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Abstract In the present paper we deduce formulae
for the shape and topological derivatives for elliptic
problems in unbounded domains subject to periodicity
conditions. Note that the known formulae of shape and
topological derivatives for elliptic problems in bounded
domains do not apply to the periodic framework. We
consider a general notion of periodicity, allowing for
an arbitrary parallelepiped as periodicity cell. Our cal-
culations are useful for optimizing periodic composite
materials by gradient type methods using the topo-
logical derivative jointly with the shape derivative for
periodic problems. Important particular cases of func-
tionals to minimize/maximize are presented. A numer-
ical algorithm for optimizing periodic composites using
the topological and shape derivatives is the subject of a
second paper (Barbarosie and Toader, Struct Multidis-
cipl Optim, 2009).

Keywords Optimization of microstructures ·
Shape derivative · Topological derivative ·
Periodic homogenization · Porous materials

1 Introduction

The main motivation of the present paper comes from
the study of periodic microstructures and optimization
of their macroscopic properties, in the context of lin-
earized elasticity. A periodic microstructure is a body
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whose material coefficients vary at a microscopic scale,
according to a periodic pattern. Homogenization the-
ory allows one to accurately describe the macroscopic
behaviour of such a microstructure by means of so-
called cellular problems, which are elliptic PDEs sub-
ject to periodicity conditions. Porous materials, that is,
bodies with periodic infinitesimal perforations, can be
described in a similar manner.

This is the first of a series of two papers; it contains
the theoretical background about shape and topology
derivatives in the periodic framework; the second paper
(Barbarosie and Toader 2009) presents a numerical im-
plementation and results of an optimization method for
periodic microstructures. This paper is self contained
and therefore independent from Part II (Barbarosie
and Toader 2009); the formulae presented for the shape
and topological derivatives can be used for different
numerical implementations. Some preliminary results
were presented in Toader (2008).

In Section 2 some notations and mathematical tools
for periodic functions are introduced. Section 3 states
two different formulations of the cellular problem for
mixtures of materials; in one of the problems the un-
known is the strain while in the other the unknown is
the stress. Each formulation has its own importance for
the calculations in Sections 5 and 6.

For practical purposes, porous materials have special
relevance. Section 4 presents the cellular problems in
strain and stress formulation describing the behaviour
of porous materials (which are different from the ones
presented in Section 3 for mixtures of materials).

Section 5 is devoted to the computation of the
topological derivative of the homogenized elastic co-
efficients, while in Section 6 the shape derivative of
the same homogenized coefficients is computed. The
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formulae obtained are specific for the periodic case and
different from the topological and shape derivatives
of energy type terms (e.g. compliance) for problems
defined on bounded domains.

A list of examples of optimization problems for peri-
odic microstructure is presented in Section 7, together
with references to Part II (Barbarosie and Toader 2009)
for specific numerical results. The most common func-
tionals like bulk modulus, shear response are presented
as linear combinations of certain homogenized coeffi-
cients. Also a functional used to minimize the Poisson
coefficient is studied, with the goal of obtaining auxetic
materials.

2 Preliminaries on periodic functions

We shall consider a parallelepiped Y in R
n (a paral-

lelogram in R
2) which defines the periodicity of the

microstructures. Often Y is taken to be the unit cube
for the sake of simplicity.

Consider the set of linear plus periodic functions
denoted by

LP = {
u : R

n �→ R
n | u(x) = Ax + ϕ(x),A ∈ Mn(R),

ϕ ∈ H1
loc(R

n; R
n) and Y − periodic

}
,

where Mn(R) is the set of n × n real matrices. Here
H1

loc(R
n; R

n) represents the space of vector fields which
are locally square-integrable and whose weak partial
derivatives of order one have the same property.

The following properties of periodic functions will be
used in the sequel:

Lemma 1 Let ϕ in H1
loc(R

n; R
n) be a Y - periodic func-

tion. Then:

1)
∫

∂Y
ϕin j = 0, where n is the unit normal to ∂Y

(pointing outwards).

2)
∫

Y
∇ϕ = 0.

Proof The first assertion is a consequence of ϕ having
equal values on opposite faces of the parallelogram Y
while n (since it points outwards) has opposite values
on opposite faces of Y. In order to prove the second
assertion, apply the flux divergence theorem and use
the first part. ��

As a consequence of the above Lemma 1, the linear
part of a function u in LP can be identified by

A = −
∫

∇u,

where in general by −∫ h we shall denote the average of
h in Y, that is,

−
∫

h = 1

|Y|
∫

Y
h(x)dx .

