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Abstract Ultra-light cellular materials exhibit high
stiffness/strength to weight ratios and bring opportunity
for multifunctional performance. One of their poten-
tial applications is to build structure with optimum
dynamic performance, which is extremely important
for some structural parts in vehicle engineering and
attracts a great attention. This paper presents a two-
scale optimization method and aims at finding optimal
configurations of macro structures and micro-structures
of cellular material with maximum structural funda-
mental frequency. In this method macro and micro den-
sities are introduced as independent design variables
for macrostructure and microstructure. Optimizations
at two scales are integrated into one system through
homogenization theory and base material is distributed
between the two scales automatically with optimization
model. Microstructure of materials is assumed to be
homogeneous at the macro scale to meet today’s man-
ufacture practice and reduce manufacturing cost. Plane
structure with homogeneous cellular material and per-
forated plate are studied. Numerical experiments vali-
date the proposed method and computational model.
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1 Introduction

With the development of engineering practice, the
demand for high performance material is beyond tra-
ditional solid metal material. People expect new ma-
terial possessing properties such as lightweight, high
efficiency and multifunction. In order to realize this
goal, various ultra-light materials including foam
(Ashby et al. 2000), truss-like material (Wallach and
Gibson 2001; Deshpande et al. 2001) and linear cel-
lular material (Hayes et al. 2004) are developed and
fabricated through controlling the geometry of mate-
rial microstructures. These ultra-light materials have
been widely used to construct light weight sandwich
panel structures, for heat dissipation, vibration control
and/or acoustic damping because of their relatively high
stiffness/strength–weight ratios and tremendous oppor-
tunity for multifunctional applications.

The ultra-light materials can be divided into two
groups. The first one is represented by foam material
that has intrinsic microscopic randomness in micro-
structures. Because of the uncontrollable random-
ness the foam material is not a good choice for
load-carrying structural components. Another group,
including truss-like material and linear cellular ma-
terial as shown in Fig. 1, differentiates itself by mi-
crostructures distributed periodically in space. The
latter ones also have two additional advantages, namely
their nearly perfect periodicity and high designability.



116 B. Niu et al.

Fig. 1 Two representations
of ultra-light materials.
a Truss-like material
(Deshpande et al. 2001).
b Linear cellular material
(Hayes et al. 2004)

Truss-like material (Deshpande et al. 2001) Linear cellular material (Hayes et al. 2004)

The increasing recognition of this designability and the
rapid developments in fabrication technique (Kooistra
et al. 2004; Brittain et al. 2001; Cochran et al. 2002)
have attracted more attention to design macrostruc-
tures composed of the periodic porous anisotropic ma-
terials or cellular materials. In this paper we focus
mainly on macro plane structure with homogeneous
cellular material. Another important ultra-light struc-
ture is perforated plate, which is formed by planar
periodic repetition of a uniform 3D microstructure,
but the microstructure doesn’t vary along the plate
thickness direction. Since the dynamic analysis and op-
timum design of perforated plate structure with cellular
material follow the same approach, our study will cover
perforated plate as well.

Although there are abundant studies on the elastic
behavior of cellular materials under static loads, the
dynamics of this class of cellular solids receives more
attention recently. Wang and Stronge (1999) studied
dynamic behavior of elastic regular hexagonal hon-
eycombs under harmonically exciting forces using the
micropolar theory. The effect of impact and energy
absorption of metal honeycombs is studied by Evans
et al. (2001), Xue and Hutchinson (2003). Banerjee
and Bhaskar (2005) investigated the free vibration of
elastic structures made up of cellular material through
an approximate method. To the best of our knowledge,
few work so far has been reported on two-scale con-
current optimum topology design of cellular materials
considering vibration. Since structures made of these
materials are frequently used under dynamic environ-
ments, there is a need to understand and optimize their
dynamic behavior. The present study is motivated by
this need. Structural topology optimization approach is
utilized as a key tool.

When such a periodic material is used for construct-
ing the macro structure that has the characteristic di-
mension much larger than the characteristic length of

the material microstructure, the periodic material can
be homogenized for the reason of a more efficient
analysis. This is a two-scale computing problem de-
scribed by same continuum equations at macro and
micro scales (Borst 2008). First, effective elastic prop-
erties of homogenized material are determined by an
equivalence of the mechanical behavior of the repre-
sentative microstructure. Then the computation at the
macro scale can be implemented based on the effective
properties. A variety of methods including analytical,
numerical and experimental methods have been devel-
oped to calculate the effective mechanical properties,
e.g. in the book (Gibson and Ashby 1997) and a recent
review (Hohe and Becker 2002). As one of these meth-
ods, the mathematical homogenization method based
on two-scale asymptotic expansion is widely applied in
predicting the effective properties of periodic materials
because of its rigorous mathematical foundation (see,
e.g., Benssousan et al. 1978; Sanchez-Palencia 1980;
Hassani and Hinton 1998). Perforated plate can be
solved based on mathematical homogenization method
in a similar way (Artola and Duvaut 1977; Liu et al.
1998; Bendsøe and Sigmund 2003, references therein).

