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Abstract This paper deals with a multi-objective op-
timization criterion for linear viscous-elastic device
utilised for decreasing vibrations induced in mechanical
and structural systems by random loads. The proposed
criterion for the optimum design is the minimization
of a vector objective function. The multi-objective op-
timization is carried out by means of a stochastic ap-
proach. The design variables are the device frequency
and the damping ratio. As cases of study, two different
problems are analysed: the base isolation of a rigid
mass and the tuned mass damper positioned on a multi
degree of freedom structural system subject to a base
acceleration. The non-dominated sorting genetic algo-
rithm in its second version (NSGA-II) is adopted to
obtain the Pareto sets and the corresponding optima for
different characterizations of the system and input.
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1 Introduction

A wide class of engineering problems deal with struc-
tural systems subject to dynamic actions, which can be
suitably modelled only by using random processes (i.e.,
earthquakes, wind pressure, sea waves and rotating ma-
chinery induced vibrations). As a direct consequence,
responses of systems are also random processes. In
these environments, random dynamic analysis seems
to be the most suitable method to get practical infor-
mation concerning a system’s response and reliability
(see Lutes and Sarkani 2001 for example). It follows
that structural optimization methods seem to be practi-
cally approached by means of random vibration theory.
Concerning this problem, some recent works have been
based on a standard optimization problem (SOP). The
approach finds the optimum solution that coincides
with the minimum or the maximum value of a scalar
objective function (OF). The first problem definition of
structural optimization was proposed by Nigam (1972),
in which constraints were defined by using probabilis-
tic indices of the structural response and the OF was
defined by the structural weight. This led to a standard
nonlinear constrained problem.

In the field of seismic engineering, the use of a sto-
chastic defined OF was proposed for the optimum de-
sign of the damping value of a vibration control device
placed on the first story of a building (Constantinou and
Tadjbakhsh 1983), and was defined by the maximum
displacement under a white noise excitation. A specific
and more complete stochastic approach was also pro-
posed by Takewaki (2000), aimed to stiffness-damping
simultaneous optimization of structural systems. In this
mentioned work the sum of system response mean
squares due to a stationary random excitation was
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minimized under constraints on total stiffness capacity
and total damping capacity.

More recently, an interesting stochastic approach
for optimum design of damping devices in seismic
protection was proposed by Park et al. (2004) that
aimed to minimize the total building life-cycle cost.
It was based on a stochastic dynamic approach for
failure probability evaluation, and the OF was defined
in a deterministic way. The optimization problem was
formulated by adopting the location and the number
of the viscous elastic dampers as design variables. The
constraint was the failure probability associated to the
crossing of the maximum inter-storey drift over a given
allowable value. Reliability analysis was developed us-
ing the first crossing theory in stationary condition.

Other interesting works in the field of stochastic
structural optimization regard the unconstrained op-
timization of single (Rundinger 2006) and multiple
(Hoang and Warnitchai 2005) tuned mass dampers. The
structural displacement covariance of the protected sys-
tem is used as OF and the input is modelled by means
of a stationary white noise process.

However, the SOP does not usually hold correctly
many real structural problems, where often different
and conflicting objectives may exist. In these situations,
the SOP is utilized by selecting a single objective and
then incorporating the other objectives as constraints.
The main disadvantage of this approach is that it limits
the choices available to the designer. This makes the
optimization process a difficult task.

Instead of unique SOP solution with a single given
constraint, a set of alternative solutions can be usually
achieved, known as Pareto optimum solutions. These
represent the best solutions in a wide sense that means
they are superior to other solutions in the search space,
when all objectives are considered. If any other infor-
mation about the choice or preference is given, no one
of the corresponding trade-offs can be said to be better
than the others.

Many works in last decade were done by different
authors in the field of multi-objective structural opti-
mization for systems subject to static or dynamic loads
(Papadrakakis et al. 2002).

This paper deals with a multi-objective optimization
of linear visco-elastic devices, which are introduced
in structural and mechanical systems to reduce vibra-
tion level induced by random actions applied at the
support. Two different problems are considered: first,
the vibration base isolation of a rigid mass subject
to an acceleration of the support; second, the tuned
mass damper (TMD) positioned on a multi-degree of
freedom (MDoF) structural system subject to a base
acceleration.