In the case when A is symmetric one has

A = −
∫
e(u)

where e(u) = 1
2 (∇u + ∇Tu) is the strain associated to u.

Lemma 2 Let u in LP.

1) If A = −∫ ∇u then u can be represented by

u(x) = Ax + ϕ(x), with ϕ Y − periodic;
2) If A = −∫ e(u) then u can be represented, up to a

rigid rotation, by

u(x) = Ax + ϕ(x), with ϕ Y − periodic.

3 Strain and stress formulations
of the cellular problem

Consider a periodic elliptic problem
{ −div(Ce(uA)) = 0 in R

n

uA(x) = Ax + φA(x), with φA Y − periodic.
(1)

where A is a given symmetric matrix and the elastic
tensor C is Y-periodic on R

n. Problem (1) above is
known in homogenization theory as cellular problem.

Problem (1) models the microscopic behaviour of a
microstructure whose elastic coefficients vary according
to the periodic pattern tensor field C and subject to the
macroscopic strain A. Typically, but not necessarily, the
pattern tensor field C takes only two values, modeling
a periodic mixture between two given component ma-
terials (see Fig. 1).

Fig. 1 Periodic mixture of two materials
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The homogenized elastic tensor CH, describing the
effective (macroscopic) behaviour of this microstruc-
ture, will be defined in the sequel with the aid of the
cellular problem (1).

The solution uA of problem (1) has the property that
its average strain is equal to A:

−
∫

∇uA = −
∫
e(uA) = A (2)

(see the consequences of Lemma 1).
Thus, the cellular problem (1) may be written in

strain formulation as follows:
⎧
⎨

⎩

uA ∈ LP
−div(Ce(uA)) = 0 in R

n

−∫ e(uA) = A ,

(3)

where A ∈ Mn(R) is a given symmetric matrix.
From the homogenization theory, it is known that

the homogenized elastic tensor CH relates the average
strain A with the average stress associated to uA :

−
∫
Ce(uA) = CHA ,

while the energy type product 〈CHA,B〉 may be ex-
pressed as

−
∫
Ce(uA)e(uB) = 〈CHA,B〉.

For homogenization theory of periodic composites
we refer to Allaire (1992) where the cellular problem
is stated in a slightly different way.

Remark 1 The average strain A can also be expressed
as a boundary integral. It suffices to apply the flux
divergence theorem to the above formula (2) in order
to obtain

A = 1

|Y|
∫

∂Y
uA ⊗ n = 1

|Y|
∫

∂Y
uA ∨ n , (4)

where n denotes the unit normal to ∂Y (pointing out-
wards), ⊗ denotes the tensor product

(uA ⊗ n)ij = (uA)in j

and ∨ denotes the symmetrized tensor product:

(uA ∨ n)ij = 1

2

(
(uA)in j + (uA) jni

)
.

For a rectangular cell, it suffices to compute averages
on specific faces of Y. More precisely, let S+

j and S−
j

be the two parallel sides of Y orthogonal to e j, where
e1, e2, . . . , en is the canonical basis of R

n. Denote by h j

the height of the cell (the distance between S+
j and S−

j ).

Recall that |S+
j | = |S−

j | and h j |S+
j | = |Y|. In this case,

formula (4) can be written as

Aij = 1

|Y|

(∫

S+
j

(uA)i −
∫

S−
j

(uA)i

)

= 1

h j

(
1

|S+
j |

∫

S+
j

(uA)i − 1

|S−
j |

∫

S−
j

(uA)i

)

.

Remark 2 Condition −∫ e(uA) = A may be viewed as a
Dirichlet condition: by Lemma 2, uA(x) = Ax + φA(x),
with φA ∈ H1

loc(R
n; R

n) and Y-periodic. Hence,

uA(x + hiei) − uA(x) = A hiei

that is, the difference between the values of uA on
opposite faces is prescribed. This condition has the
same nature as a non-homogeneous Dirichlet boundary
condition.

In the above, a rectangular cell was considered, being
hiei its generators. However, this remark holds for any
parallelepiped Y, replacing hiei by an arbitrary set of n
generator vectors g1, g2, . . . , gn.

In the following another formulation of the above
cellular problem will be useful: the formulation in
stress.

Given a symmetric matrix σ ∈ Mn(R) representing
an effective stress, one looks for the solution wσ of:
⎧
⎨

⎩

wσ ∈ LP,

−div(Ce(wσ)) = 0 in R
n

−∫ Ce(wσ) = σ .