Structural topology optimization aims at finding
optimum topology to minimize structural weight or
maximize structural performance under a given set of
constraints. Different from size or shape optimization,
structural topology optimization can achieve more ef-
ficient conception/configuration design in the stage of
initial design, and it is a hot topic in recent two decades.
The pioneering work of modern structural topology op-
timization can be traced back to 1981, when Cheng and
Olhoff (1981) introduced the concept of microstruc-
ture to structural optimization in studying the optimum
thickness design of a solid elastic plate for minimum
compliance. The connection between shape optimiza-
tion and homogenization of microstructured materials
is discussed in a series of works on optimal design
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problems introducing microstructures (see, e.g., Allaire
2002; Cherkaev 2000; Tartar 2000, for an overview).
In 1988, Bendsøe and Kikuchi (1988) implemented the
topology optimization via a homogenization method
and lay a foundation of modern structural topology op-
timization. Later, SIMP (Solid Isotropic Material with
Penalization) method by Bendsøe (1989) and Rozvany
et al. (1992) was developed and used to implement
topology optimization. ESO (Evolutionary Structural
Optimization) (Xie and Steven 1993) and Level Set
approach (Allaire et al. 2002; Wang et al. 2003) are two
alternative topology optimization approaches. For the
state of art in topology optimization reader is referred
to the review (Eschenauer and Olhoff 2001) and the
book (Bendsøe and Sigmund 2003).

Topology optimization with respect to structural vi-
bration frequency was first considered by Diaz and
Kikuchi (1992), who dealt with a single eigenvalue
optimization problem. Subsequently, many works have
been seen to extend topology optimization in dynamic
problems (e.g., Ma et al. 1995; Krog and Olhoff 1999;
Allaire et al. 2001; Allaire and Jouve 2005, etc.). Re-
cently Jensen and Pedersen (2006) dealt with maximal
eigenfrequency separation in two-material structures.
Du and Olhoff (2007) discussed different approaches
for topology optimization of vibrating structure. Topol-
ogy optimization used to design periodic material with
phononic band gaps is reported by Sigmund and Jensen
(2003) and many others.

The present work is an attempt to achieve optimal
structure composed of ultra-light materials by utilizing
topology optimization at both structural and material
scales. It aims at finding optimal configurations of the
macro structure and material microstructure for max-
imizing fundamental frequency with specific base ma-
terial amount. Microstructure of materials is assumed
to be homogeneous at the macro scale to meet today’s
manufacture practice and reduce manufacturing cost.
The two-scale structure and material analysis is per-
formed based on the assumption that macroscopically
cellular structures behave as a homogeneous contin-
uum for low frequency dynamics instead of discrete
complete cellular structures, which needs computa-
tionally expensive dynamic analysis. Plane structures
and perforated plates are studied. In the optimiza-
tion formulation, macro and micro densities are intro-
duced as the design variables for the macro structure
and material microstructure independently. The design
of material microstructure is concurrently optimized
with the structural topology design at the macro scale.
Penalization approaches are adopted at both scales
to ensure clear topologies, i.e. SIMP (Bendsøe 1989;
Rozvany et al. 1992) at micro-scale and PAMP (Porous

Anisotropic Material Penalization) (Liu et al. 2008) at
macro-scale. Optimizations at two scales are integrated
into one system with homogenization theory and the
distribution of base material between two scales can be
determined automatically by the optimization model.
The proposed method and computational model are
validated by a number of numerical examples.

The organization of the rest of this paper is as fol-
lows. The two-scale design model for structure with ho-
mogeneous cellular material is described in Section 2.
Two class design variables, namely macro density and
micro density, are independently defined. Section 3
presents formulations of two-scale design optimization
for maximum structural fundamental eigenfrequency.
Penalization method for topology optimization of vi-
brating structures at two scales is given in Section 4.
Section 5 gives briefly the formulation for vibration of
perforated plate. Section 6 outlines various numerical
examples in order to validate the proposed method, in-
cluding plane and perforated plate problems. Finally, a
summary of our observations and a conclusion close the
paper. Appendix deals with the structural analysis and
sensitivity analysis required for numerical optimization
algorithms.

2 Two-scale design model for structure
with homogeneous cellular material

Design of structure with homogeneous cellular material
can be divided into two scales, i.e. design of structure
at macro scale and material microstructure at micro
scale. Many research works (Hyun and Torquato 2002;
Sigmund 1995; Yan et al. 2006; Lipperman et al. 2008)
for ultra-light materials aim at developing materials
with prescribed or extreme properties, i.e. optimizing
material microstructure in terms of certain homoge-
neous effective properties. Such optimum material is
not guaranteed to be the most efficient when construct-
ing structures, since both structural configuration and
boundary conditions for different structures may vary
dramatically in practical use. Rodrigues et al. (2002)
proposed a hierarchical structure and material design
method to achieve minimum system compliance. In this
method macro design variable in every point equals
the integral of micro design variables in the domain
of microstructure corresponding to that point at macro
scale. Furthermore, in this method microstructural con-
figurations vary from point to point at the macro-scale,
which results in a “varying gray” look of the structural
design. Such results provide ideally optimum design,
but may bring about an insurmountable manufacturing
difficulty.



118 B. Niu et al.

To be different from the both methods above, we
proposed a two-scale optimization method to realize
the topology optimization at two scales and find opti-
mal topology of macro-structure and optimal configura-
tion of micro-structure simultaneously. The basic idea
of the method was presented in the paper (Liu et al.
2008). In this two-scale optimization method, macro
and micro densities are introduced as independent de-
sign variables for macro structure and material mi-
crostructure, respectively. Optimizations at two scales
are integrated into one system with homogenization
theory and solved simultaneously without iterations
between two scales. The optimal configurations at two
scales can be decided automatically by the two-scale op-
timization model. Penalization approaches are adopted
at both scales to ensure clear topologies, i.e. SIMP
(Solid Isotropic Material Penalization) (Bendsøe 1989;
Rozvany et al. 1992) at the micro-scale and PAMP
(Porous Anisotropic Material Penalization) (Liu et al.
2008) at the macro-scale.