The first case concerns the problem of a vibration
absorber for a rigid element isolated from a vibrat-
ing support subject to a random acceleration process.
This is a typical application in many real problems in
mechanical, civil and aeronautics engineering. The
main system is a rigid mass linked with the support
by means of a linear visco-elastic element (Fig. 1). In
the multi-objective optimization, the OF is a vector
that contains two elements: the first one is an index of
device performance focused on reducing the vibration
level, and is expressed by an acceleration reduction
factor. This is assumed to be, in stochastic meaning,
the ratio between the mass and the support acceleration
variances.

The second objective function is the displacement
of the protected mass. In probabilistic terms it is the
maximum displacement which is not exceeded with a
given probability in a given time interval. The design
variables are the isolator damping ratio ξ s and its
pulsation ωs, which are collected in the design vector.
The acceleration is modelled as a filtered stationary
stochastic process.

The second application concerns a TMD positioned
in a structural system with n degrees of freedom. The
TMD is composed by a mass, a spring, and a damper
attached to the main structure (see Fig. 3) such that
it oscillates as the same frequency as the structure.
Its mechanism of attenuating vibrations within a struc-
ture is to transfer the vibration energy to the TMD
where it is dissipated. For the TMD problem, the multi-
objective optimization concerns the minimization of
two antithetic OFs: the first one is the factor of re-
duction of the acceleration of the protected structure;
the second one is the displacement of TMD relative to

Fig. 1 Schematic model of a rigid mass isolated from a vibrating
support by means of an isolation device



Multi-objective optimization by genetic algorithm 387

the top floor. The acceleration acting at the support is
modelled as a filtered stationary stochastic process.

To obtain the Pareto set in the two dimensional
space of the OFs and the optimum solution in the
space of design variables, a specific genetic algorithm
approach—the NSGA-II—is adopted. A sensitivity
analysis on the optimum solution is then performed
under different environmental conditions.

The novelty of the proposed method is in using a
multi-dimensional criterion for the design. Nowadays,
this is a very important issue in modern Technical
Codes (SEAOC 1995), where several performance re-
quirements are fixed and often conflicting. In these
situations, the designer must select the design variables
which make available all objectives.

The validation of the proposed method is demon-
strated through two applications, in which several pa-
rameters are changed. Therefore, results attained by
the proposed method can be utilised to support de-
signers in the definition of structural vibration control
strategies.

2 Multi-objective stochastic optimization of random
vibrating systems

The proposed stochastic multi-objective optimization
criterion is adopted in this study to define the optimum
mechanical parameters in classical problems of vibra-
tion control. Two applications are investigated which
consider the limitation of vibration effects in mechani-
cal and structural systems subject to base acceleration.

The optimization problem is formulated as the
search of design parameters, collected in the design
vector b defined in the admissible domain �b, which
are able to minimize a given OF. This problem can
be formulated in a standard deterministic way or in a
stochastic one (using response spectral moments). This
approach has limits. In fact, when designer looks for the
optimum solution a choice has to be made concerning
the most suitable criterion for measuring performance.
It is evident that many different quantities, which have
a direct influence on the performance, can be consid-
ered as efficient criteria. At the same time those quan-
tities that must satisfy some imposed requirements and
cannot be assumed as criteria, are used as constraints.
Therefore, it is common in optimization problems to
use a single OF subjected to some probabilistic con-
straints, as in the first stochastic optimization problem
(Nigam 1972). Usually, inequality constraints on system
failure probability are utilised.

In the multi-objective formulation, the conflict which
may or may not exist between the different criteria

is an essential point. Only those quantities which are
competing should be considered as independent crite-
ria. The others can be combined into a single criterion,
which represents the whole group.

3 First case of study: protection of a rigid mass
from a vibrating support

This is the case of the isolation of a rigid mass posi-
tioned on a vibrating support. In engineering applica-
tions the mass can represent a subsystem located on a
vibrating mechanical support, as motor device, airplane
structure, seismic isolated building, or similar. In all
these situations, the main goal is to limit the induced
acceleration and to control the displacement of the rigid
mass with respect to the support. The first objective
is related to excessive inertial forces transmitted, for
example, to electronic or mechanical devices sensitive
to this effect. The second objective is related to an
excessive displacement of the protected mass, which
can become unacceptable. For example, this happens
if the system is located close to other elements, or if
the vibration isolator has a limited acceptable lateral
deformation over which it collapses.

The protected element is modelled as a rigid body
with a mass m. The isolator device is modelled as
a simple viscous-elastic element, which connects the
vibrating base with the supported mass (Fig. 1).

The stiffness k and the damping c of the isolator
device are optimized to minimize the vibration of the
rigid mass m.