(5)

In this context, the average strain satisfies

−
∫
e(wσ) = (

CH
)−1σ

and, for an arbitrary symmetric matrix η,

−
∫
Ce(wσ)e(wη) = 〈

(CH
)−1σ, η

〉
.

The above problem (5) is the same as problem (5) in
Suquet (1982) used for deducing corrector formulae.

The cellular problem in its stress formulation (5) may
be viewed as a Neumann problem due to the following:

Lemma 3 For a rectangular cell, condition −∫ Ce(wσ) =
σ is equivalent to

1

|S+
i |

∫

S+
i

Ce(wσ)n = σei, i = 1, . . . , n . (6)
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Proof On S+
i we have xi = hi and the outwards normal

to Y is ei while on S−
i we have xi = 0 and the outwards

normal to Y is −ei.
Then

∫

Y
Ce(wσ)ei =

∫

Y
Ce(wσ)∇xi =

∫

∂Y
Ce(wσ)nxi,

where the flux divergence theorem and the condition

−div(Ce(wσ)) = 0 in Y

were applied in order to deduce the last equality. The
above integral on the boundary of Y writes
∫

∂Y
Ce(wσ)nxi

=
n∑

j=1

[∫

S+
j

Ce(wσ)nxi +
∫

S−
j

Ce(wσ)nxi

]

=
∫

S+
i

Ce(wσ)n +
∑

i �= j

[∫

S+
j

Ce(wσ)ejxi −
∫

S−
j

Ce(wσ)ejxi

]

= hi

∫

S+
i

Ce(wσ)n ,

where to obtain the last equality one uses the periodic
character of Ce(wσ)xi with respect to h jej (for i �= j).
Using the hypothesis −∫ Ce(wσ) = σ and having in
mind that |Y| = hi|S+

i | for any i, formula (6) is obtained.
��

Remark 3 Condition (6) can be viewed as an averaged
Neumann condition on each face of the periodicity
cell Y.

Remark 4 Lemma 3 above holds also for an arbitrary
parallelogram cell, although the proof is more intricate.
For a cell Y generated by vectors g1, g2, . . . , gn, formula
(6) becomes

1

|S+
i |

∫

S+
i

Ce(wσ)n = σni, i = 1, . . . , n .

where ni is the unit normal vector to the face S+
i .

Remark 5 The cellular problem (1) has a solution
which is unique up to translations. Cellular problems
(3) and (5) have solutions unique up to a rigid body
displacement.

Denote by DH the inverse of the homogenized ten-
sor, called also homogenized compliance tensor: DH =
(CH

)−1. The two formulations of the cellular problem
(3) and (5) are equivalent as stated in the following:

Theorem 1 Given a symmetric matrix A ∈ M n(R) the
solution uA of problem (3) is also solution of problem

(5) for σ = CHA. Conversely, given a symmetric matrix
σ ∈ M n(R) the solution wσ of problem (5) is also solu-
tion of problem (3) for A = DHσ.

Proof In fact, for arbitrary u ∈ LP satisfying the state
equation −div(Ce(u)) = 0, by defining A = −∫ e(u) one
obtains a cellular problem in the strain formulation (3).
The same solution is obtained by defining σ = −∫ Ce(u)

and solving the cellular problem in stress formulation
(5). This is similar to a Dirichlet to Neumann operator
(or to a Neumann to Dirichlet operator, respectively).

��

The solution of the cellular problem has the follow-
ing linearity property:

Lemma 4 The solution uA of problem (3) depends lin-
early on the matrix A, that is, given two symmetric matri-
ces A,B ∈ Mn(R) and given α, β ∈ R, one has uαA+βB =
αuA + βuB up to a rigid body displacement. The solution
wσ of problem (5) depends also linearly on the symmet-
ric matrix σ.

The proof is straightforward having in mind the lin-
ear character of problems (3) and (5), respectively.

4 Porous materials

The case of porous materials, that is, bodies having
periodic infinitesimal perforations, can be treated in
a similar way. We shall consider a model hole, which
is a compact set T ⊂ Y (see Fig. 2), where Y is the
periodicity cell. The cellular problem describing the
behaviour of this perforated material is quite similar
to the one described in the previous section, except
now the domain of the problem is the perforated space
denoted by R

n
perf and a Neumann boundary condition is

imposed on the boundary of the model hole.