Figure 2 shows a structure with homogeneous cellu-
lar material schematically. It is a “single gray–white”
design. At the macro scale, the “gray domain” is com-
posed of homogeneous cellular material, and the “white
domain” has no cellular material. And the homoge-
neous cellular material is assumed to be made of the
base material and to have periodic microstructure free
from any restriction (e.g. cellular material with square
and rectangular holes, ranked laminates). In the en-
larged picture of Fig. 2, the “black domain” in the unit
cell of the cellular material is occupied by base material
such as aluminum and alloy, and the “white domain”
has no material.

Both optimum design problems at macro-structure
and micro-structure scales as shown in Fig. 2 can be
dealt with as classical layout designs, for which topology
optimization is a powerful tool. First as shown in Fig. 2,
macro domain � is meshed into NE elements and micro
domain Y is meshed into n elements. Each element
is then assigned a unique artificial volumetric relative

Fig. 2 A structure composed of homogeneous cellular material
and penalization-based two-scale design optimization

density value either 0 or 1 for description of material
distribution, or description of the topology, that is,
Pi for the ith (i = 1,2,. . . NE) element at the macro-
scale, and ρ j ( j = 1,2,. . . n) for the jth element at the
micro-scale. Pi = 1 if the ith element at the macro-scale
is occupied by cellular material, Pi = 0 if no cellular
material exists in the ith element at the macro-scale.
Distribution of Pi (i = 1,2,. . . NE) describes the macro
structural topology. ρ j = 1 if the jth element at the
micro-scale is occupied by the base material, ρ j = 0
if no base material exists in the jth element at the
micro-scale. Distribution of ρ j ( j = 1,2,. . . n) describes
the material micro structural topology of the unit cell.
Using the artificial volumetric relative density ρ j, the
mass density of the jth element at the micro-scale is ρ j ×
η, where η represents the mass density of the isotropic
base material. Since an element at the macro-scale is
composed of cellular material, ρMA

i = Pi × ρPAM is ith

element volumetric density, where ρPAM =

n∑

j=1
ρ jv

MI
j

VMI

denotes relative density of the cellular material. vMI
j

represents the area of the jth element in micro design
domain and VMI is the area of micro design domain.
The superscript MI and MA refer to the quantities in
micro design domain or the unit cell and at macro scale,
respectively. The amount of base material used for

constructing the structure is ς × VMA =
NE∑

i=1
ρMA

i vMA
i =

ρPAM ×
NE∑

i=1
Piv

MA
i , where ς is the fraction of base mate-

rial on the total base material for filling up the whole
macro design domain using solid material. And vMA

i
and VMA are the areas of the ith element and the design
domain at macro-scale, respectively.

3 Formulations of two-scale design optimization for
maximum structural fundamental eigenfrequency

The problem of two-scale topology design for maxi-
mization of fundamental frequency of macrostructure
can be formulated as follows:

Find : X = {P, ρ} , (1)

Obj : max

{

min
j=1,...J

{
λ j = ω2

j

}}

, (2)

S.t. : Kφ j = λ jMφ j, j = 1, . . . J, (3a)

φT
j Mφk = δ jk, k, j = 1, . . . J, (3b)
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ς =

NE∑

i=1
ρMA

i vMA
i

VMA
=

ρPAM ×
NE∑

i=1
Piv

MA
i

VMA
≤ ς, (3c)

ρPAM =

n∑

l=1
ρlv

MI
l

VMI
= ςMI, (3d)

0 < P ≤ Pi ≤ P, i = 1, . . . , NE, (3e)

0 < ρ ≤ ρl ≤ ρ, l = 1, . . . , n. (3f)

In (3), ω j and φ j denote the jth structural eigen-
frequency and corresponding eigenvector, respectively.
K and M are the positive definite symmetric stiffness
and mass matrices of the macro structure. Equation
(3a) is the governing equation of structural natural
vibration. Equation (3b) imposes the M orthonormal-
ization condition on eigenvectors. δ jk is Kronecker’s
delta. In the optimization of maximum natural fre-
quency by topology optimization, the order of the
modes could change during optimization, namely so
called mode switching (Ma et al. 1995; De Gournay
2006; Du and Olhoff 2007), thus J candidate frequen-
cies are considered in the objective function (2). The
eigenvalue problem is solved using the subspace itera-
tion method (Bathe 1996).

The constraint (3c) sets the upper bound of the avail-
able base material, ς × VMA is prescribed base ma-
terial amount, ς represents the fraction of prescribed
base material on the total base material for filling up
the whole macro design domain using solid material.
The constraint (3d) specifies the relative density of
the cellular material and ςMI is the prescribed relative
density of the cellular material. To avoid singularity in
computation, low limit 0.001 is specified for both macro
and micro volumetric material densities P and ρ.

The global stiffness matrix K and mass matrix M can
be calculated by:

K =
NE∑

i=1

∫

�e

BT × DMA × Bd�e =
NE∑

i=1

KMA
i , (4)

M =
NE∑

i=1

∫

�e

ρMA × η × NTNd�e =
NE∑

i=1

MMA
i . (5)

In these equations, KMA
i and MMA

i represent respec-
tively the ith element stiffness and mass matrices in the

form of expanded structural global degree of freedom.
B and N are the strain–displacement matrix and the
shape function matrix at macro scale, respectively.

The two-scale optimization problem is solved by
using the SLP (Sequential Linear Programming) in this
paper. Explicit expression of sensitivity is important to
enhance the efficiency of the derivative-based mathe-
matical programming algorithms such as SLP.