The base acceleration is a stochastic coloured
process Ẍb (t), modelled by means of a second order
linear filter (Tajimi 1960):

Ẍb (t) = Ẍf(t) + w(t) = − (2ξfωf Ẋf + ω2
f Xf
)

(1)

where w(t) is a stationary Gaussian zero mean white
noise process, ωf is the filter pulsation and ξ f is the
filter damping ratio. The equations of the motion of this
combined system are:

Ẍs(t) + 2ξsωs Ẋs + ω2
s Xs = −Ẍb (2)

Ẍf(t) + 2ξfωf Ẋf + ω2
f Xf = −w(t) (3)

Ẍb (t) = Ẍf + w(t). (4)

In the space (2)–(4) can be written as

Ż = AZ + F (5)

where the space state vector is

Z = (Xs Xf Ẋs Ẋf
)T

. (6)
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The system matrix is then

A =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1

−ω2
s ω2

f −2ξsωs 2ξfωf

0 −ω2
f 0 −2ξfωf

⎞

⎟
⎟
⎠ , (7)

where

ωs =
√

k
m

; ξs = c

2
√

km
(8)

Finally, the input vector is

F = − (0 0 0 w(t))T . (9)

The space state covariance matrix RZZ = 〈ZZT 〉 is ob-
tained by solving the Lyapunov equation:

ARZZ + RZZAT + B = 0. (10)

The variance σ 2
ÿS

of the absolute mass acceleration
ÿS = ẍS + ẍb is

σ 2
ÿS

= DTRZZD (11)

where

D = (−ω2
s 0 −2ξsωs 0

)T
. (12)

4 Formulation of multi-objective optimization
of mechanical characteristics of the device

The multi-objective stochastic optimization problem
concerns the evaluation of the design vector b =
(ωs, ξs) able to satisfy the reduction of the transmitted
inertial acceleration of the rigid mass and to limit its
displacement with respect to the support. These two
criteria conflict each other because as the support rigid-
ity grows, at that time the acceleration reduction factor
(i.e., the performance of the device) and the lateral
displacement decrease. This situation corresponds, for
example, to the design of a well known vibration con-
trol device utilized in the field of seismic engineering:
the base isolator. The decoupling between the vibrating
support and the protected element increases monotoni-
cally with the reduction of device stiffness. At the same
time, the device displacement increases. Therefore the
level of reduction of transmitted acceleration in the
protected element is related to the allowable maximum
value of displacement. These two conflicting criteria
must be considered in the design.

The multi-objective optimization problem is

min {OF1, OF2} . (13)

The first objective function is

OF1 (b) =
(

σÿS (b)

σẍb

)
, (14)

where the base vibrating acceleration variance is (see
ref. Crandal and Mark 1963)

σ 2
ẍb

= π

2

S0ωf

ξf

(
1 + 4ξ 2

f

)
, (15)

and S0 is the power spectral density function of the
white noise process.

This OF is a direct protection efficiency index: it
tends to a null value for a totally system-base decou-
pling and tends to unity for a system rigidly connected
with the vibrating base.

To make explicit the OF2 the maximum displace-
ment value Xmax

s that is not exceeded with a given
probability P̃f in an assigned time interval is adopted.
Therefore

OF2 (b) = Xmax
S (b) : Pf

(
Xmax

S , b
)

= P
{|XS| ≥ Xmax

S (b) |t ∈ [0, T]
} ≤ P̃f. (16)

where T is the duration of vibration.
In case of rare failure events the Poisson hypothesis

could be reasonably utilised and so (Lutes and Sarkani
2001)

Pf
(
Xmax

S , b
) = 1 − e−ν(Xmax

S ,b)T , (17)

where the unconditioned mean crossing rate is

ν = (Xmax
S , b

) = 1

π

σẊS

σXS

e
−
{

1
2

(
Xmax

S
σXS

)2
}

. (18)

Finally one obtains

OF2 (b) = Xmax
S =

√

−2σ 2
XS

ln

(
−π

T
σXS

σẊS

ln
(

1 − P̃f

))
.

(19)

The two objective functions are plotted in Fig. 2 in
the space ωs/ωf and ξ s. The data assumed are: ωf =
21 rad/s, ξf = 0.4, S0 = 100 cm2/s3, and P̃f = 10−2.

Figure 2 illustrates that the two objectives conflict
each other. In fact, as the frequency ωs increases the
efficiency of the vibration control in reducing the trans-
mitted acceleration (OF1) reduces too. At the same
time, one observes a reduction of the displacement
(OF2).

