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Abstract The maximum entropy principle (MEP) is
used to generate a natural probability distribution
among the many possible that have the same moment
conditions. The MEP can accommodate higher order
moment information and therefore facilitate a higher
quality PDF model. The performance of the MEP for
PDF estimation is studied by using more than four
moments. For the case with four moments, the results
are compared with those by the Pearson system. It is
observed that as accommodating higher order moment,
the estimated PDF converges to the original one. A
sensitivity analysis formulation of the failure probabil-
ity based on the MEP is derived for reliability-based
design optimization (RBDO) and the accuracy is com-
pared with that by finite difference method (FDM).
Two RBDO examples including a realistic three-
dimensional wing design are solved by using the de-
rived sensitivity formula and the MEP-based moment
method. The results are compared with other methods
such as TR-SQP, FAMM + Pearson system, FFMM +
Pearson system in terms of accuracy and efficiency. It
is also shown that an improvement in the accuracy by
including more moment terms can increase numerical
efficiency of optimization for the three-dimensional
wing design. The moment method equipped with the
MEP is found flexible and well adoptable for reliability
analysis and design.
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Abbreviations

CDF Cumulative Density Function
DoE Design of Experiment
FAMM Function Approximation Moment Method
FFMM Full Factorial Moment Method
FORM First Order Reliability Method
IMBQR Improved Moment-Based Quadrature Rule
MBQR Moment-Based Quadrature Rule
MCS Monte Carlo Simulation
MEP Maximum Entropy Principle
MPP Most Probable failure Point
PDF Probability Density Function
RBDO Reliability-Based Design Optimization
SQP Sequential Quadratic Programming
TR-SQP Trust Region-Sequential Quadratic

Programming

1 Introduction

Among the methods for quantitative assessment of
reliability, the first order reliability methods (FORM;
Hasofer and Lind 1974; Rackwitz and Fiessler 1978)
and the moment methods (D’Errico and Zaino 1988;
Zhao and Ono 2001; Seo and Kwak 2002; Lee and
Kwak 2006; Huh and Kwak 2006; Huang and Du 2006;
Ju and Lee 2007) are widely used. In FORM, a per-
formance function is linearized at the most probable
failure point (MPP), which is the closest point to the
origin in the reduced variable space (Hasofer and Lind
1974). The probability can be obtained by using the
relationship between the reliability index denoting the
distance and the cumulative density function (CDF) of
standard normal distribution. FORM is considered the
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most efficient and the most easily implementable for
practical problems. However, it has drawbacks such as
the degradation of accuracy resulted from the multiple
MPPs, the non-linearity of the performance function or
the non-normality of random variables (Hasofer and
Lind 1974; Rackwitz and Fiessler 1978). In the moment
methods, the failure probability is calculated through
a moment evaluation process and a PDF modeling
process (Zhao and Ono 2001; Seo and Kwak 2002).
Compared with FORM, moment methods have the
advantages that they do not involve the difficulties of
the MPP search and the information of CDF or PDF is
readily available.

In the moment-based approaches, how to efficiently
obtain the moments have been the main concern in
previous studies but there has been relatively little
concern about which modeling method gives the most
appropriate PDF for reliability analysis. Until now the
PDF is usually modeled by the polynomial normal
transformation (Chen and Tung 2003), the saddle point
approximation (Huang and Du 2006) and the Pearson
system (Zhao and Ono 2001; Seo and Kwak 2002; Lee
and Kwak 2006; Huh and Kwak 2006; Ju and Lee 2007),
which is most frequently used and also known as the
most accurate method among the empirical distribution
systems such as the Johnson system, Gram–Charlier
series, and so on (Johnson et al. 1994). The Pearson sys-
tem uses only the first four moments of a performance
function to determine its PDF. However, the PDF esti-
mated by the Pearson system is not the only one that fits
the given moment conditions and therefore the failure
probability of the given performance function is also
not unique. Also, how to generally estimate the PDF
model for a given set of moments is an important issue
in moment-based reliability analysis.

In the present paper, the maximum entropy principle
(MEP; Shannon 1948; Jaynes 1957) is introduced for
PDF modeling and RBDO application. The sensitivity
analysis of the failure probability evaluated by MEP
is then performed and compared with the sensitivity
obtained by finite difference method (FDM). RBDO
examples are also solved by the proposed method and

other RBDO methods. The PDFs in the RBDO exam-
ples are obtained using the first four or five moments
and the five integration points are used to calculate
the moments of the performance function. The RBDO
results by MEP using FFMM are compared with other
reliability analysis methods such as FORM, FFMM +
Pearson system and function approximation moment
method (FAMM) + Pearson system (Huh and Kwak
2006). Pre-assumption in this study is that the given
moments are accurately obtained by a general level
Gauss quadrature method, which is known as moment-
based quadrature rule (MBQR; Rahman and Xu 2004).

2 Reviews on moment calculation method

For a random variable x, the k-th order raw moment of
a performance function, g(x), can be approximated by
using a quadrature formula with m nodes as follows,

E
{
gk} =

∫ ∞

−∞

[
g (x)

]k
φ (x) dx ∼=

m∑

i=1

wi
[
g (li)

]k (1)

where li and wi denote the i-th quadrature node, i.e.,
the level, and the corresponding weight, respectively
and φ(x) is the PDF of x. With m quadrature nodes,
up to (2m − 1)-th order polynomial function can be
integrated exactly and therefore at least three nodes
are necessary to obtain the first four moments required
by the Pearson system. As shown in Fig. 1, levels and
their corresponding weights for three-level design of
experiment (DoE) are suggested by Taguchi (1978) for
uniform distribution, by D’Errico and Zaino (1988)
for normal distribution, and by Seo and Kwak (2002)
for non-normal distribution, respectively.