For the examples in this paper we trace first three
eigenfrequencies during the optimization process and
don’t find the phenomena of switching or coincidence
between fundamental frequency and other two eigen-
frequencies. The curves of evolution of eigenvalues for
some examples (Example 1 and Example 6) are re-
ferred to Figs. 6 and 12. Thus for all test cases presented
here, the optimal fundamental eigenfrequency is uni-
modal and differentiable. When the kth eigenfrequency
is unimodal, detailed sensitivity analysis of the two-
scale optimization problem is given in the Appendix.
However, multiple eigenfrequencies problem is very
important in the optimization of vibrating structure.
In the case of multiple eigenfrequencies, the eigenfre-
quencies are non-differentiable. Sensitivity analysis of
multiple eigenfrequencies has been investigated exten-
sively in many papers (see, e.g., Haug and Rousselet
1980; Seyranian et al. 1994, for an overview; Cox 1995;
De Gournay 2006; Du and Olhoff 2007; and papers
cited therein). We will continue to research whether the
phenomenon of multiple frequencies occurs in some
other boundary conditions and structural configura-
tions for the two scale topology optimization problem.
Further extensions of two scale topology optimiza-
tion for multiple eigenfrequencies problem are left for
future work.

4 Penalization method for topology optimization
at two scales

In order to achieve clear topologies at both scales,
penalization methods are applied. At micro scale, it is
natural to utilize SIMP (Solid Isotropic Material with
Penalty), a method commonly used in traditional struc-
tural topology optimization. Assuming modulus matrix
of the base material is DB, the modulus matrix DMI at a
point with density ρ at the micro-scale can be expressed
as:

DMI = ρμ × DB. (6)

At macro scale, since the cellular material can be
anisotropic, given any porous anisotropic material with
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modulus matrix DH , a point with density P has the
modulus matrix DMA as expressed by:

DMA = Pα × DH. (7)

By assuming μ > 1, α > 1, the material densities are
penalized to close to either 0 or 1. Following the termi-
nology SIMP, the macro-penalization (7) is named as
PAMP (Porous Anisotropic Material with Penalty) be-
cause the penalization is applied to porous anisotropic
material.

In terms of artificial volumetric relative density value
P, the finite element mass matrix may be expressed as:

Me = Pξ × M∗
e (8)

where M∗
e represents the element mass matrix corre-

sponding to macro element with volumetric relative
density P = 1. ξ = 1 is chosen in this paper.

One of the main problems in the topology opti-
mization with respect to eigenfrequencies or buckling
loads using SIMP is the possibility of localized modes
with very low values of corresponding eigenfrequen-
cies, see, e.g., Pedersen (2000); Allaire et al. (2001).
The localized modes may occur in areas with low values
of the element volumetric relative densities for typical
penalization values α = 3 and ξ = 1. To eliminate these
localized eigenmodes, many methods are presented
in the field of dynamic optimization (e.g. Pedersen
2000; Cheng and Wang 2007). Based on the constraint
continuity analysis approach, Cheng and Wang (2007)
pointed out that the limiting value of the ratio between
stiffness and mass has a great effect on the lowest
eigenfrequencies when design variable P approaches
to zero. For the traditional penalization values α = 3
and ξ = 1, this limiting value is zero and local vibration
mode could occur in areas with low values of densities.

To avoid the local vibration mode, they suggested the
penalization for the element stiffness matrix:

DMA = f (P) × DH. (9)

And f (P) should satisfy:

f (0) = 0, f (1) = 1, f (P) < P for 0 < P < 1.

(10)

And:

lim
P→0

f (P)
/

P > 0. (11)

After numerical experiments and elaborate analysis,
a good choice is found that:

f (P) = 1.1P3 − 0.2P2 + 0.1P (12)

which is the choice in this paper. Figure 3 shows com-
parison of our polynomial penalization and the tra-
ditional exponent penalization. For more discussions
about the selections of penalization function, readers
are referred to ref. (Cheng and Wang 2007).

In the two-scale optimization here, DH doesn’t rep-
resent the constitutive matrix of isotropic base material
like in traditional SIMP, but denotes the equivalent
constitutive matrix of corresponding periodic cellular
material. The computation of DH follows the classical
homogenization procedures (Benssousan et al. 1978;
Sanchez-Palencia 1980; Hassani and Hinton 1998):

DH = 1

|Y|
∫

Y

DMI × (l − bu)dY, (13)

DMI = ρμ × DB (14)

where DMI represents constitutive matrix of the mate-
rial points with density ρ at the micro-scale, DB repre-
sents the constitutive matrix of isotropic base material,

Fig. 3 Comparisons of
polynomial penalization (12)
and exponent penalization
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Fig. 4 Homogenization
based analysis of perforated
plate

I (3 × 3) is a unit matrix in two-dimensional case, |Y| is
the area of a unit cell, and b is the strain/displacement
matrix at the micro scale. Generalized deformations u
of the micro-structure could be obtained from (15) and
(16) below. The power μ in (14) denotes the exponent
of penalization, and μ = 3 is chosen in this paper:

k × u =
∫

Y

bT × DMIdY, (15)

k =
∫

Y

bT × DMI × bdY. (16)

With the equivalent constitutive matrix of cellular
material and penalization method, the global stiffness
matrix K and mass matrix M can now be calculated by:

K =
NE∑

i=1

∫

�e

BT × DMA × Bd�e

=
NE∑

i=1

f (Pi)

∫

�e

BT × DH × Bd�e =
NE∑

i=1

f (Pi) K∗
i ,

(17)

M =
NE∑

i=1

⎛

⎝Pi ×
∫

�e

η × ρPAMNTNd�e

⎞

⎠ =
NE∑

i=1

Pi × M∗
i .

(18)

In these equations, K∗
i and M∗

i represent respectively
the ith element stiffness and mass matrices with macro
element volumetric relative density P = 1.

5 Formulation for vibration of perforated plate

Another important type of ultra-light structure is
perforated plate, which is formed by planar periodic

repetition of a homogeneous 3D microstructure, but
the microstructure doesn’t vary along the plate thick-
ness direction, as shown in Fig. 4.