Fig. 2 Periodicity cell with
model hole (zoomed)
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Fig. 3 Periodically perforated plane R
2
perf

The perforated space is obtained from R
n by remov-

ing translations of the model hole. For a cubic cell Y,
one has (see Fig. 3)

R
n
perf = R

n \
⋃

k∈Zn

(T + k) (7)

For an arbitrary parallelepiped Y generated by vec-
tors g1, g2, . . . , gn, one has (see Fig. 4)

R
n
perf = R

n \
⋃

k∈Zn

(T + k1g1 + k2g2 + · · · + kngn) (8)

Remark 6 Note that the same microstructure can be
viewed as being generated by different periodicity cells.
Figures 3 and 5 show a microstructure which can be
built by using a square cell and a 45◦ parallelogram cell,
respectively.

However, parallelogram cells have their own im-
portance since there are microstructures which cannot
be obtained with square periodicity cells. The micro-
structure shown in Fig. 4 was generated by a 60◦
parallelogram cell and cannot be produced with a
square periodicity cell. We conjecture that the class of
microstructures generated with general cells is wider
than the class of microstructures generated with square

Fig. 4 Periodically perforated plane R
2
perf for another cell

Fig. 5 The same structure as in Fig. 3 generated by a different
cell

cells. The examples given in Subsection 6.5 in Part II
(Barbarosie and Toader 2009) illustrate this fact.

The direct generalization of the cellular problem (1)
for porous materials is:
⎧
⎨

⎩

−div(Ce(uA)) = 0 in R
n
perf

Ce(uA)n = 0 on ∂T
uA(x) = Ax + φA(x), φA periodic function.

(9)

Re-writing the above periodicity condition in terms
of average strain like in (3) is more complicated in the
presence of holes. The following result presents the
strain formulation of the cellular problem for porous
materials:

Lemma 5 The cellular problem (9) is equivalent to
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uA ∈ LPperf

−div(Ce(uA)) = 0 in R
n
perf

Ce(uA)n = 0 on ∂T
1

|Y|
(∫

Y\T
e(uA) +

∫

∂T
uA ∨ n

)
= A ,

(10)

where LPperf is the space of linear plus periodic func-
tions defined in R

n
perf , n denotes the unit normal vector

to ∂T pointing outwards R
n
perf (i.e., pointing into the

hole T).

Proof We shall justify the integral condition in (10)
(the last equation), all other points being straightfor-
ward. Note that the first part of Lemma 1 in Section 2
still holds for periodic functions defined on R

n
perf (while

the second part makes no sense as the function is not
defined in the whole Y). Thus,

∫
∂Y φ ⊗ n = 0 (we shall

omit the subscript A in order to simplify the notations).
Then, the flux divergence theorem for φ implies that
∫

Y\T
φk,i =

∫

∂T
φkni , ∀ i, k = 1, 2, . . . , n,
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where the subscript ,i denotes the partial derivative with
respect to the variable xi. Replacing φ by u(x) − Ax one
obtains
∫

Y\T

(
u(x) − Ax

)
k,i =

∫

∂T

(
uk(x) − Akjx j

)
ni

that is,
∫

Y\T
uk,i −

∫

∂T
ukni =

∫

Y\T
Aki −

∫

∂T
Akjx jni (11)

Since n is the outward normal to the domain occupied
by the material, it is the opposite of the normal exterior
to the hole T. Therefore,

−
∫

∂T
Akjx jni =

∫

T
(Akjx j),i =

∫

T
Aki = |T|Aki

From (11) one obtains
∫

Y\T
∇uA −

∫

∂T
uA ⊗ n = |Y|A

which (having in mind thatA is symmetric) is equivalent
to the last condition in (10). ��

Note that the average strain A can still be expressed
as integrals on ∂Y, that is, formula (4) in Remark 1,
Section 3, holds unchanged for porous materials. Note
also that the last condition in (9), uA = Ax + φA(x),
which is equivalent to the integral condition in (10), can
be viewed as a Dirichlet condition like in the case of
mixtures (see Remark 2 in Section 3).

Similarly to the previous section, the homogenized
tensor CH can be defined through

CHA = 1

|Y|
∫

Y\T
Ce(uA) (12)

or

〈CHA,B〉 = 1

|Y|
∫

Y\T
〈Ce(uA),e(uB)〉 . (13)

The stress formulation of the cellular problem, stated
in Theorem 2 below, completes the setting.

Theorem 2 The cellular problem (9) is equivalent to
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wσ ∈ LPperf ,

−div(Ce(wσ)) = 0 in R
n
perf

Ce(wσ)n = 0 on ∂T
1

|Y|
∫

Y\T
Ce(wσ) = σ .

(14)

The proof of Theorem 2 is similar to that of
Theorem 1.

