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Abstract In this work a methodology is proposed for
the optimization of coupled problems, and applied to
a 3D flexible wing. First, a computational fluid dy-
namics code coupled with a structural model is run to
obtain the pressures and displacements for different
wing geometries controlled by the design variables.
Secondly, the data are reduced by Proper Orthogonal
Decomposition (POD), allowing to expand any field as
a linear combination of specific modes; finally, a sur-
rogate model based on Moving Least Squares (MLS)
is built to express the POD coefficients directly as
functions of the design variables. After the validation of
this bi-level model reduction strategy, the approximate
models are used for the multidisciplinary optimization
of the wing. The proposed method leads to a reduction
of the weight by 6.6%, and the verification of the
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solution with the accurate numerical solvers confirms
that the solution is feasible.
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1 Introduction

In recent years, more and more applications in struc-
tural engineering take different disciplines into consid-
eration. Indeed, in various cases, the structural analysis
is tightly coupled to one or more disciplines (typically
fluid and/or thermal). On the other hand, the trend
nowadays is to use independent and dedicated compu-
tational codes for each discipline.

In this context, the aim of multidisciplinary analysis
(= MDA) is to develop mathematical and numerical
methods in order to guarantee the coherence of the
physical variables involved. Several approaches have
been proposed in the literature to reach this goal, as the
fixed-point method (Alexandrov and Lewis 2000), the
minimization of the discrepancy between the coupling
variables from the different disciplines (Tedford and
Martins 2006) and the CASCADE method (Hulme and
Bloebaum 1999).

However, beside the specific features of each MDA
technique, all of them require the models to exchange
information interactively, which has greatly hindered
the systematic use of MDA in industrial applications.
Indeed, since the responses (e.g. the mass, the max-
imum von Mises stress, the displacements at given
nodes) are generally post-processed results computed
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by commercial software, the actual coupling of models
is a tedious task:

– a large amount of data has to be exchanged;
– the variables are usually provided in different file

formats, with possibly non-coincident geometries
and incompatible meshes;

– the codes may be installed on separate platforms,
with different hardware configurations (single PC /
workstation clusters / supercomputers, 32-bit / 64-
bit), operating systems and software versions;

– licensing issues may also bring limitations to the
code interfacing.

The problem becomes even more critical when the
coupled models are integrated in an optimization task,
because a high number of calls to the simulations have
to be executed before reaching an optimal solution,
therefore leading to unacceptable CPU time and mem-
ory costs if no adapted strategy is followed (Cramer
et al. 1994; Alexandrov and Lewis 1999). To address
this issue, a series of specific multidisciplinary opti-
mization (MDO) strategies have been proposed in the
literature (Tedford and Martins 2006), attempting to
separate as much as possible the computations of
the different models. Examples of these methods
are Collaborative optimization (CO) (Braun and Kroo
1997), Concurrent subspace optimization (CSSO)
(Tedford and Martins 2006), Bi-level integrated system
synthesis (BLISS) (Sobieszczanski et al. 1998; Agte
2005), Multidisciplinary Optimisation and Robust De-
sign Approaches applied to Concurrent Engineering
(MORDACE) (Giassi et al. 2004) and Disciplinary
Interaction Variable Elimination (DIVE) (Masmoudi
and Parte 2006).

Nevertheless, whatever strategy is used, the analysis
and optimization of coupled systems still face a major
challenge related to the interconnections between dis-
ciplines. Indeed, in order to decrease the size of the
data to be transmitted from one model (e.g. a tem-
perature field from a thermal simulation) to another
model (e.g. a structural finite element computation with
material properties depending on the temperature), the

development of adapted model reduction strategies is
mandatory. Once the coupling variables (generally the
responses of the models, as the displacements in a
structural calculation) have been reduced, the path is
open to build efficient surrogate models of the whole
disciplines.

Therefore, in this paper, an original bi-level model
reduction technique is proposed. Based upon a set of
numerical simulations, the proposed method allows for
reducing the data exchanges between disciplines, and
use this information to build surrogate models of the
coupled problems. Initially proposed in the case of a 2D
wing demonstrator (Filomeno Coelho et al. 2008), the
method is extended and applied here to the multidisci-
plinary analysis and optimization of a 3D flexible wing
(where the aerodynamics and the mechanical resistance
are coupled).

The paper is organized as follows: after the problem
presentation and formulation (Section 2), the descrip-
tion of the bi-level model reduction method is detailed
(Section 3). Then, the example of a 3D flexible wing is
presented (Section 4), and used to illustrate the benefits
of the model reduction strategy for the multidiscipli-
nary analysis and optimization of the wing (Section 5).
The last section draws the conclusions of the study and
discusses research prospects (Section 6).

2 Problem presentation and formulation

2.1 Formal description of the problem for 2 coupled
models

When the input and output variables of 2 models de-
pend on each other, the analysis of the coupling has
to be tackled. For 2 models M1 and M2, the following
options are available (cf. Fig. 1):

– strongly-coupled models: the coupling variables and
functions are formulated in a unique system:
{

ν1 = M1(ν2)

ν2 = M2(ν1)
; (1)

Fig. 1 Models M1 and M2:
strongly-coupled (left) and
loosely-coupled (right)
models
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– loosely-coupled models: the models are treated sep-
arately, and interact only by means of the coupling
variables. In Fig. 1 (right), the variable νij denotes
the output variables of model Mi used as inputs
in Mj. The coherence of the coupling variables
implies that the set of coupling variables (ν12, ν21) is
a fixed point, expressing formally that the following
conditions hold:

ν12 = M1(M2(ν12));
ν21 = M2(M1(ν21)).