Considering the behavior of a thin perforated plate
undergoing small deformations, it is reasonable to
approximate the perforated plate as a classical
anisotropic plate based on the effective properties
resulting from the microstructure. The effective prop-
erties of this perforated plate can be obtained simi-
larly based on mathematical homogenization method
(Artola and Duvaut 1977; Liu et al. 1998; Bendsøe and
Sigmund 2003, references therein).

The general constitutive law of the perforated plate
is:

F = DPLκ (19)

or in the matrix form:

⎧
⎨

⎩

Fx

Fy

Fz

⎫
⎬

⎭
= DPL

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−∂2w

∂x2

−∂2w

∂y2

−2
∂2w

∂x∂y

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= t3

12
DH

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−∂2w

∂x2

−∂2w

∂y2

−2
∂2w

∂x∂y

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= t3

12

⎡

⎢
⎣

DH
11 DH

12 DH
13

DH
21 DH

22 DH
23

DH
31 DH

32 DH
33

⎤

⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−∂2w

∂x2

−∂2w

∂y2

−2
∂2w

∂x∂y

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(20)

Fig. 5 Admissible design domain of beam-like 2D structure,
clamped at the left wall
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where t is the thickness of the thin perforated plate,
Fx and Fy are normal bending moments and Fxy is
twisting moment, κ is curvature of the thin plate, and w

is the plate deflection in the direction of the z axe while
the z-direction coincides with the thickness direction of
the thin plate and the plate is parallel to the xy plane.

The equivalent properties DH of perforated plate
can be computed in a similar way as above plane prob-
lem (Liu et al. 1998).

The global stiffness matrix K and mass matrix M
for perforated plate can be calculated similarly. BPL

and NPL are the curvature–displacement matrix and the
shape function matrix of plate element at the macro
scale, respectively:

K=
NE∑

i=1

f (Pi)

∫

�e

(
BPL)T×DPL×BPLd�e =

NE∑

i=1

f (Pi) K∗
i ,

(21)

M=
NE∑

i=1

⎛

⎝Pi×
∫

�e

η×ρPAM(NPL)T
NPLd�e

⎞

⎠=
NE∑

i=1

Pi×M∗
i .

(22)

6 Numerical examples

Several numerical examples, including plane and perfo-
rated plate problems and multi domain design problem,
are given in order to validate the proposed two-scale
optimization method. The base material is isotropic
with Young’s modulus E = 7× 1010 Pa, Poisson’s ratio
υ = 0.3, and mass density η = 2,700 kg/m3. The mesh
is 25 × 25 for the microstructure design domain (Eight-
node element).

For suppressing the numerical instability and
checkerboard patterns, the Heaviside density filtering
technique (Guest et al. 2004) together with continu-
ation method is adopted in following numerical ex-
amples. The Heaviside function for density filtering is
approximated as a smooth function governed by the
parameter β (Guest et al. 2004). For the two-scale
optimization in this paper, the macro and micro de-
sign variables are defined in different design domains,
namely macro and micro design domains. Through nu-
merical experiments, it is recommended that different
parameters βMA and βMI respectively for macro and
micro design variables are chosen. Thus the macro

Table 1 Topological designs of macro and micro structures for varying available base material at specific micro volume fraction 40%

Micro structure 

ς 1λ Macro structure The first mode 

Cell 4×4 array

5% 67.39 

10% 156.81 

20% 487.99 

25% 593.81 
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and micro densities after using the Heaviside density
filtering technique become:

P = 1 − e−βMA P̃ + P̃e−βMA
, (23)

ρ = 1 − e−βMIρ̃ + ρ̃e−βMI
(24)

where:

P̃ =

∑

i∈SMA
e

wMA (xi) Pi

∑

i∈SMA
e

wMA (xi)
, (25)

ρ̃ =

∑

j∈SMI
e

wMI
(
y j
)
ρ j

∑

j∈SMI
e

wMI
(
y j
) . (26)

P and ρ are the filtered design variables. The weighting
functions wMA(xi) and wMI(yi) are defined by:

wMA (xi) =
{

(R − ‖xi − xe‖)
/

R, if xi ∈ SMA
e

0, otherwise
, (27)

wMI (y j
) =

{(
r − ∥

∥y j − ye
∥
∥
)/

r, if y j ∈ SMI
e

0, otherwise
. (28)

R is the given filter radius in the macro design
domain, and r is the given filter radius in the micro
design domain. The primary role of the filter radius is to
identify the elements that influence the relative density
of element e. For example, in the macro design domain
we draw a circle of radius R centered at the center of
element e, thus generate the circular sub-domain SMA

e .
Elements with centers located inside SMA

e contribute to
the computation of relative density of element e in the
macro domain. Similarly the sub-domains SMI

e is also
specified by the elements that have centers within the
given filter radius r of the center of the element e in
the micro design domain. xi and y j denote the spatial
(center) locations of the element i in the macro design
domain and element j in the micro design domain,
respectively. The Heaviside density filter is employed
using a continuation approach where low values of
βMA and βMI are used in the start, e.g. βMA = 0 and
βMI = 0, their values are gradually increased until the
satisfactory results are obtained if lots of intermediate
densities exist in the converged topology. However,
when the two parameters βMA and βMI are increased
uniformly clear topologies of macro and micro struc-
tures are hard to be obtained simultaneously. Through

Table 2 Topological designs of macro and micro structures with varying micro volume at available base material amount 20%

Micro structure 
MIς 1λ  Macro structure The first mode 

Cell 4×4 array 

30% 435.81 

    

40% 487.99 

    

60% 508.96 

    

100% 558.02 
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Fig. 6 Iteration histories of the first three eigenvalues for the
process leading to the topology designs in fourth row of Table 1
with available base material amount ς = 20% and specific micro
volume fraction ςMI = 40%

numerical experiments, it is found that convergence
is relatively stable when the two parameters βMA and
βMI are changed independently, e.g. βMA = βMA+ 1
and βMI = βMI+ 4 after one converged optimization.
Meanwhile, in Heaviside density filter using continua-
tion method it is normally recommended to start with
large filter radiuses and gradually decrease them. In our
numerical experiments, the initial values of the radiuses
R and r are respectively about three or four times larger
than the lengths of the macro and micro elements, and
the radiuses R and r approximately equal the lengths of
the macro and micro elements respectively when two-
scale optimization is finished.