An alternative expression of the last equality of (14)
can be given, in the spirit of Lemma 3 and Remark 4:

Lemma 6 Condition 1
|Y|

∫
Y\T Ce(wσ) = σ is equiva-

lent to

1

|S+
i |

∫

S+
i

Ce(wσ)n = σni, i = 1, . . . , n .

The above assertion is proven by computations sim-
ilar to those used in the proof of Lemma 5. An integral
on ∂T appears, like in formula (11), but it vanishes due
to the Neumann condition.

Remark 7 Although these equations are valid for any
periodic tensor field C, we shall focus on the case
where C is a constant elastic tensor (not depending
on x ∈ R

n
perf) corresponding to an isotropic material

with Lamé coefficients μ and λ: Cξ = 2μξ + λ(trξ)I.
Thus, the homogenized coefficients (the components of
CH) will depend essentially on the shape of the model
hole T.

Remark 8 Note that, through careful interpretation,
problems (9) and (14) make sense even if the model
hole T exits partially the periodicity cell Y, as long
as it does not touch any of its translations T + k,
k ∈ Z

n, k �= 0, see Fig. 6. For problem (10), the bound-
ary integral needs to be re-defined in an appropriate
manner. This is important since, in the optimization
process, the model hole often crosses the boundary of
Y; see Section 4 in Part II (Barbarosie and Toader
2009).

Remark 9 In Figs. 2 through 6, the model hole T was
chosen to be connected. But there is no difficulty in
considering a model hole with several connected com-
ponents. Section 6 in Part II (Barbarosie and Toader

Fig. 6 General hole T not touching its translations, see
Remark 8
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2009) presents many examples obtained with a period-
icity cell having two or three perforations.

5 The topological derivative

As stated in the Introduction, the main goal of the
present work is to optimize macroscopic properties of
periodic microstructures, more precisely, to minimize
or maximize functionals depending on the homoge-
nized elastic coefficients. The optimization process re-
lies on two distinct tools: the shape derivative and the
topological derivative. The present section is devoted
to the latter.

The so-called bubble method (see Eschenauer et al.
1994) is the early precursor of the topological deriva-
tive, described in Garreau et al. (2001) and Sokołowski
and Żochowski (2001). The idea is to evaluate whether
it is convenient or not to introduce a new hole at a
certain location in the domain. In the bubble method,
an ad-hoc criterion is used for choosing the location of
the new hole: the minimum points of the energy density
are chosen. In Garreau et al. (2001) and Sokołowski
and Żochowski (2001) a rigorous approach is proposed:
the optimality of such a topology variation is tested by
drilling an infinitesimal circular hole and imposing zero
Neumann condition on the newly created boundary. In
the framework of structural optimization, consider the
compliance

J(Ω) =
∫

Ω

Ee(u)E(u)dx (15)

of a body occupying a domain Ω ⊂ R
n and made of

a linear isotropic elastic material with Hooke’s law
(ξ being an arbitrary symmetric matrix):

Eξ = 2μξ + λ(trξ)I .

The displacement field u is the solution of the linearized
elasticity system

⎧
⎨

⎩

−div(Ee(u)) = 0 in Ω

u = 0 on ΓD

(Ee(u))n = g on ΓN

where ∂Ω = ΓD ∪ ΓN (if ΓD = ∅, equilibrium condi-
tions should be imposed on g).

Consider that, at a point x0 ∈ Ω , a hole ωρ = x0 +
ρω is inserted, where ρ ≥ 0 is a small parameter and

ω ⊂ R
n is a model hole, typically the unit ball. Consider

the elliptic problem in the perforated domain Ωρ =
Ω \ ωρ :
⎧
⎪⎪⎨

⎪⎪⎩

−div(Ee(uρ)) = 0 in Ωρ

uρ = 0 on ΓD

(Ee(uρ))n = g on ΓN

(Ee(uρ))n = 0 on ∂ωρ

Note that we put Neumann boundary conditions on
∂ωρ .

Then, the asymptotic expansion of a general objec-
tive function writes as

J(Ωρ) = J(Ω) + ρn DT J(x0) + o(ρn)

where J(ωρ) is computed with the elastic displace-
ment uρ .

The following result gives the expressions of the
topological derivative for the compliance, when a
spherical hole is nucleated at an arbitrary point x ∈ Ω .

