c are

fatigue ductility coefficient and exponent, respectively.
Figure 13 shows 29 data pairs of the fatigue strength
coefficient and exponent, and the fatigue ductility co-
efficient and exponent in 950X steel (Socie 2003). As
shown in Fig. 13a and b, σ

′
f and b , and ε

′
f and c are

highly negatively correlated.
Based on the given data, it is necessary to identify

marginal CDFs and a joint CDF. Since it is known that
σ

′
f and ε

′
f follow lognormal CDF and b and c follow

Gaussian CDF, identification of only the joint CDF is
necessary in this example. Since two pairs of variables

Table 9 Normalized weights of candidate copulas

Clayton AMH Gumbel Frank A12 A14 FGM Gauss

0.000 0.000 0.000 0.996 0.000 0.001 0.000 0.003

Fig. 12 100 Data and PDF contour

are highly negatively correlated, only the Frank and
Gaussian are selected as candidate copulas because
other copulas such as Clayton and Gumbel cannot have
negative correlation and some copulas such as AMH
and FGM can only have large negative correlation.
Using the Bayesian method, the Gaussian copula for
σ

′
f and b , and the Frank copula for ε

′
f and c are

identified based on the given marginal CDFs and data
as seen in Table 10 where the correlation coefficient be-
tween σ

′
f and b is calculated as −0.828 (Pearson’s rho)

and −0.906 (Kendall’s tau), respectively. As shown in
Fig. 13, the PDF contours of two identified copulas well
describe the given experimental data.

Since the number of given experimental data is small,
it is possible that the identified copulas may not be
correct. Further, even though the mean and standard
deviations of two variables are given in this example,
those parameters are usually obtained from the given
data. Accordingly, even if the copulas are correctly
identified, the estimated parameters could be signifi-
cantly erroneous. Therefore, the confidence level needs
to be implemented in the input model for RBDO.
Future research will address this issue.

For probabilistic life prediction, when variables are
so closely related, another option is to let one variable
be a function of the other variables, such as a linear
fit. The problem with this approach is that the data in
Fig. 13 cannot be properly fitted by linear functions.
In addition, the importance of correct modeling of a
joint CDF of correlated variables is stated by Annis
(2004) using the Paris equation relating crack growth
rate. Annis (2004) pointed out that the result, standard
deviation of the number of cycles, will be over corrected
and will thus underestimate the overall variability, and
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Fig. 13 Paired data obtained from 950X steel (Courtesy of
Professor Darrell Socie) and PDF Contours of Gaussian and

Frank Copula. a Fatigue Strength Coefficient
(
σ

′
f

)
and Exponent

(b). b Fatigue Ductility Coefficient
(
ε

′
f

)
and Exponent (c)

the right way is “. . . to correctly modeling the joint
behavior to reduce greater than 700% error in the
estimated of the standard deviation to about 1%” in his
example. Moreover, in RBDO, it is utmost important
to obtain reliable optimum designs. Thus, the linear or
nonlinear fit may not be a desirable approach since it
will lead to unreliable optimum designs.

Table 10 Normalized weights
of candidate copulas

Frank Gauss

σ
′
f , b 0.355 0.645

ε
′
f , c 0.607 0.393

7 Conclusions and future works

To carry out the RBDO, information about the input
variables, such as marginal and joint CDF types, needs
to be correctly identified, which is especially challeng-
ing when input variables are correlated and only limited
data are available. In this paper, a copula is utilized to
model the joint CDF of the correlated input variables
using limited information such as the marginal CDF
types (if they are known) and the given test data. Since
the correct identification of the copula is necessary to
model the correct joint CDF, the Bayesian method is
used to identify a copula that best describes the given
experimental data. The identification of marginal CDFs
is as important as the identification of the copula. Thus,
the Bayesian method is proposed for identification of
a correct marginal CDF. Since the Bayesian method
assigns normalized weights mostly to correct marginal
CDFs or copulas and to similar marginal CDFs or
copulas among candidates, it is more effective than the
GOF test.

However, the identified copulas could be wrong if
a very small number of samples is used. Even though
marginal CDFs and copulas are correctly identified, es-
timated parameters such as mean or standard deviation
from the limited data could yield inaccurate contours
of the target reliability index, which would lead to
wrong RBDO results. Thus, for future research, RBDO
with a confidence level, which alleviates the effect of
the wrong identification and quantification of marginal
CDFs and copulas, is being investigated.
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