(2)

Whereas the first approach is more satisfactory from
a mathematical point of view, it is generally not prac-
tical because the models consist in commercial soft-
ware for which an intrusive approach is not permitted.
Therefore, the use of loosely-coupled models should be
considered. However, three important features must be
analyzed:

– while the coupling variables are usually defined
on a common interface Sinter f ace (e.g. the external
surface of a wing in an aeroelastic problem), these
variables are generally expressed on different node
locations, and possibly on non-coincident geome-
tries. Therefore, an additional operator Iij must be
used to interpolate the data on a common reference
grid (cf. Fig. 2);

– a high amount of data has to be exchanged be-
tween models, which can dramatically slow down
the analysis of the coupled system. To address
this issue, efficient model reduction strategies are
mandatory;

– since the final responses of the models consist in a
small set of post-processed (scalar) values (e.g. the
maximum von Mises stress in the structure), the use
of surrogate models is often a well-adapted option
to consider, especially within an optimization task.

The next section discusses the use of reduced and
approximate models for the analysis and optimization
of coupled systems.

2.2 Reduction and approximation methods for MDO

Due to the high number of simulations required by
the analysis and optimization of structures involved
in a coupled system, several reduction methods have
been proposed in the literature. In most cases, one or
several disciplines are fully replaced by a meta-model
based upon polynomial response surfaces or kriging; for
example, in Simpson et al. (1998), an aerospike nozzle
is optimized according to aerodynamics and structure,
with a significant reduction of the simulation analysis
and gradient calls thanks to the approximate models.

The need for surrogate models becomes crucial in
MDO multi-level techniques, which work by refor-
mulation of the MDO problem in different levels of
optimization. Most of these techniques divide the opti-
mization task into 2 levels: an upper level managing the
global and coupling variables, and a lower one dealing
with each discipline separately. For example, the BLISS
method uses surrogate models (based on disciplines
already optimized at a local level), by means of poly-
nomial response surfaces (Kodiyalam et al. 1999) or
kriging (Agte 2005), in order to be optimized eventu-
ally at the global level. Other meta-models, based on
Moving Least Squares techniques, have been used in
collaborative optimization (Zadeh et al. 2005), in order
to construct approximations of the multidisciplinary
constraints, and more precisely to identify the feasible
region (a trust region algorithm being used to make the
actual search inside the admissible region).

Beside general meta-models where no knowledge
about the physics involved is introduced, another cat-
egory of reduction methods attempt to take benefit of
the information contained in the models. The Proper
Orthogonal Decomposition (POD), well-spread among

Fig. 2 Interface schematic
description for two coupled
models M1 and M2
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the fluid dynamics community (Berkooz et al. 1993),
is part of this family of techniques, and has been
successfully incorporated in BLISS for airfoil design
applications (LeGresley and Alonso 2004; LeGresley
2005).

In this paper, taking benefit of approximation and
reduction methodologies, the original contribution con-
sists in a combination of both techniques to build in-
expensive but reliable surrogate models for fluid and
structure models.

3 Bi-level model reduction technique

3.1 Level 1: POD to reduce the interconnections
between disciplines

As mentioned in Section 2, one of the major issues in
loosely-coupled systems lies in the management of the
interconnections between disciplines: an efficient and
practical method should allow each discipline to work
with a minimum quantity of data to exchange with the
other disciplines.

Therefore, a suitable reduction technique should be
applied. In other words, instead of transferring a large
set of data (e.g. the whole field of pressure on the wing),
a limited number of (scalar) numbers should be sent. In
this work, the POD or Proper Orthogonal Decompo-
sition, also known as the Karhunen-Loève expansion
(KLE) or Principal Component Analysis (PCA), is
selected for this purpose (Berkooz et al. 1993).

The POD is widely used in computational fluid
dynamics to decompose flows (for example, to ex-
pand a velocity vector evolving with time). In struc-
tural analysis, the method has also been adapted in
various cases. For example, in Schenk et al. (2005),
POD helps calculating for a moderate cost the non-
stationary response of large, nonlinear finite element
systems under stochastic loading. In interactive design
and manufacturing, the analysis in real time of nonlin-
ear mechanical model by finite element method (FEM)
is also largely accelerated by POD reduction techniques
(Dulong et al. 2007).

In this work, a parameter-dependent POD is pro-
posed to decompose the coupling variables (Bui-Thanh
et al. 2003; Newman 1996). For the test application pre-
sented in this paper, the pressure and displacements on
the wing surface are considered. For the sake of clarity,
the method is described only for the fluid discipline, but
the same reasoning holds for the structure.

Practically, for a variable p (e.g. a pressure field),
starting from the values of pi (called snapshots) ob-
tained by accurate numerical simulations for a repre-

sentative set of designs, the idea is to build a linear basis
to represent any vector p̃ , this basis being guaranteed
by construction to be optimal to describe a given sam-
ple set of observations:

pPOD = p̄ +
M∑

i=1

αiφ
p
i , (3)

where:

– p̄ is the average vector;
– the φ

p
i are the POD basis vectors;

– the αi are scalar coefficients of the linear expansion.
– M is the number of snapshots.

The construction of the POD basis is divided in 3
parts. First, the deviation matrix P is built by storing
the pressure vectors of all snapshots, and subtracting
the mean vector p̄ to each row of P:

P =

⎡
⎢⎢⎢⎢⎣

p(1)
1 − p̄1 p(2)

1 − p̄1 ... p(M)
1 − p̄1

p(1)
2 − p̄2 p(2)

2 − p̄2 ... p(M)
2 − p̄2

...
...