Example 1 The first example is topological design of
a beam-like macrostructure modeled by 2D plane el-
ements. As shown in Fig. 5, the admissible macro de-
sign domain is an 80 × 50 m rectangle with clamped
support at the left wall and a concentrated mass M0 =

Fig. 7 Admissible design domain of beam-like 2D structure with
two clamped ends

216,000 kg at the center of the right side. Finite element
model of 48 × 30 eight-node elements is utilized for dy-
namic analysis and optimum design. The design objec-
tive is to maximize the fundamental eigenfrequency for
different prescribed base material volume fraction and
different prescribed micro material volume fraction.
Table 1 lists topological designs of macro and micro
structures with variation of available base material at a
specific micro volume fraction ςMI = 40%. Table 2 lists
topological designs of macro and micro structures with
varying specific micro volume fraction for available
base material amount ς = 20% .

The initial values for macro design variable are uni-
form with value 0.5. The initial value for micro design
variable is proportional to its distance from the center
of the unit cell domain.

It can be seen from Table 1 that for specific constant
micro volume fraction 40%, the fundamental frequency
of the macro structure rises and the configurations of
macro and micro structures change correspondingly
with the increase of available base material. The config-
urations of the macro structure change from 2-bar like
structure to more complicated structure when the base
material increases from 5% to 25%. For the base ma-
terial amount 25% the material microstructure is like
Kagome cell, which is believed a very good microstruc-
ture. Iteration histories of the first three eigenvalues for

Table 3 Topological design
of macro and micro structure Micro structure 

ς MIς  1λ  Macro structure 

Cell 4×4 array 

20% 40% 40822.96 

  

The first mode of the 

macro structure 
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Table 4 Topological design
of single micro-scale
optimization

Micro structure MIς 1λ The first mode of Macro structure 
Cell 4×4 array

20% 15674.20 
 

 

30% 23400.65 
 

 

40% 36221.73 
 

 

the case of the fourth row in Table 1 are given in Fig. 6,
which shows the fundamental eigenfrequency always
remains unimodal during optimization process for this
case. Similarly, we checked that the optimal fundamen-
tal eigenfrequency is unimodal and differentiable for all
test cases presented in this paper.

In Table 2 the six columns list the specific micro
volume fraction, the fundamental eigenvalue of opti-
mum macro structure, its topology and fundamental
vibration mode, the optimum topology of the unit cell
and the optimum material microstructure. For all ex-
amples, the amount of available base material is 20%.
Because the amount of available base material is fixed,
the volume fraction of cellular material in macro design
domain decreases as the specific micro volume fraction
of base material at the micro scale increases. It can be
seen that the fundamental eigenfrequency increases as
the specific micro volume fraction of base material at
the micro scale increases. In the extreme case when the
specific micro volume fraction is 100%, which means
that solid material without porosity is used to construct
the structure, the two-scale optimization degenerates
to the traditional macro structure topology optimiza-
tion. This extreme case gives the highest fundamen-
tal frequency. This interesting observation somehow is
unexpected because it is often claimed in literatures
that ultralight material such as truss-like material has
high stiffness–weight ratio. However, structures made
of porous material usually undertake other functions
such as active cooling, noise damping and thermal
insulation. Though the present two-scale optimization
method gives optimum topology of macro structure and
micro structure simultaneously with the objective of
maximum fundamental frequency, this optimum ultra-

light structure provides a good initial configuration for
further considering multifunctional applications.

Example 2 In the second example as shown in Fig. 7,
the admissible macro design domain is a 14 × 2 m
rectangle with fixed support boundaries at the left and
right sides and a concentrated mass M0 = 1,512 kg at
the center of the design domain. Finite element mod-
els of 140 × 20 eight-node elements are utilized. The
design objective is to maximize the fundamental eigen-
frequency for prescribed base material volume fraction
ς = 20% and prescribed micro material volume frac-
tion ςMI = 40%. The optimum unit cell in the two-scale
optimization is a Kagome cell, which is believed a good
configuration for the future multifunctional application
of cellular materials.

Fig. 8 Admissible design domain of L-Shape 2D structure
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Table 5 Topological design of macro and micro structure

Micro structure 

ς  MIς  1λ  Macro structure The first mode 

Cell 4×4 array 

16% 40% 66965.18   

  

6.1 Comparisons between two-scale optimization
and single micro-scale optimization

In the two-scale optimization method above, macro and
micro densities are introduced as independent design
variables for macro structure and material microstruc-
ture. In order to illustrate the advantages of the two-
scale optimization method, we compare the optimum
designs from the two-scale optimization and the single
micro-scale optimization. In the single micro-scale opti-
mization, only the material microstructure needs to be
designed and the macrostructure don’t change in the
optimization. It means that the macro design domain is
filled up with the uniform cellular material everywhere.
The single micro-scale optimization for maximizing the
fundamental frequency is formulated as:

Find : X = {ρ}
Obj : max

{

min
j=1,...,J

{
λ j = ω2

j

}}

S.t. : Kφ j = λ jMφ j, j = 1, . . . , J
φT

j Mφk = δ jk, k, j = 1, . . . , J

ρPAM =
∫

Y ρMIdY

VMI
= ςMI

0 < ρ ≤ ρl ≤ ρ, l = 1, . . . , n

(29)

where micro densities are introduced as design vari-
ables for material microstructure topology optimiza-
tion. The macro densities Pi = 1 (i = 1,. . . NE) are
fixed.