Concerning the variability of the two objectives with
respect the damping ratio, from Fig. 2 it is possible to
notice that OF2 always diminishes. On the contrary, the



Multi-objective optimization by genetic algorithm 389

Fig. 2 Conflicting aspect of
the two proposed objective
functions

variability of OF1 is different and depends on the value
assumed by the system frequency.

5 The second case of study: the tuned mass
damper problem

TMD is modelled as a mass-dashpot-spring system (the
secondary system) attached at the top of a linear MDoF

Fig. 3 Schematic model of a MDoF structural system equipped
with a TMD

system (Fig. 3). As in the previous case of study, the
excitation at the base is represented by a stationary
filtered stochastic process.

For the system in Fig. 3 the equations of the
motion is

MẌ(t) + CẊ(t) + KX(t) = −Mr Ẍb , (20)

where M, C and K are the deterministic mass, damping
and stiffness matrices. The vectors X = (x1 x2.....

xn xT)T , Ẋ = (ẋ1 ẋ2.....ẋn ẋT)T and Ẍ = (ẍ1 ẍ2.....

ẍn ẍT)T collect the displacements, velocities and
accelerations of n floors and of the TMD relative to the
ground. Finally r = (1. . . 1)T .

The mechanical characteristics of the TMD are de-
scribed by parameters mT , kT , and cT .These are, re-
spectively, the mass, stiffness and damping of the TMD.

By adding the equation of the motion of the filter in
(20) one obtains

Ẍ(t) = − [M−1C
]

Ẋ − [M−1K
]

X + r
(
2ξfωf Xf + ω2

f Xf
)
.

(21)

Introducing the space state vector

Z = (X Xf Ẋ Ẋf
)T

, (22)

in the state space, (21) becomes

Ż = AZ + F, (23)

where the system matrix A is

A =
[

0(n+2)(n+2) I(n+2)(n+2)

−HK −HC

]
. (24)
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The two sub-matrices HK and HC are

ω
ω

ω
ω

f

f

f

f

(25)

f f

f f

f f

f f
ω
ω

ω

ω

(26)

respectively.
Sub-matrices in (25) and (26) are

M−1K=

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎝

k1
m1

+ k2
m1

− k2
m1

0
− k2

m2

k2
m2

+ k3
m2

− k3
m2

0 − k3
m3

. . .
. . .

. . .
. . .

− kn
mn

kn
mn

+ kT
mn

− kT
mn

− kT
mT

kT
mT

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎠

;

(27)

and

M−1C =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

c1
m1

+ c2
m1

− c2
m1

0
− c2

m2

c2
m2

+ c3
m2

− c3
m2

0 − c3
m3

. . .
. . .

. . .
. . .

− cn
mn

cn
mn

+ cT
mn

− cT
mn− cT

mT

cT
mT

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎠

.

(28)

The Liapunov equation, whose solution supplies the
response covariance of the system, has the same form
of (10). The covariance matrix RŸŸ of inertial accelera-
tions is obtained by means of following relation

RŸŸ = DRZZDT , (29)

where D = [HK HC
]
.

6 Formulation of multi-objective optimization
of TMD

The multi-objective optimization for the TMD prob-
lem is formulated as the evaluation of design vector

b = (ωT ,ξT), where ωT =
√

kT
/
mT

and ξT = cT
/
2ωTmT

.

These variables must be able to satisfy both the re-
duction of the transmitted inertial acceleration in the
main structure and the relative displacement of the
TMD with respect to the nth floor. The TMD mass
ratio (i.e., the ratio of the added mass to the mass
of the top floor) is assigned. With reference to this
assumption, recent works (Lin et al. 2001) showed that
when this parameter is considered as a design variable,
the optimum values attained are very high if compared
with the range of usual structural damping. Therefore,
they are incompatible with real applications, due to
economic consideration.

In contrast to the previous example, in the TMD
problem the acceleration reduction factor of the main
structure reaches a minimum value, but to this one a
maximum value of TMD displacement respect to the
top floor corresponds. This maximum displacement can
become unacceptable in real engineering applications.

The multi-objective optimization problem is

min {OF1, OF2} . (30)

The first objective is to minimize the ratio between the
maximum value of standard deviation σÿi of inertial
acceleration of the protected structure and the same
quantity σ 0

ÿi
of the unprotected structure, therefore:

OF1(b) = max

(
σÿi(b)

σ 0
ÿi

)

. (31)

This parameter is a direct measure of the performance
of the TMD in reducing structural vibrations.