...
...

p(1)

N − p̄N p(2)

N − p̄N ... p(M)

N − p̄N

⎤
⎥⎥⎥⎥⎦ . (4)

Then, the covariance matrix C is calculated:

C = P.PT . (5)

Finally, the POD modes φi are obtained by extract-
ing the eigenvectors of C. To estimate the quality of
the POD reduction, an energy criterion error is defined
with respect to the eigenvalues λi of C:

εenergy(m) = 1 −
∑m

i=1 λi∑M
i=1 λi

. (6)

Any vector can be projected on each POD basis
vector φi, and the corresponding scalar coefficient αi

represents the relative importance of the ith eigenmode
on the reconstruction of the total field. Therefore, the
actual reconstruction error εrec(m) caused by neglecting
the contribution due to the last (M − m) eigenmodes
can be evaluated by:

εrec(m) = 1 − ‖ p̄ + ∑m
i=1 αiφi‖

‖ p̄ + ∑M
i=1 αiφi‖

. (7)

3.2 Level 2: Surrogate models

Once the behaviour of a coupling variable has been
reduced by the POD technique, the m scalar values
contain enough information to build an approximation
of the whole field. Therefore, the main idea proposed
in this paper is to build a surrogate surface for each
of the scalar POD coefficients retained, defined with
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respect to the design variables: in other words, the
model reduction is performed at two stages:

– first, a POD reduction of the coupling variables
(pressures and displacements) is performed, hence
leading to a database of POD coefficients for a
representative set of designs;

– secondly, response surfaces are built to link each
POD coefficient with the design variables.

Figure 3 illustrates the workflow to build the reduced
models, combining a general approximator to the POD
procedure. First, a series of numerical simulations are
executed for a representative set of designs x(i)

DOE, each
simulation consisting in a resolution of the coupled
system, also called multidisciplinary analysis (MDA).
Then, the variables of interest are decomposed by
POD, and a limited number m of the scalar POD
coefficients α

(i)
j are stored. For any vector p, the POD

coefficients are simply calculated by projection on the
POD mode:

αi =< p − p̄, φi >, (8)

where <, > is the scalar product between vectors. The
same is done for the displacements in the three direc-
tions.

Finally, from these POD coefficients, surrogate re-
sponse surfaces are built with respect to the design
variables.

The approximation techniques used for making the
response surfaces are described in the next section.

3.3 Approximation techniques

To carry out the surrogate response surfaces, two ap-
proximation techniques are used:

– the Polynomial Response Surface Method (Giunta
et al. 1998);

– the Moving Least Squares method, also called Dif-
fuse Approximation (Nayroles et al. 1992).

The polynomial response surface method (PRSM)
is one of the most widespread general approximation
techniques, and its main features are detailed in Giunta
et al. (1998). However, although the surrogate surfaces
built by PRSM generally give a good trend of the global
behaviour of the response, they might be inadequate
to capture local phenomena. Therefore, the use of
the Moving Least Squares (MLS) technique is also
investigated.

The MLS approximation of a function α(x) can be
written as follows (Breitkopf et al. 2002):

α(x) ≈ αapp(x) = b T(x) a(x), (9)

where:

b(x) = [1 x1 x2 ... x2
1 x1x2...]. (10)

The difference with the classical least squares
method lies in the fact that the coefficients a(x) are not
constant over the domain, but depend upon the value of
x. In practice, these coefficients minimize the functional
Jx(a) defined by:

Jx(a) = 1
2

M∑
i=1

wi(xi, x)
(
b T(xi)a − ui

)2
, (11)

where,

– b(x) is the polynomial;
– xi are the sample points;
– wi are the weights depending on some distance

(here: the Euclidean norm) between xi and x.

Moreover, the terms composing the basis vector b(x)

can be chosen according to the problem, dropping for
instance the crossed terms xix j in a quadratic surface,
or adding other terms (e.g. sinusoidal, exponential).
Beside the flexibility authorized for the definition of the
basis, the inherently nonlinear behaviour of the MLS
surface enables to capture the possibly irregular shape
of the response to approximate.

Fig. 3 Model reduction
workflow
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In this work, the weights wi are given by:

wi = wref

(
dist(xi, x)

r

)
, (12)

where wref is a C1 piecewise cubic spline expressed by:

wref (s) =
{

1 − 3s2 + 2s3 if 0 ≤ s ≤ 1,

0 if s ≥ 1,
(13)

and r is a radius defining the (local) influence zone,
defined here such as it covers the k closest points to
x (k being selected such as k = np + ndim, where np is
number of terms in the polynomial basis vector p and
ndim is the dimension of the inputs).

The surrogate surface established by this technique
will usually not pass through all sample points; to force
the approximation to interpolate the points, the weights
can be specifically scaled to fit the data points, as ex-
plained in detail in Breitkopf et al. (2002).

Now that the theoretical description of the bi-level
model reduction has been exposed, the next section
presents a 3D flexible wing example that will be used
eventually to validate the bi-level strategy.

4 Description of a 3D wing example for transonic flow

4.1 Formulation of the optimization problem

In the purpose of investigating the bi-level model re-
duction method on a realistic example, the original test
case of a 3D wing (from a business jet) has been devel-
oped. The goal is to minimize the weight of the wing in
transonic operating conditions (Mach number M = 0.8,
incidence angle γinc = 3◦), with constraints related to
the aerodynamics (lift) and the structure (mechanical
resistance).