Theorem 3 Suppose that g ∈ H2(Ω)N and u ∈
H2(Ω)N. Then, for any x ∈ Ω , the topological derivative
of the compliance (15) is, for n = 2,

DT J(x) = π(λ + 2μ)

2μ(λ + μ)

{
4μEe(u) · e(u)

+ (λ − μ)tr(Ee(u))tr(e(u))
}
(x)

(16)

and for n = 3

DT J(x)= π(λ+2μ)

μ(9λ+14μ)

{
20μEe(u) · e(u)

+ (3λ−2μ)tr(Ee(u))tr(e(u))
}
(x)

(17)

See Garreau et al. (2001) for the proof of the above
result.

Remark 10 The topological derivative has positive val-
ues, which means that for compliance minimization
there is no interest in nucleating holes if there is no
volume constraint.

In the periodic context under consideration, one
evaluates whether it is convenient or not to introduce
a new hole at a certain location in the periodicity cell.
Note that the cellular problem is an elliptic partial dif-
ferential system of equations defined on the periodicity
cell Y with unusual boundary conditions (periodicity
conditions) or, to be more rigorous, defined on the
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torus. This problem is perturbed by introducing only
one infinitesimal hole at some location in the cell, which
is equivalent to introducing one infinitesimal hole at
some location in the torus. This should not be viewed
as a large number of infinitesimal holes appearing si-
multaneously in the macroscopic domain since the mi-
crostructure has already been homogenized (the usual
small parameter ε has already converged to 0).

A direct application of formulae (16) and (17) in the
periodic context is wrong when the strain formulation
(3) is employed, since this formulation involves non-
homogeneous Dirichlet conditions (see Remark 2). In-
cidentally, the correct formula has opposite sign as we
shall prove in the rest of this Section, see Theorem 4.

On the other hand, the cellular problem in stress
formulation (5) can be viewed as a Neumann problem
due to Lemma 3. Therefore, the formulae in Theorem
3 may be used for computing the topological derivative
of the functional

〈DHσ, σ〉 = −
∫
Ce(wσ)e(wσ) (18)

which is a compliance-like quantity similar to (15). If
σ belongs to a basis of symmetric matrices, the expres-
sion 〈DHσ, σ〉 represents a diagonal coefficient of the
homogenized compliance tensor DH .

Lemma 7 The topological derivative of functional (18)
has the form, for n = 2:
DT〈DHσ, σ〉(x)

= π

|Y|
λ + 2μ

λ + μ

[
4μe(wσ)e(wσ)

+ λ2 + 2λμ − μ2

μ
tr e(wσ) tr e(wσ)

]
(x)

(19)
and for n = 3:
DT 〈DHσ, σ〉(x)

= π

|Y|
λ+2μ

9λ+14μ

[

40μe(wσ)e(wσ)

+ 9λ2+20λμ − 4μ2

μ
tre(wσ) tre(wσ)

]

(x),

(20)

where wσ is solution of (5).

Proof Formulae (19) and (20) are direct consequences
of formulae (16) and (17), respectively, and of Hooke’s
law Cξ = 2μξ + λ(trξ)I for isotropic elastic material
with Lamé coefficients μ and λ. ��

The other coefficients of the tensor DH can be recov-
ered by choosing two different elements of the basis of
symmetric matrices:

Lemma 8 Given σ and η two symmetric matrices in
Mn(R), the topological derivative of the functional

〈DHσ, η〉 = −
∫
Ce(wσ)e(wη) (21)

is given, for n = 2, by

DT〈DHσ, η〉(x)

= π

|Y|
λ + 2μ

λ + μ

[
4μe(wσ)e(wη)

+ λ2 +2λμ − μ2

μ
tr e(wσ) tr e(wη)

]
(x),

(22)

where wσ and wη are solution of cellular problems (5)
with effective stress σ and η, respectively. For n = 3, the
topological derivative of (21) is given by

DT 〈DHσ, η〉(x)

= π

|Y|
9λ+14μ

λ+μ

[

40μe(wσ)e(wη)

+ 9λ2+20λμ−4μ2

μ
tre(wσ) tre(wη)

]

(x),

(23)

Proof It suffices to write

〈DHσ, η〉= 1

4

[〈DH(σ+η), σ+η〉−〈DH(σ−η), σ−η〉]

and to apply Lemma 7 together with Lemma 4. ��

Theorem 4 The topological derivative of each coeffi-
cient of the homogenized tensor CH, for n = 2, has
the form:

DT〈CHfi, fj〉(x)

=− π

|Y|
λ+2μ

λ+μ

[
4μe(ufi)e(ufj)

+ λ2+2λμ−μ2

μ
tr e(ufi) tr e(ufj)