The second objective is to minimize the failure prob-
ability of the TMD, which is associated to the crossing
of the tuned-top floor displacement �T = xT − xn over
a value �max

T during the duration T of the vibration.
Therefore

OF2 (b) = �max
T (b) : Pf

(
�max

T , b
)

= P
{|�T | ≥ �max

T (b) |t ∈ [0, T]
} ≤ P̃f. (32)

7 An overview on methods for multi-objective
optimization using genetic algorithm

Many real engineering problems often involve several
OFs, each other in conflict. In these situations it is
not possible to define a universally approved criterion
of “optimum” as in single objective optimization. In-
stead of aiming to find a single solution, one can try
to produce a set of good compromises. In a typical
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minimization-based MOOP (multi-objectives opti-
mization), given two candidate solutions {b j,bk}, if

∀i ∈ {1, ..., M} , OFi
(
b j
) ≤ OFi (bk) ∧ ∃i

∈ {1, ..., M} : OFi
(
b j
)

< OFi (bk) , (33)

and defined the two objective vectors

v
(
b j
) = {OF1

(
b j
)
, ..., OFM

(
b j
)}

, (34)

v (bk) = {OF1 (bk) , ..., OFM (bk)} , (35)

the vector v(b j) is said to dominate vector v(bk) (de-
noted by v

(
b j
) ≺ v (bk)).

Moreover, if no feasible solution v(bk) exists that
dominates solution v(b j), then v(b j) is classified as a
non-dominated or Pareto optimal solution. The col-
lection of all Pareto optimal solutions are known as
the Pareto optimal set or Pareto efficient set, instead,
the corresponding objective vectors are described
as the Pareto front or Trade-off surface. Unfortunately,
the Pareto optimum concept typically does not give
a single solution, but a set of possible solutions that
cannot be used directly to find the final design solu-
tion by an analytic way. On the contrary, usually the
decision about the “best solution” to be adopted is
formulated by so-called (human) decision maker (DM).
On the other hand, several preference-based methods
exist in literature. A more general classification of
the preference-based method is considered when the
preference information is used to influence the search
(Coello Coello 2000). Thus in a priori methods, DM’s
preferences are incorporated before the search begins.
Therefore, based on the DM’s preferences, it is possible
to avoid producing the whole Pareto optimal set. In
progressive methods the DM’s preferences are incor-
porated during the search: this scheme offers the ad-
vantage of driving the search process, but the DM may
be unsure of his/her preferences at the beginning of
the procedure and may be informed and influenced by
information that becomes available during the search.
A last class of methods is a posteriori: in this case the
optimiser carries out the Pareto optimal set and the DM
chooses a solution (“searches first and decides later”).
Many researchers view this last category as standard, so
that in the greater part of the circumstances a MOOP
is considered resolved once that all Pareto optimal
solutions are recognized.

In the category of a posteriori approaches, several
methods are available in literature to treat multi-
objective optimization problems using conventional

single objective algorithms. The so-called ε-constraint
method, due to its simplicity, is one of the most used
techniques. This method is based on minimizing a single
objective function and considering the other objectives
as constraints bound by some admissible levels ε. An-
other way to treat multi-objectives optimization by a
standard SOP is by weighting the different OFs by
normalized coefficients.

Moreover, it has been stated that this algorithm may
find weakly non-dominated solutions, so that the more
common way to approach MOOP is by using differ-
ent Evolutionary Algorithms (EA). In Luh and Chuen
(2004) an algorithm for finding constrained Pareto-
optimal solutions based on the characteristics of a bi-
ological immune system (Constrained Multi-Objective
Immune Algorithm, CMOIA) is proposed. Other
adopted algorithms are the Multiple Objective Genetic
Algorithm (MOGA) (Fonseca and Fleming 1993) and
the Non-Dominated Sorting in Genetic Algorithm
(NSGA) (Srinivas and Deb 1994). In this work the
NSGA-II (Deb et al. 2000) is adopted in order to obtain
the Pareto sets and the corresponding optimum DV val-
ues for different systems and input configurations. Par-
ticularly, the Real Coded GA (Raghuwanshi and Kakde
2004), Binary Tournament Selection (Blickle and Thiele
1995), Simulated Binary Crossover (SBX) (Deb and
Agrawal 1995) and polynomial mutation (Raghuwanshi
and Kakde 2004) are used (see Appendix: Genetic
operators adopted in NSGA-II).