The multidisciplinary optimization of the 3D wing is
formulated as follows:

min
X

fob j (14)

subject to: CL ≥ C0
L,

σmax ≤ σ 0
max,

(15)

where:

– X ∈ [Xlb , Xub ] are the (bounded) design variables,
controlling the shape of the wing section (see
Section 4.2);

– fob j is the mass of the structure;
– CL is the lift coefficient;
– σmax is the maximum von Mises stress over the wing

structure;

– C0
L and σ 0

max are the values obtained for the refer-
ence wing defined in Section 4.2.

The next sections describe the design variables
(Section 4.2), as well as the numerical models required
to calculate the objective and constraints (Section 4.3
and Section 4.4).

4.2 The parameterization

The geometry of the wing is built from a NACA64A010
airfoil section at the hub submitted to a homothetic
extrusion from hub to tip in order to keep the same
maximum thickness along the span.

In order to perform the shape optimization of the
wing, new geometries must be generated automati-
cally. In this study, a Free Form Deformation (FFD)
parameterization is used. This technique was initially
developed in the computer graphics field, but its flexi-
bility and ease of implementation have made it a very
practical tool for aerodynamic optimization (Samareh
2004; Duvigneau 2006). The principle of FFD consists
in parameterizing the 3D space directly, instead of the
(possibly complex) surface itself; then, a modification
of some control points defining the 3D space will auto-
matically transform the coordinates of all points inside
the domain.

In the general 3D formulation, the geometry to be
parameterized is contained in a 3D hexahedral lattice,
where a local system of relative coordinates (ξ ,η,θ) ∈
[0, 1] × [0, 1] × [0, 1] is defined. To deform the lattice,
a displacement �q is applied to each point q inside
the lattice, computed as a third-order Bézier tensor
product:

�q =
ni∑

i=1

n j∑
j=1

nk∑
k=1

Bni
i (sq)B

n j

j (tq)Bnk
k (uq)�cijk, (16)

where the Bn
p(t) are the n-order Bernstein polynomials

given by:

Bn
p(t) = Cp

n tp(1 − t)(n−p), (17)

with:

Cp
n (t) = n!

p!(n − p)! . (18)

The vector (sq, tq, uq) reflects the position of q in
local coordinates, and the cijk are the weighting co-
efficients corresponding to the displacements of the
control points defining the lattice; in a shape optimiza-
tion context, the cijk will play the role of the design
variables. It is interesting to note that this method
acts on modifications of an initial reference geometry;
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with parameters cijk set to 0, the exact initial design is
retrieved.

In this work, a 2-step procedure is applied to define
new geometries:

– first, the NACA (hub) section is modified by means
of the FFD parameterization. 2 variables x1 and x2

control respectively the camber of the airfoil and its
chord (see Fig. 4):

– x1 is the relative variation of the control points
at mid-chord (y-direction);

– x2 is the relative variation of the chord length
(x-direction).

– secondly, the 2D airfoil is extruded.

The reference wing and the variable bounds are
defined as follows:

– reference wing: X0 = [0.1; 0.1];
– lower bounds: Xlb = [−0.2; 0.0];
– upper bounds: Xub = [0.4; 0.2].

4.3 Discipline 1: the fluid model

The first discipline to investigate is the aerodynamic be-
haviour of the wing. Since any (turbulent) flow variable
a can be decomposed as the sum of a mean value ā
and a fluctuating part a′, the Navier-Stokes equations
governing the air flow around the wing can be written
as follows (Anderson 1995):

ρ
∂ūi

∂t
+ ρ

∂ū jūi

∂x j

= ρ f̄i + ∂

∂x j

[
− p̄δij + μ

(
∂ūi

∂x j
+ ∂ū j

∂xi

)
− ρu′

iu
′
j

]
, (19)

where:

– ρ is the density;
– ui is the ith component of the velocity vector;

– fi is the ith component of the volumic force vector;
– μ is the dynamic viscosity;
– p is the pressure;
– ρu′

iu
′
j defines the Reynolds stress tensor.

In this work, the finite volume method is applied: it
consists in solving the conservative form of the Navier-
Stokes equations for each cell of the discretized region
of the fluid space (Anderson 1995).

In practice, the commercial computational fluid dy-
namics (CFD) software FLUENT is used for this pur-
pose. The full fluid computation procedure is organized
as follows:

– to build the fluid volume, the wing geometry is gen-
erated by extruding the parameterized 2D airfoil
along the span; the rest of the geometry consists in
a 3D cubic box representing the domain of interest
for the flow computation;

– an unstructured grid is built by GAMBIT mesh
generator. For the reference wing (x = [0.; 0.]), the
mesh is composed of 368, 509 cells (78, 459 nodes);

– the operating and boundary conditions are set as
follows:

– Mach number M = 0.8;
– incidence angle γinc = 3◦;
– steady simulation;
– the ideal-gas law is used for the air, and pres-

sure far-field conditions are used to model the
free-stream condition at the boundaries of the
flow domain;

– after 200 CFD iterations, the mesh is automatically
adapted according to the pressure gradient distrib-
ution, in order to refine the regions with high pres-
sure gradients. For the reference wing, the adapted
mesh is characterized by 501, 621 cells (123, 837
nodes);

– the computations are performed with the updated
mesh until the stopping criterion is reached (the

Fig. 4 Free Form
Deformation:
parameterization of the wing
design: 2D modification (left)
and 3D view (right)
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convergence criterion is set to 10−6 for the conti-
nuity, velocity and energy residuals calculated in
each finite volume cell, with a maximum of 500
iterations).