]
(x),

(24)
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where (fi)i=1,2,3 is the following basis of symmetric ma-
trices of M2(R):

f1 =
[

1 0
0 0

]
, f2 =

[
0 0
0 1

]
, f3 = 1√

2

[
0 1
1 0

]

and ufi are the corresponding solutions of the cellular
problem (3) with the effective strain fi. In three dimen-
sions, the topological derivative of the coefficients of CH

has the form

DT 〈CH fi, fj〉(x)

= − π

|Y|
λ+2μ

9λ+14μ

[

40μe(ufi)e(ufj )

+ 9λ2+20λμ−4μ2

μ
tr e(ufi) tr e(ufj )

]

(x),

(25)

where

f1 =
⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦ , f2 =
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦ , f3 =
⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦ ,

f4 = 1√
2

⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ , f5 = 1√
2

⎡

⎣
0 0 0
0 0 1
0 1 0

⎤

⎦ ,

f6 = 1√
2

⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦ .

Proof We shall use Einstein’s convention of repeated
indices. Denote CH

ij = 〈CHfi, f j〉 and DH
ij = 〈DHfi, f j〉.

Since DH = (CH
)−1, one has

CH
ij D

H
jk = δik . (26)

By applying the topological derivative to (26), one
obtains

DTC
H
ij D

H
jk + CH

ij DTD
H
jk = 0 , i, k = 1, 2, 3

and therefore

DTC
H
il = −CH

ij DTD
H
jk C

H
kl , i, l = 1, 2, 3 . (27)

From Lemma 8 for σ = f j and η = fk it turns out that

DTD
H
jk(x)

= π

|Y|
λ+2μ

λ+μ

[
4μe(wf j)e(wfk)

+ λ2+2λμ−μ2

μ
tre(wf j) tr e(wfk)

]
(x),

(28)

where wf j and wfk are solutions of the cellular problem
(5) with the effective stress f j and fk, respectively. From
Theorem 1 one concludes that wσ = uDHσ (up to a rigid
body displacement) for any symmetric matrix σ. In
particular, wf j = uDH f j

= uDH
ji fi

= DH
ji ufi , where the last

equality is a consequence of Lemma 4. Hence, replacing
wf j and wfk by DH

ji ufi and DH
kl ufl in (28), one obtains:

DTDH
jk(x)

= π

|Y|
λ+2μ

λ+μ

[
4μDH

ji e(ufi )D
H
kle(ufl )

+ λ2+2λμ−μ2

μ
DH

ji tre(ufi )D
H
kl tre(ufl )

]
(x),

(29)

Combining formulae (27) and (29) and having in mind
that DH = (CH

)−1, one obtains the expression of the
topological derivative (24). The proof of (25) is similar.

��

Remark 11 Although the homogenized elastic coeffi-
cients CH

ij = 〈CHfi, f j〉 can be expressed as energy-like
quantities, see formula (13), their topological derivative
are different from the derivative of the compliance
for bounded domains, given in Theorem 3. In fact,
one obtains an opposite sign. This happens because of
the boundary conditions. In Theorem 3, one has zero
Dirichlet boundary conditions on a part of ∂Ω and non-
zero Neumann conditions on the rest of ∂Ω . In the cel-
lular problem, the periodicity conditions have the same
nature as a non-zero Dirichlet boundary condition (see
Remark 2).

In applications, for penalization of the volume, the
topological derivative of the volume percentage of
material

V = |Y \ T|
|Y| = 1 − |T|

|Y|

is needed. This is straightforward to compute, and the
result is

DT V = −|B(0, 1)|
|Y| , (30)

where |B(0, 1)| is the volume of the unit ball in R
n. In

two dimensions, DT V = −π/|Y|, while in three dimen-
sions DT V = − 4π

3|Y| .
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6 The shape derivative

Besides creating new holes, one should find the best
shape of existing holes. The shape derivative describes
the variation of a certain objective functional when an
infinitesimal deformation is applied to a given geom-
etry. Consider θ : R

n → R
n a vector field defining the

deformation; note that θ itself should be periodic in
order to preserve the periodic character of the micro-
structure under study. Then the variation induced by
this deformation in the quantity 〈CHA,B〉 is

DS〈CHA,B〉 = 1

|Y|
∫

∂T
〈Ce(uA),e(uB)〉 θ · n (31)

where n is the unit normal to the boundary of the hole
T and pointing inside T. Assuming that C is a linear
isotropic elastic tensor, Cξ = 2μξ + λ(trξ)I, the above
formula becomes

DS〈CHA,B〉 = 1

|Y|
∫

∂T

[
2μ〈e(uA),e(uB)〉

+ λtr(e(uA))tr(e(uB))
]
θ · n (32)

In particular, this gives the shape derivative of the
homogenized coefficients:

Theorem 5 The shape derivative of each coefficient of
the homogenized tensor CH has the form:

DS〈CHfi, fj〉 = 1

|Y|
∫

∂T

[
2μ〈e(ufi),e(ufj)〉

+ λtr(e(ufi))tr(e(ufj))
]
θ · n (33)

Formula (32) has been obtained by direct computa-
tion in Barbarosie (2003). Note that, for mixtures of two
or more materials, an analogous formula holds with an
integrand involving jumps of the derivatives of uA and
uB across the interface, see Barbarosie (2002).