8 Results analysis

8.1 Multi-objective optimization of isolator
mechanical characteristics

In this section the results of this first optimization prob-
lem are analysed. The NSGA-II algorithm illustrated in
Table 1 has been adopted.

It is assumed that the admissible domain for b is the
following

�b = {ξs, ωs : 0.01≤ξs ≤2.5∨1 rad/s≤ωs ≤ 30 rad/s} .

(36)

Input parameters are listed in Table 2.
Concerning NSGA-II setup, parameters reported in

Table 3 have been adopted for the analysis. These
have been obtained trial and error, where the choice
derives from considerations about the equilibrium of
computing cost and solution stability. The population
size is 500, which is sufficient to obtain a continuum
Pareto front. The maximum iteration number is 100
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Table 1 NSGA-II algorithm for multi-objective optimization
problem

Load data
For GA

Population size and maximum generation
Crossover probability
Mutation probability

For the main structure, the TMD and the filter
Fixed parameters

Initialize population
Generate random population in the specified admissible

domain
Calculate OFs values

Sort the initialized population
Sort the population using non-domination-sort. For each

individual, rank and crowding distance are assigned
Loop for each generation

Select the parents which are fit for reproduction
Binary tournament selection based on the rank and crowding

distance
Genetic Operators on selected parents

Simulated Binary Crossover
Polynomial mutation

The offspring population is combined with parents (size of
intermediate population is double)

Selection is performed to set the individuals of the next
generation
Once the intermediate population is sorted, only the best

individuals are selected based on its rank and crowding
distance

Create a new generation
Constant population size

Close loop if stop criteria for max number of generation is
verified, otherwise return on the top of loop

Report on results

and was determined after several continuous numerical
experiments to obtain stable solutions.

Figure 4a, b show, respectively, the Pareto front and
the space of elements of the design vector in first case
of study. The optimum frequency ω

opt
s and the optimum

damping ratio ξ
opt
s are shown in Fig. 4b on the x- and y-

axes. respectively. The vertical line corresponds to the
filter frequency ωf. Table 4 shows some numerical data
that correspond to some points on the Pareto set. The
symbols in Table 4 correspond to points recognized on
Pareto set in Fig. 4a.

Table 2 System parameters

Filter damping ratio ξ f 0.6
Filter pulsation ωf 20.94 (rad/s)
Power spectral density S0 11000 (cm2/s3)

T 103 (s)
Max probability of failure P̃f 10−2

Table 3 NSGA-II setup

Maximum generation 500
Population size 100
Crossover probability 0.9
Mutation probability 0.1

Figure 4a points out that a larger level of protection
is related to an increase of allowable displacement. The
figure also shows an asymptotic limit of performance,
which means that the maximum reduction of transmit-
ted acceleration is about 0.2. Moreover, some interest-
ing observations are carried out by examining the slope
of Pareto front, which is a convex curve. It is possible to
distinguish three different portions of the Pareto front
that correspond to different criteria in vibration control
strategy. Specifically, on the left section of the Pareto
front, which corresponds to a low efficiency, by means
of a small increase of maximum allowable displacement
one can obtain a large increase of performance (i.e. the
slope is high). In the second portion of the Pareto set
the slope reduces. Finally, the right part shows that an
increase in performance is obtained only by means of
a large increase of maximum admissible displacement.
In this last situation, only small variations of optimum
design variables take place (Fig. 4b). On the contrary,
the reduction of maximum displacement is reached by
increasing both frequency and damping. The variation
is fast as the displacement reduces. Moreover, if the
imposed displacement is very low, the control strategy
acts by increasing the system frequency and damping
ratio (the quick increase of damping is associated to
energy dissipation).

Figures 5, 7 and 9 show different Pareto fronts ob-
tained for different values of power spectral density,
filter damping ratio, and filter pulsation. Figures 6, 8,
and 10 show the corresponding optimum design vari-
ables. All the other parameters adopted are the same of
Fig. 4a.