The lift L results from the pressure and viscous ver-
tical forces, and is used to calculate the lift coefficient
CL, required as constraint in the MDO formulation.
Practically, CL is a post-processed response directly
furnished by FLUENT.

4.4 Discipline 2: the structural model

In addition to the CFD run, a structural computation is
performed in order to check the mechanical resistance
of the wing. The structure is composed of shell elements
on the wing external surface, rigidified by 5 vertical
stiffeners (from hub to tip).

The governing equations include:

– the static equilibrium of the structure: the weak
formulation of the static equilibrium leads to the
equality of virtual works δπint and δπext (calculated
respectively for the internal and external forces):

δπint = δπext; (20)

– the Hooke’s law (for an elastic material):

S̃ = DẼ, (21)

where S̃ is the second Piola-Kirchhoff stress tensor,
Ẽ is the Green-Lagrange strain tensor and D is
Hooke’s matrix for planar stress.

After developments (Zienkiewicz and Taylor 2005),
the numerical discretization (by the finite element
method) of the variational formulation derived from

the virtual work principle leads to the following system
(to be solved iteratively):

[
K(k)

t

] {
�q(k)

} = {
λ(k)F(k)

} − {
r(k)

}
, (22)

where k is the number of the current iteration, [K(k)
t ] is

the tangent stiffness matrix, {�q(k)} is the increment of
displacement between two iterations, λ(k) is the loading
factor, {F(k)} is the external force vector and r(k) is
the internal force vector. An iterative Newton-Raphson
method is used to converge to the solution.

In practice, the Code_Aster code developed by
EDF is applied to compute the displacements and
stresses, by considering a linear elastic material (steel),
and linear shell elements (Zienkiewicz and Taylor
2005). The mesh is characterized by 978 triangular
elements (440 nodes; see Fig. 4—right), each triangular
element being characterized by 6 nodes on the edges
(with 3 translation and 3 rotation degrees of freedom),
and 1 central node (with 3 rotation d.o.f.), leading to a
total of 39 d.o.f. by element.

The pressure loading on the wing surface derives
from the fluid computation. With a (geometrically)
linear model, the vertical displacements obtained for
the reference wing are shown in Fig. 5.

However, due to the flexibility of the wing, the de-
formed geometry cannot be assimilated to the initial
one. Therefore, two features need to be considered:

– first, (geometrically) nonlinear structural compu-
tations must be executed to account for the de-
formation of the wing structure. The nonlinear
shell elements available in Code_Aster are based
on a Hencky-Mindlin-Naghdi kinematic formula-
tion (Massin and Al Mikdad 2005), allowing small

Fig. 5 Vertical displacement
ν obtained with the finite
element (linear) structural
model (Code_Aster) for the
reference wing

9.33e-005 0.000674-0.000488

z-displacement
Y

X
Z
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Fig. 6 Multidisciplinary analysis (MDA): procedure for the 3D wing [left], and convergence of the total displacement residual for the
reference wing [right], with the fluid (FLUENT) and structure (Code_Aster) models

strains, large displacements and large rotations.
The corresponding results show that the aver-
age deviation between the displacements obtained
for the both calculations (linear and nonlinear)
amounts to 6.11%, demonstrating the need to per-
form a nonlinear structural computation to ensure
inaccurate estimation of the displacements. There-
fore, in the remainder of this study, nonlinear com-
putations are systematically applied;

– secondly, as the air flow depends on the actual
wing shape, which itself relies on the pressure dis-
tribution, the fluid and the structural computations
should be handled in a coupled approach to deal
with these interactions. This will be discussed in the
next section.

5 Bi-level reduced models for the shape optimization
of the 3D wing

5.1 MDA by fixed-point procedure for the 3D wing

When two (or more) physics are involved, multidisci-
plinary analysis (MDA) aims at finding coupling vari-
ables coherent within all disciplines. For 2 disciplines,
the most straightforward technique is the fixed-point
algorithm (Alexandrov and Lewis 2000).

As illustrated in Fig. 6 (left), the fixed-point proce-
dure is an iterative process. First, a fluid calculation
is performed with the initial configuration. Then, the
pressure distribution on the wing surface is collected,
interpolated on the structural nodes, and a finite ele-

Fig. 7 Interface grid
on which the
pressures/displacements
are interpolated: 20 × 62
nodes

Y
X

Z
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Fig. 8 Design of experiments of 36 wing geometries (with lift
coefficient values)

ment calculation is done. The corresponding displace-
ments are sent back to the fluid discipline, where a
CFD run is executed with the updated geometry. The
process goes on until a stopping criterion is reached, for
instance the convergence of the discrepancy between
the wing geometries for two successive iterations.

In this work, three particular aspects need to be
noticed:

– the fluid is re-meshed at each updating of the geom-
etry;

– when transferred from one discipline to the other,
the pressures or displacements are linearly inter-
polated on an interface grid Sinter f ace, defined as
a 20 × 62 set of curvilinear coordinate nodes (see
Fig. 7). To get an accurate representation of the
fluid behaviour, the nodes are concentrated at the
leading edge, where the higher pressure gradients
are observed;

– at each iteration, due to the geometrically nonlinear
shell model, the vector forces applied on the struc-
ture nodes are re-computed by taking into account
the deformation of the wing (i.e. the orientation
of the normals to the shell elements on which the
external pressure loading is applied is updated at
each fixed-point iteration).