Now let us apply the formulation (29) to the example
in Fig. 7. The resulting optimum micro structure designs
are given in Table 4.

Comparing the results in Tables 3 and 4, the fun-
damental eigenvalue 40,822.96 obtained by two-scale
optimization in Table 3 is higher than the fundamen-
tal eigenvalue 36,221.73 obtained by single micro-scale
optimization in the fourth row of Table 4 for same
micro volume fraction ςMI = 40%. Furthermore, base
material amount ς used in two-scale optimization is
20% in Table 3, but 40% base material is used in single
micro-scale optimization in the fourth row of Table 4
for same micro volume fraction ςMI = 40%. When the
actually used base material amount is also 20% for
single micro-scale optimization shown in the second
line of Table 4, the fundamental eigenvalue is 15,674.20
which is much lower than the fundamental eigenvalue
40,822.96 obtained by two-scale optimization for same
amount of base material in Table 3. Thus the two-scale
design optimization realizes the optimal distribution of
base material at macro and micro scales and obtains the

Fig. 9 a and b Admissible
design domains of 2D plane
structure with different
locations of concentrated
masses
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Table 6 Topological design of macro and micro structures considering different locations of concentrated masses: (a) the case of Fig. 9a,
(b) the case of Fig. 9b

(a): the case of the Fig. 9(a) 

Micro structure 

ς  MIς  1λ  Macro structure The first mode 

Cell 4×4 array

25% 40% 222886.19 

   
(b): the case of the Fig. 9(b) 

Micro structure 

ς  MIς  1λ  Macro structure The first mode 

Cell 4×4 array 

25% 40% 323886.92 

   

optimal configurations of macro and micro structures
simultaneously.

Example 3 The third example is the topological design
of an L-shape structure with fixed support boundaries
at its bottom. As shown in Fig. 8, the dimensions of L-
shape admissible design domain are H = 0.5 m, L =
1.5 m and a concentrated mass M0 = 67.5 kg at the
top of the right-hand side. The finite element models of
2,000 eight-node elements are utilized. The design ob-
jective is to maximize the fundamental eigenfrequency
for prescribed base material volume fraction 16% and
prescribed micro material volume fraction 40%.

Example 3 gives the effects of different macro design
domains and boundary conditions on the configurations
of macrostructure and microstructure. In this example,
it can be observed that the microstructure is anisotropic
under complicated conditions. It should be emphasized
that the microstructures are connected because the
microstructures are arranged periodically, shown in the
last column of Table 5.

Example 4 As shown in Fig. 9a and b, the design do-
main is a 3.0 × 3.0 m square area with a 1.0 × 1.0 m
square break in the left side and fixed at the left side.

The finite element models of 3,200 eight-node elements
are utilized. The design objective is to maximize the
fundamental eigenfrequency for prescribed base mate-
rial volume fraction 25% and prescribed micro material
volume fraction 40%. Two concentrated masses with
same magnitude M0 = 432 kg are attached to different
location of the design domain, as shown in Fig. 9a
and b. In Fig. 9b, h = 1.05 m.

Fig. 10 Admissible design domain of 2-D structure with two
design domains and a nondesign area
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Table 7 Topological design of macro and micro structures with multi design domains and a nondesign area

Micro structure 

1ς  2ς  MIς  1λ  Macro structure The first mode 

Cell 4×4 array 

9.2% 9.2% 40% 1147.84 

 

13.8% 4.6% 40% 1458.89 

 

Different locations of concentrated masses affect
the optimal configurations of macro and micro struc-
tures (Table 6). When the locations of two concen-
trated masses are symmetric shown in Fig. 9a, the
macro and micro structures have symmetry. When this
symmetry is violated, the optimal configurations of
macro and micro structures also lose the symmetry in
Fig. 9b.

Example 5 Multi-domain optimization. A multi-do-
main topology optimization technique is developed in
traditional topology optimization by Ma et al. (2006).
This example illustrates how the two-scale optimiza-
tion method can be applied to the multi-domain opti-
mization problem. Figure 10 depicts a structure (30 ×
50 m) whose optimal topology is sought in two design
domains, respectively denoted by “Area1 and Area2”,
and the structure has a bar at the center of the domain
referred to as a nondesign domain (30 × 4 m). The

structure needs to support three lumped masses with
same magnitude M0 = 27,000 kg distributed in the right
design domain “Area2”, as shown in Fig. 10. In this
example, the objective is to maximize the fundamen-
tal eigenfrequency of the structure so as to limit its
vibration response under certain operating conditions.
It is assumed that the total amount of the available
base material is 18.4% and the relative density of the
microstructure is 40%. Table 7 lists two cases for the
design which have different amount of base material
in two design domains. In first case, the base material
of the total amount 18.4% is assigned equally to the
Area1 and Area2. In the second case, the base material
of 13.8% and 4.6% is assigned to the Area1 and Area2,
respectively. In these two cases, the relative density
of the microstructure is given as 40%. It is assumed
that the structures in the two design domains and the
nondesign domain are made of same cellular material
with uniform microstructure.