From Fig. 5 it is possible to notice that a variation of
power spectral density induces a variation of optimum
Pareto front, due to non-linearity of OF2. It is evident
that higher performance is associated with low values
of S0, but the maximum level of vibration reduction
(expressed by the asymptotic value of OF1) is about
the same in all cases. However, in this situation, to
higher values of S0, larger displacements correspond.
This conclusion is quite clear, because the requirement
on the maximum displacement is associated to S0 by
means of a non-linear formulation, meanwhile the vi-
bration reduction is a linear function of this parameter.
Anyway, one can conclude that the strategy adopted
for the optimal solution in terms of design variables is
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Fig. 4 a Pareto front for
SDoF system b Space of
design vector elements of
multi-objective problem

a

b

Table 4 Some numerical data from Fig. 4 (symbols correspond
to points in Fig. 4)

Symbols OF 2 (cm) OF1 
opt
Sω opt

Sξ

171.3159 0.2227 1 0.6256

39.5099 0.3896 2.7629 0.7276

110.5646 0.2624 1.3313 0.6910

1.7741 0.9402 17.8002 2.1599

about the same for all values of S0. This is shown in
Fig. 5, where one can observe the same variability of
the Pareto set for all values of S0.

Concerning the variability of Pareto set versus input
characterization, one should observe that both the pa-
rameters modify the Pareto set, but major sensitivities
take place as ωf varies (Figs. 9 and 10) than with respect
to ξf (Figs. 7 and 8).

Figures 8 and 9 show that, the filter damping ratio
influences the optimum solution. First, the initial slope
of the Pareto set increases as ξ f increases, but the
asymptotic value of OF1 shows only little variation as
this parameter varies.
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Fig. 5 Sensitivity of Pareto
front for different values of
power spectral density

Figure 9 shows the maximum performance of the
device in reducing the acceleration level of the mass
through ωf. Moreover, the initial slopes (which cor-
responds to very small admissible displacements) are
quite different. In detail, the variation of OF1 is greater
for higher ωf and tends to decrease as this parameter
increases. Also the optimization strategy in terms of
optimum design variables varies (see Fig. 10). On the

left portion of design vector space only small vari-
ations of the optimum solution are observed, which
correspond to the points located at the bottom-right
of Pareto front in Fig. 9. These values correspond to
the asymptotic value of OF2, where the minimum is
attained for each displacement. These points tend to be
located in a small region of the DV space, quite closer
to this unconditional optimum solution point.

Fig. 6 Space of design vector
elements of multi-objective
problem for different values
of power spectral density
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Fig. 7 Sensitivity of Pareto
front for different values
of filter damping ratio

8.2 Multi-objective optimization of TMD

This section discusses the results of the multi-objective
optimization carried out on a building having n floors.
The structural model has a constant mass at each

floor equal to mi = 3.50 × 105(kg), a linear variation
of ki between 4.5 × 108(N/m) at the first floor and
1.5 × 108 (N/m) at the top floor (Fig. 11). Structural
storey damping is ci = 2ξi

√
kimi, where ξ i = 0.05 for all

storeys. The maximum admissible displacement of

Fig. 8 Space of design vector
elements of multi-objective
problem for different values
of filter damping ratio
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Fig. 9 Pareto front for
different values of filter
pulsation expressed in rad/s

TMD with respect to the top floor is �max
T = 40 (cm).

The power spectral density is S0 = 150
(
cm2

/
s3
)

whereas ωf = 7.39
(
rad
/

s
)

and ξf = 0.45.
Figure 12 shows the Pareto sets obtained for differ-

ent values of the parameter ψω = ω1
ωf

, where ω1 is the
natural frequency of the structure. From the shape of

the Pareto sets one can deduce that when the perfor-
mances are maximum (OF1 is minimum), the failure
probability reaches the maximum value. In addition,
results show that the shape of the Pareto set (i.e., the
relative importance of two antithetic OFs) depends on
the parameter ψω. More precisely, the Pareto sets that

Fig. 10 Space of design
vector elements of
multi-objective problem
for different values of
filter pulsation
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Fig. 11 Storey building
stiffness configuration and
relative modal periods

correspond to near−resonance condition (ψω = 0.75)

and resonance condition (ψω = 1), respectively, are
dissimilar from Pareto sets that correspond to condi-
tions far from these ones. It is evident from Fig. 12
that in near-resonance and resonance conditions an
increase of performance can be attained by growing
the failure probability (related to crossing of the limit
displacement of the TMD). Moreover, a more large
failure probability does not produce a sensible increase
of performance. At limit (for ψω = 5) any variation of
OF1 with respect to OF2 takes place.

This outcome is important because the designer must
select the strategy for the optimum design, as the two

antithetic criteria are strictly related in near-resonance
and resonance conditions.

Figure 13 shows the optimal solution in terms of

design variables. More precisely, the ratio ρ
opt
ω = ω

opt
T
ω1

is
reported on the y-axis, and the optimum TMD damping
ratio ξ

opt
T is on the x-axis.