Figure 6 (right) represents the convergence of the
multidisciplinary analysis applied to the reference wing,
where the residual res is defined as follows:

res =
∑nb_nodes

i=1 ‖u(k)

i − u(k−1)

i ‖∑nb_nodes
i=1 ‖u(0)

i ‖ (23)

Fig. 9 Pressure snapshots of the 36 wing geometries: 2D representation
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Fig. 10 POD reconstruction of a pressure snapshot

where ui(k) is the 3D displacement field of the ith
FEM structural node at iteration k (the 0 index for the
denominator refers to the initial iteration). A fast de-
crease of the residual is observed at the first 3 iterations;
then, the residual oscillates around 3%. Therefore, in
the remainder of the paper, the MDA convergence cri-
terion is set to 3% of the initial displacement residual.

The 3D wing is a good example to list the difficulties
that may appear while performing a multidisciplinary
analysis or optimization:

– the disciplinary variables that need to be exchanged
might be expressed on different meshes and even
geometries. Well-suited interpolation techniques
have to be specifically developed to account for
the incompatibility of the data between disciplinary
modules;

– to evaluate a single design, several iterations might
be required, leading to a high CPU time and mem-
ory cost;
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Fig. 11 POD reconstruction error averaged over the 36 pressure
snapshots of the database

– the coupling of numerical codes might cause lots of
practical issues (e.g. commercial software available
on different machines or servers).

These reasons explain the need for model reduction
techniques in the context of multidisciplinary analysis
and optimization, particularly to diminish the intercon-
nections between models. Therefore, the next sections
investigate the use of the bi-level model reduction strat-
egy for the 3D wing example.

5.2 Generation of the design of experiments

As described in Section 3.1, the first step consists in
launching a set of numerical simulations, on representa-
tive wing geometries; the corresponding results will be
used afterwards to build the reduced models.

Several methods are available to choose the set of
design variables: this is the aim of the design of exper-
iment techniques. When no specific knowledge about
the problem is introduced, and for a small number of
design variables (here: nvar = 2), the most straightfor-
ward option consists in a full factorial sampling, where
the design variables are selected uniformly throughout
the domain. Then, in order to provide consistent values
for the pressures and displacements, a full multidiscipli-
nary analysis is performed for each geometry.

The design of experiments used in this study is a 6-
point full factorial set; the wing hub sections, along with
the corresponding values of the lift coefficient obtained
after a MDA, are shown in Fig. 8.

Table 1 3D wing: errors on the POD approximation of the
pressures and displacements

1 mode 2 modes 3 modes

Error on the pressure 8.55% 5.95% 1.62%
Error on u (x-displacement) 14.00% 8.05% 3.55%
Error on ν (y-displacement) 3.26% 2.15% 1.10%
Error on w (z-displacement) 18.58% 7.04% 4.59%
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Fig. 12 Surrogate model (by
polynomial response surface)
of the POD coefficient α

p
3

(left: 1st-order polynomial;
right: 2nd-order polynomial)
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The small number of design variables is used for a
double purpose: limiting the size of the design of exper-
iments required for building the surrogate models, and
also enabling eventually a visualization of these models
(cf. Section 5.4).

5.3 Level 1: proper orthogonal decomposition
to reduce the response variables

To get a better insight of the POD reduction, the
pressure distribution on the wing surface is illustrated
for the 36 snapshots of the database. First, the pressures
interpolated on the interface grid are projected on a
2D rectangle (see Fig. 9). The reconstruction of a single
pressure snapshot is synthesized in Fig. 10.

The average energy criterion error εenergy and the
reconstruction error εrec obtained for the 36 elements
of the database is depicted in Fig. 11 for the pressure
field, showing a rapid decrease of the error for a low
number of modes. The difference between the 2 curves
is due to the contribution of the average pressure, which
is by definition not taken into account in the covariance
matrix, and explains the larger values obtained for the
energy criterion.

The errors of the pressures and displacements (i.e.
the values obtained by the MDA process compared to
their POD approximation, averaged over the 36 points
of the DOE) are collected in Table 1, showing that
3 modes are sufficient to get a satisfactory representa-
tion of the fields (the larger errors observed for the

Fig. 13 Surrogate model (by
MLS approximation) of the
POD coefficient α

p
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1st-order polynomial; right:
2nd-order polynomial)
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Fig. 14 Surrogate model (by
MLS interpolation) of the
POD coefficient α
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Fig. 15 Surrogate model (by
polynomial response surface)
of the POD coefficient αν

2
(left: 1st-order polynomial;
right: 2nd-order polynomial)
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Fig. 16 Surrogate model (by
MLS approximation) of the
POD coefficient αν

2 (left:
1st-order polynomial; right:
2nd-order polynomial)
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Fig. 17 Surrogate model (by
MLS interpolation) of the
POD coefficient αν

2 (left:
1st-order polynomial; right:
2nd-order polynomial)
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displacements u and w are due to their smaller mag-
nitude with respect to the vertical displacement ν).

5.4 Level 2: building and validating the surrogate
models

Once the behaviour of a coupling variable has been
reduced by the POD technique, the m scalar values
contain enough information to build an approximation
of the whole field. Therefore, the idea proposed here
is to build inexpensive surrogate surfaces of the scalar
POD coefficients of the flow and the structure with
respect to the design variables.