Fig. 11 Admissible design domains of perforated plate with
different boundary conditions: a One edge clamped, other edges
free, and concentrated mass M0 = 1.8 kg attached at the mid-
point of the edge opposite to the clamped one. b Four edges

clamped and concentrated mass M0 = 0.54 kg at the center.
c Simple supports at four corners and concentrated mass M0 =
1.8 kg at the center of the structure
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When base material of total 18.4% amount is as-
signed to different domains, different assignments can
result in different configurations at the macro scale.
However, because the constraint of microstructural
relative density dose not change the configurations of
the microstructures have only slight variation. Thus,
when different domains have different functions in the
structure made of ultralight material, the two-scale op-
timization method presented here can be used to realize
the multidomain design problem at both macro and
micro scales.

Example 6 Following the two-scale optimization for-
mulation, optimal topology design of thin perforated

plate at the macro scale and optimal configuration
of microstructure at the micro scale can be obtained
simultaneously.

Three perforated plates, see Fig. 11a–c, are studied
here. They have the same admissible design domain
(1.0 × 1.0 m), but three different boundary condi-
tions and attached concentrated masses. The detailed
descriptions of the boundary conditions are given in
the captions of Fig. 11. The thickness of the plate is
assumed as 0.01 m.

Table 8 lists topological design of macro and micro
structures at specific micro volume fraction ςMI = 40%
and available base material amount ς = 20%. The

Table 8 Topological design of macro and micro structures for perforated plates only with planar periodicity (a) one edge clamped,
other edges free, (b) four edges clamped, and (c) simple supports at four corners

(a) One edge clamped, other edges free 

Micro structure 

ς  MIς 1λ  Macro structure The first mode 

Cell 4×4 array 

20% 40% 1254.48 

   

(b) Four edges clamped 

Micro structure 

ς MIς  1λ  Macro structure The first mode 

Cell 4×4 array 

20% 40% 63547.57 

 

 (c) Simple supports at four corners 

Micro structure 

ς MIς 1λ  Macro structure The first mode 

Cell 4×4 array 

20% 40% 6483.67 
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(a) One edge clamped, other edges free (b) Four edges clamped (c) Simple supports at four corners 

Fig. 12 Iteration histories of the first three eigenvalues for the process leading to the topology designs in Table 8: one edge clamped,
other edges free (a), four edges clamped (b), simple supports at four corners (c)

resulting optimum macro and micro topologies agree
with our common sense very well. It is clear in Fig. 12
that the fundamental eigenfrequency always remains
unimodal during the optimization process.

7 Concluding remarks

The present paper studies optimum structural and
material topology design for maximum fundamental
frequency. To meet today’s manufacturing limitation,
the present paper assumes homogeneous material mi-
crostructure at macro scale. The two-scale design op-
timization formulation and numerical treatment for
maximum frequency design are presented. It realizes
the optimal distribution of base material at macro and
micro scales and obtains the optimal configurations
of macro and micro structures simultaneously. These
novel configurations provide the guideline for further
study on structure design of cellular material in vibra-
tion environments.

The results of two-scale topology optimization in
this paper give good mechanical properties and these
good mechanical properties are the basis of further
multifunctional applications of the structure made of
cellular material. And the optimum microstructure
provides a good initial configuration for the future
multifunctional application of cellular materials. Ad-
ditionally, different microstructures are required for
different structures under different conditions when we
use macro-homogeneous material for structures. Two-
scale design optimization of structural macro-topology
and material micro-topology is an important tool for
ultra-light structure design.

Furthermore, it will be an interesting and challenging
work to extend this two-scale optimization method to
more realistic applications, e.g. including mechanical

failure in constraints and multifunctional performances
such as active or passive heat transfer, vibration isola-
tion and mechanical material failure into one system.
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Appendix

Sensitivity analysis of a unimodal structural frequency
with respect to macro density and micro density design
variables:

If the kth eigenfrequency is unimodal, then the cor-
responding eigenvector φk will be unique (up to a
factor) and differentiable with respect to the artificial
design variables P and ρ.

The derivative of kth eigenvalue λk with respect to
the macro design variables P j is expressed as:

∂λk

∂ P j
= φT

k

(
∂K
∂ P j

− λk
∂M
∂ P j

)

φk , j = 1, . . . , NE. (30)

The derivatives of the matrices K and M can be cal-
culated explicitly from the material models in Section 4
and 5. Considering, e.g., the material model in (21) and
(22):

∂K
∂ P j

= f ′ (P j
)

K∗
j , (31)

∂M
∂ P j

= M∗
j . (32)
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Sensitivity of the objective λk with respect to micro
design variable ρ j:

∂λk

∂ρ j
= φT

k

(
∂K
∂ρ j

− λk
∂M
∂ρ j

)

φk, (33)

∂K
∂ρ j

=
∂

[
NE∑

i=1

(
f (Pi) × K∗

i

)
]

∂ρ j

=
∂

⎡

⎣
NE∑

i=1

⎛

⎝ f (Pi) ×
∫

�e

BT × DH × Bd�e

⎞

⎠

⎤

⎦

∂ρ j

=
NE∑

i=1

⎛

⎝ f (Pi) ×
∫

�e

BT × ∂DH

∂ρ j
× Bd�e

⎞

⎠ (34)

Where:
∂DH

∂ρ j
= 1

|Y|
∫

Y

(
I−εT

y (u)
) ∂DMI

∂ρ j

(
I−εy (u)

)
dY,

∂ M
∂ρ j

=
∂

⎡

⎣
NE∑

i=1

⎛

⎝Pi ×
∫

�e

η × ρPAM × NTNd�e

⎞

⎠

⎤

⎦

∂ρ j

=
NE∑

i=1

⎛

⎝Pi ×
∫

�e

η × ∂ρPAM

∂ρ j
× NTNd�e

⎞

⎠ (35)

Where:
∂ρPAM

∂ρ j
=

∂

(∫

Y
ρdY

VMI

)

∂ρ j
=

∂
n∑

j=1
ρ j A j

∂ρ j

1

VMI
= A j

VMI
.
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