From these figures it is evident that the optimality of
the solution is reached by different strategies (in terms
of design variables) as a function of the parameter ψω.
In fact, in near-resonance and resonance conditions, the
optimization is reached always for a value ρ

opt
ω near

to unity. In this case, a low value of ξ
opt
T corresponds

to very high failure probability (and at the same time

Fig. 12 Pareto fronts for
different values ψω = ω1

ω f
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Fig. 13 Optimal design
variables for different
ψω = ω1

ω f

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.8

1

1.2

1.4

1.6

1.8

2

2.2

 
T
opt

  o
p
t

 

 

ω   = 0.50

   = 0.75

   = 1.0

   = 2.0

   = 5.0

ρ ω

ξ

ψ

ω ψ

ω ψ

ω ψ

ω ψ

the TMD performance in terms of OF1 is maximum).
Lower values can be attained by growing ξ

opt
T , because

this strategy corresponds to an increase of the energy
dissipation. In the other situations the strategy is not
unique, and both the optimum TMD frequency and
damping ratio change to attain the optimum solution.
As extreme situation (ψω = 5), ξ

opt
T attains any vari-

ation and ρ
opt
ω varies to reach a lower TMD failure

probability. The TMD performance in terms of OF1

(Fig. 12) is constant.

9 Conclusions

In the present work a multi-objective optimization de-
sign criterion for linear viscous-elastic vibration control
devices has been proposed. More in detail, the problem
of an isolator device for a single rigid mass, and the
TMD problem for a MDoF structural system, have
been analysed.

The analyses have been carried out by adopting a
stochastic approach, assuming that the excitations act-
ing on the base of the protected systems are stationary
stochastic coloured processes.

In the multi-objective optimization problems two
antithetic objectives are considered: the maximization
of control strategy performance (expressed in stochas-
tic terms by the reduction of transmitted accelera-
tion in the protected systems), and the limitation of
the displacement of the vibration control device. The
design variables are frequency and damping ratio of the
device.

To perform the stochastic multi-objective optimiza-
tion the non dominated sorting genetic algorithm in
its second version (NSGA-II) has been adopted. This
method supplies the Pareto set and the corresponding
optimum design variables for different systems and
input configurations.

The sensitivity analysis carried out has showed that
the optimum solution (i.e., the maximization of con-
trol strategy—expressed in terms of reduction of the
response of the main system—and the limitation of the
device displacement) is reached by adopting different
strategies, and this is a function of the input and system
characterization. These strategies act by varying the
optimum frequency and the damping ratio of the device
differently, as a function of the allowable performance.

Appendix: Genetic operators adopted in NSGA-II

Simulated Binary Crossover

In Simulated Binary Crossover SBX, the probability
distribution used to create a child solution is derived
to have a similar search power as that in a single-
point crossover in binary-coded genetic algorithm, and
is given as follows

P (β) =
⎧
⎨

⎩

1
2 (ηc + 1) β

ηc
k if 0 ≤ β ≤ 1

1
2 (ηc + 1) 1

β
ηc+2
k

otherwise
, (37)
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where ηc is the distribution index for crossover oper-
ator. Therefore, first a random number uk ∈ [0, 1] is
generated and using expression (37) then βk is calcu-
lated with this formulation

βk =
{

(2uk)
1

ηc+1 if uk ≤ 0.5
1

[2(1−uk)]
1

ηc+1
otherwise . (38)

After obtaining β from (38) the children solutions are
calculated as follows

c1,k = 1

2

[
(1 − βk) p1,k + (1 + βk) p2,k

]
, (39)

c2,k = 1

2

[
(1 + βk) p1,k + (1 − βk) p2,k

]
. (40)

In (39) and (40) ci,k is the ith child with kth component,
Pi,k is the selected parent.

Polynomial mutation

Polynomial mutation is performed on one string as
follows

ck = pk + (pu
k − pl

k

)
δk, (41)

In (41) Pk is the parent, pu
k and pl

k are the upper bound
and lower bound on the parent component and finally
ck is the child. Mutation operator is based on δk which
is calculated from a polynomial distribution. A random
number rk ∈ [0, 1] first is generated, and δk is calculated
with this formulation

δk =
{

(2rk)
1

ηm+1 −1 if rk < 0.5

1− [2 (1 − rk)]
1

ηm+1 if rk ≥ 0.5
. (42)

In (42) ηm is the mutation distribution index.
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