Before using the reduced model for the shape opti-
mization of the wing design, its ability to predict accu-
rate pressure and displacements fields should be vali-
dated. To accomplish this task, a leave-1-out procedure
is applied: for each point of the design of experiments
(DOE), a surrogate surface is built with the (M − 1)
other points of the DOE (M being the number of
points in the DOE = 36), and the pressure field papprox

obtained by the approximate model is compared with
the results contained in the DOE database.

The following parameters of the approximation are
investigated:

– the nature of the surrogate surfaces:

– polynomial RSM on the POD coefficients;

– MLS approximation on POD coefficients;
– MLS interpolation on POD coefficients;

– the influence of the number of POD modes (1, 2 or
3) kept for the approximation;

– the degree of the polynomial bases (first-order or
second-order).

As an illustration, the surrogate models for α
p
3 (third

POD coefficient for the pressure) and αν
2 (second

POD coefficient for the y-displacement) are depicted
in Figs. 12, 13, 14, 15, 16, and 17, with respect to the
design variables.

The flow calculations must furnish 2 outputs: the
pressure distribution on the wing surface, which can be
reconstructed by the reduced fluid model (papprox), and
the lift coefficient CL. In order to estimate CL for any
wing geometry, the resulting vertical force fvertical due
to the loading of papprox on the wing is calculated as
follows:

CL,approx(X) = fvertical
1
2ρν2

ref A
, (24)

where νref is the speed of the airplane and A is the
characteristic area of the wing. Over the 36 instances of
the DOE, the average error committed by this approx-
imation of CL is equal to 0.58%.

Tables 2 and 3 collect the average errors between the
values of the scalar POD coefficients and their approx-

Table 2 3D wing: errors on
the approximation of the
POD coefficients (for the
fluid)

Relative Approximation method
contribution Polyn. basis – degree = 1 Polyn. basis—degree = 2

PRSM MLS app. MLS interp. PRSM MLS app. MLS interp.

α
p
1 15.9% of p 1.54% 0.35% 0.35% 0.41% 0.33% 0.34%

α
p
2 9.0% of p 1.66% 0.71% 0.71% 0.69% 0.69% 0.68%

α
p
3 4.8% of p 2.56% 1.16% 1.16% 1.23% 1.15% 1.15%
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Table 3 3D wing: errors on
the approximation of the
POD coefficients (for the
structure)

Relative Approximation method
contribution Polyn. basis – degree = 1 Polyn. basis – degree = 2

PRSM MLS app. MLS interp. PRSM MLS app. MLS interp.

βu
1 42.9% of u 10.57% 4.18% 4.17% 3.36% 3.46% 3.47%

βu
2 10.2% of u 13.55% 5.21% 5.19% 3.76% 3.93% 3.95%

βu
3 4.6% of u 13.64% 5.26% 5.24% 3.83% 3.98% 4.00%

βv
1 41.8% of v 1.75% 1.51% 1.51% 1.33% 1.84% 1.88%

βv
2 2.8% of v 1.88% 1.56% 1.57% 1.38% 1.88% 1.94%

βv
3 1.5% of v 2.29% 1.64% 1.65% 1.55% 1.91% 1.96%

βw
1 55.6% of w 10.36% 4.84% 4.82% 4.64% 4.34% 4.34%

βw
2 11.9% of w 13.28% 5.63% 5.60% 5.80% 4.70% 4.69%

βw
3 8.8% of w 14.43% 6.38% 6.35% 7.04% 5.42% 5.41%

imation by the surrogate models (using the leave-1-out
validation technique on the 36 designs of the DOE).

The results lead to the following remarks:

– for all approximation methods, a second order
polynomial basis gives lower error values. This is
logically explained by the fact that a richer basis,
containing more terms, allows for a better represen-
tation of the surface. It is interesting to notice that
the MLS is a general approximation method which
enables the use of bases other than polynomial (e.g.
sinusoidal, spline), depending on available informa-
tion about the physics involved;

– the PRSM gives a good trend of the points to ap-
proximate, but cannot capture the local phenomena
(as clearly illustrated in Figs. 12 to 14 for α

p
3 ),

demonstrating the benefit of using MLS approxi-
mation in a general case;

– as with other interpolating meta-models like the
kriging, the MLS interpolation, by forcing the sur-
rogate surface to pass through all sample points,

tends to degrade the smoothness of the surface, in
comparison with a MLS approximation;

– the largest errors concern displacements u and w,
whose scale of magnitudes is much lower than the
(vertical) displacement ν;

– for all responses, the lowest error values are ob-
served for the first mode, and slightly increase with
the mode rank. This is due to the fact that higher
rank modes bring a smaller contribution to the field,
and are more polluted by numerical noise. Prac-
tically, the response surfaces of the correspond-
ing POD coefficients are more irregular, hence
also more difficult to approximate. However, since
the relative contribution of the successive modes
rapidly decreases, the larger errors obtained for
those modes cause no harm to the approximation.

From these remarks, the combination of MLS ap-
proximation (with second order polynomial basis) and
POD reduction is advised. The major advantage of
this approach is to supply full surrogate models for
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Table 4 3D wing: comparison
between MDO strategies
(without and with surrogate
models)

Computational time CFD/FEM models Surrogate models

1 fluid computation 1 h 20 min < 1 s
1 structure computation 8 min < 1 s
1 optimizer iteration 4 h 24 min (1 MDA) 3 s
Time for DOE — 6 days 14 h (36 MDA)
Number of optimizer iterations 50 (stopped) 43
Total computational time 9 days 3 h 6 days 19 h (DOE + 1 final MDA)

the fluid and the structure, allowing the calculation of
the pressures, displacements, weight, lift and von Mises
stress at a very low cost.