Formula (32) can alternatively be obtained by apply-
ing Theorem 6 below to the stress formulation of the
cellular problem (14). Thus, one differentiates quanti-
ties of the form 〈DHσ, η〉 involving the inverse elastic
tensor DH and then goes back to the components of the
tensor CH . We do not present these computations here;
a similar development has been presented in detail in
the previous section for the topological derivative.

We state here the main result in classical shape
optimization, for which we refer to Murat and Simon
(1976), Sokołowski and Zolezio (1992), Allaire et al.
(2004).

Theorem 6 For Ω a smooth bounded open set in
R

n, consider a partition of its boundary ∂Ω = ΓD ∪

Γopt ∪ ΓN, where Γopt represents the part of the boundary
to be optimized. Let u be the solution of
⎧
⎪⎪⎨

⎪⎪⎩

−div(Ee(u)) = 0 in Ω

u = 0 on ΓD

(Ee(u))n = 0 on Γopt

(Ee(u))n = g on ΓN

Then the shape derivative of

J(Ω) =
∫

Ω

〈Ee(u),e(u)〉 =
∫

ΓN

〈g, u〉

is

J′(Ω)(θ) = −2
∫

Γopt

〈Ee(u),e(u)〉〈θ, n〉 ,

where θ : R
n → R

n is a vector field defining an (infinites-
imal) deformation of the domain Ω such that θ = 0 on
ΓD ∪ ΓN.

The shape derivative of the volume percentage of
material V = |Y \ T|/|Y| is needed in applications for
penalization purposes. Straightforward computations
show that

DSV = 1

|Y|
∫

∂T
θ · n . (34)

7 Examples

In Sections 5 and 6 above, the shape derivative and
the topological derivative have been computed for
the coefficients of the homogenized elastic tensor CH .
These derivatives are to be used in an optimization
process whose goal is to optimize properties of the
homogenized material, under a constraint on the vol-
ume percentage of material. Typical examples include:
maximization of the bulk modulus, maximization of the
shear response, search for negative Poisson coefficient.
See Section 6 of Part II (Barbarosie and Toader 2009)
for numerical results.

For maximization of the bulk modulus of CH , one
chooses the matrix

A =
[−1 0

0 −1

]
,

which is a pure compression strain, and maximizes

〈CHA,A〉 = CH
1111 + 2CH

1122 + CH
2222

This case is treated in Subsection 6.2 of Part II
(Barbarosie and Toader 2009).
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For maximization of the shear response of CH , one
chooses the matrix

A =
[

0 1
1 0

]
,

which is a pure shear strain, and maximizes

〈CHA,A〉 = 4CH
1212

Numerical results for this example are presented in
Subsection 6.5 of Part II (Barbarosie and Toader 2009).

Searching for a homogenized tensor CH having a
negative Poisson coefficient is more delicate. Recall
that, for an anisotropic elastic tensor CH , the behaviour
of the mixture is characterized through two Poisson-
like coefficients defined by:

−DH
2211

DH
1111

or − DH
2211

DH
2222

whereDH is the inverse tensor ofCH However, in order
to avoid computing the derivative of the above fraction,
we have chosen a different approach: take two different
strains

A =
[

1 0
0 0

]
, B =

[
0 0
0 1

]

and minimize

〈CHA,B〉 = CH
1122

This is of course not equivalent to minimizing the
Poisson coefficient itself, but it goes in the right di-
rection, as mechanical intuition suggests and numeri-
cal experiences confirm, see Subsection 6.6 of Part II
(Barbarosie and Toader 2009).

8 Conclusions

Periodic composites, as well as periodic porous mate-
rials, are described in terms of a cellular problem. Dif-
ferent formulations of the cellular problem are given,
namely a formulation in strain and one in stress. The
topological derivative and the shape derivative of the
homogenized elastic coefficients are computed.

A second paper (Barbarosie and Toader 2009) deals
with the implementation of an optimization algo-
rithm which applies alternately shape and topology
optimization.
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