Furthermore, the 36 snapshots of numerical FVM or
FEM simulations (requiring a multidisciplinary analy-
sis of the coupled models) can be run independently,
which makes the DOE calculations ideally suited for
parallel computing.

After this validation procedure, the final step con-
sists in optimizing the wing design by taking benefit of
the fluid model reduction procedure introduced hereby.

5.5 Shape optimization of the 3D wing with reduced
models

As mentioned in Section 4.1, the shape design variables
are optimized in order to minimize the weight of the
structure.

It has been demonstrated on a 2D wing application
that a direct approximation of the responses CL and
σvonMises,max (i.e. not derived from the pressures and
displacements) is generally not reliable enough to rep-
resent the complexity of the problem: a preliminary
reduced model of the coupling variables of interest is
mandatory (Filomeno Coelho et al. 2008). Therefore, in
this study, the constraints (related to the lift coefficient
and von Mises maximum stress) are post-processed
values directly derived from the pressures and dis-
placements fields calculated by the bi-level reduction
strategy.

To optimize the 3D wing shape, the COBYLA
(Constrained Optimization BY Linear Approximation)
algorithm available in SciPy has been used, since it
is derivative-free and well adapted to problems with
a low number of variables (< 10) and the presence
of nonlinear constraints (Powell 1994). The reference
wing (Section 4.2) is used as the starting point; the
evolution of the objective function (the weight) with
respect to the optimizer iterations as well as the optimal
design are depicted in Fig. 18. The surrogate models are
based on a POD decomposition with 3 modes for each
variable, and the response surfaces are based on MLS
approximation (with a second order polynomial basis).

The solution found by this method (X(opt) =
[−0.1775 − 0.0048]) decreases the weight by 6.6%, and
a verification of the lift and von Mises stress with the
accurate numerical solvers confirm that the solution
is feasible (i.e. all constraints are satisfied). Moreover,
the fact that no Finite Volume computation has to be
performed accelerates considerably the CPU time of
the optimization process in comparison with a standard
approach requiring the execution of the accurate nu-
merical codes. Finally, no coupling of codes is necessary
during the optimization.

The comparison of MDO strategies with accurate
(CFD, FEM) models and surrogate models is summa-
rized in Table 4. For the optimization performed with
the full scale models, the process is stopped after 50
iterations (the algorithm has not converged yet and
the weight reduction at the 50th iteration is 4.3%, to
be compared with the 6.6% found with the surrogate
models). The results were obtained on a single PC (1
CPU at 1 GHz frequency); the benefit of using surro-
gate models in terms of overall computational time is
clearly demonstrated.

6 Conclusions

In this paper, model reduction strategies for coupled
systems have been discussed. In particular, in the con-
text of multidisciplinary analysis and optimization, the
challenges of decreasing the interconnections between
models and the computational time need to be ad-
dressed.

Therefore, the original contribution of this work is
to propose a bi-level model reduction technique: first,
the coupling variables are reduced by means of the
Proper Orthogonal Decomposition (POD), allowing to
express any large vector as a linear combination of
a few modes. Then, surrogate models are carried out
by approximating the scalar coefficients of the POD
linear expansion (by the Polynomial Response Surface
or the Moving Least Squares methods). Applied to the
shape optimization of a 3D flexible wing, the benefit of
the reduction methodology has been demonstrated to
eliminate the need to couple the codes while optimiz-
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ing. Moreover, because of its inherent handling of the
local effects, the MLS approximation reveals itself as a
reliable and flexible technique to model various natures
of response surfaces.

However, it must be emphasized that the bi-level
reduction method has been tested for a small number
of variables (here: nvar = 2). To be efficient with more
design variables, both following characteristics must be
encountered:

– construction of the design of experiments: with more
variables, a full-factorial design of experiments
(DOE) is no longer permitted. Therefore, other
techniques, as the Latin Hypercube Sampling for
instance, must be applied to obtain a representative
set of wings;

– efficiency of the POD decomposition: the solutions
(e.g.: pressures, displacements) found for all de-
signs of the DOE still have to be approximated
accurately for a limited number of POD modes;

– accuracy of the surrogate surfaces of the POD co-
efficients: the response surfaces of the POD coeffi-
cients must have minimal properties of smoothness
and regularity in order to be represented accurately
by a surrogate model.

From the promising results obtained both for the 2D
airfoil (Filomeno Coelho et al. 2008) and the 3D wing,
the next research axes will focus on the following topics:

– improvement of the POD: the quality of the POD
depends on the snapshots of the database (ob-
tained by a design of experiments). To enrich
the POD basis, specific strategies could be de-
veloped, for instance by adding snapshots result-
ing from non-converged multidisciplinary analyses
(e.g. computed during the optimization process);

– enrichment of the MLS approximation: according to
each specific problem, the MLS parameters can be
adapted, by incorporating new terms in the basis
(to allow for a better representation of the physical
variable), or by forcing the MLS approximation to
satisfy additional constraints;

– combination with multi-level MDO strategies:
several multi-level MDO strategies have been
proposed in the literature (Collaborative Optimi-
zation, Concurrent subspace optimization, BLISS,
MORDACE, DIVE, ...). All multi-level strategies
try to separate as most as possible the handling
of the different disciplines, and local optimization
tasks are also performed at the discipline level.
Therefore, the reduced models proposed in this
paper could be adapted and tested with the existing

multi-level methods, in sequential and parallel
environments.
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