However, for the higher levels above three, it is
impossible to determine analytically the levels and
weights of non-normal distribution. Therefore, to im-
prove the accuracy of moments, Zhao and Ono (2000)
proposed five and seven integration nodes numerically
in standard normal space and Rahman and Xu (2004)

Fig. 1 Levels and weights for
three-level DoE
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and Xu and Rahman (2005) proposed a method to de-
termine the general levels and weights for non-normal
distribution, which is called MBQR. Lee et al. (2008)
also proposed a multi-level DoE to determine levels
and weights. In MBQR, a system of linear equations
should be solved to determine the integration nodes.
However, for the case of many integration nodes or
small coefficient of variance of random variable, the
system of linear equations as shown in (2) may be ill-
posed, which degrades the accuracy of the levels and
weights. To avoid this, Ju and Lee (2007) proposed
an improved MBQR (IMBQR) in which the condition
number of the matrix of linear equations is controlled.

The system of the linear equations to determine the
levels and weights in MBQR is as follows,

⎡

⎢⎢⎢
⎣

μ′
m−1 −μ′

m−2 · · · (−1)m−1 μ′
0

μ′
m −μ′

m−1 · · · (−1)m−1 μ′
1

...
...

...
...

μ′
2m−2 −μ′

2m−3 · · · (−1)m−1 μ′
m−1

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

r1

r2
...

rm

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

μ′
m

μ′
m+2
...

μ′
2m−1

⎤

⎥⎥⎥
⎦

(2)

where μ′
i denotes the i-th raw moment of random

variable, x, and ri denotes the coefficient of polynomial
equation defined in (3) below.

After solving for ri from (2), the integration nodes li,
i = 1, ..., m can then be obtained as the i-th root of the
following equation.

xm − r1xm−1 + r2xm−2 − ... + (−1)m rm = 0

where r1 =
m∑

i=1

li,

r2 =
m∑

i=1

m∑

j=i+1

lil j,..., rm = l1l2...lm (3)

And their corresponding weights are determined from
the following equation.

wi =

∫ ∞

−∞

m∏

k=1,k�=i

(x − lk)φ (x) dx

m∏

k=1,k�=i

(xi − lk)

=

m−1∑

k=0

(−1)k μ′
m−k−1qik

m∏

k=1,k�=i

(xi − lk)

(4)

where qi0 = 1, qik = rk − liqi(k−1) and φ(x) is PDF of
random variable, x.

After determining the m levels and weights for each
independent random variable by MBQR, the k-th order

raw moment can be calculated by mn full factorial
design from the product quadrature rule as follows:

E
{
gk

} =
∫ ∞

−∞
· · ·

∫ ∞

−∞

[
g (x1, · · · xn)

]k
n∏

i=1

φ (xi)dx1 · · · dxn

∼=
m∑

j1=1

w1, j1 · · ·
m∑

jn=1

wn, jn

[
g
(
l1, j1 , · · · , ln, jn

)]k
(5)

where li, j and wi, j and φ(x) denote the j-th level and
weight of the i-th variable and PDF of random variable,
x, respectively.

3 Maximum entropy principle

3.1 MEP formulation

It is well known that the PDF determined from a finite
number of moments of a performance function is not
a unique one which satisfies the given moment condi-
tions and that the PDFs which satisfy the given mo-
ment conditions have some similarity with each other
in their shapes as shown in Fig. 2 (Stuart and Ord
1994). MEP provides a means to determine the PDF
which maximizes the entropy H(p) = −�pilogpi and
satisfies the given moment conditions (Shannon 1948;
Jaynes 1957). The maximization of entropy implies
physically the minimization of spurious information of
a system. Therefore, according to the information the-
ory criterion, the PDF estimated based on MEP is the
least biased estimate possible on the given partial mo-
ment information and, in other words, “it is maximally
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Fig. 2 Same the first four moments but different function shapes
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noncommittal with regard to missing information”
(Papoulis and Pillai 2002). In brief, The MEP gives the
most probable PDF model among all PDF candidates
which satisfy the given information

The MEP formulation subject to a given partial
moment constraints for continuous PDF is as follows
(Cover and Thomas 1991),

maximize
∫ b

a
p (x) log p (x) dx

subject to p (x) ≥ 0,

∫ b

a
p (x) dx = 1,

∫ b

a
xi p (x) dx = μ′

i, for 1 ≤ i ≤ nm (6)

where μ′
i is the i-th raw moment of random variable,

nm denotes the number of given moment constraints
and p(x) denotes the PDF to be sought. By using the
calculus of variation, the closed form solution of (6) is
as follows,

p (x) = exp
[∑nm

i=0
λixi

]
, x ∈ [

a, b
]

(7)

where λi is the Lagrange multiplier and (nm + 1)
Lagrange multipliers should be determined by the
given (nm + 1) moment constraints.

The procedure to determine the Lagrange multipli-
ers for given moment constraints is the same as the
procedure to solve a system of nonlinear equations for
(nm + 1) unknowns. It is, however, impossible to
determine an analytical solution except for a special
case (Mead and Papanicolaou 1984) and it is also
difficult to find a numerical solution by conventional
nonlinear system equation solver such as NEQNF
(IMSL 2000) based on a modified Powell hybrid algo-
rithm in IMSL library. Therefore, a potential function
has been introduced as follows through the Legendre
transformation to determine Lagrange multipliers indi-
rectly (Mead and Papanicolaou 1984).

� (λ) = ln Z +
∑nm

i=1
μ′

iλi where

Z ≡
∫ b

a
exp

(
−

∑nm

i=1
λixi

)
dx (8)

A stationary point of �(λ) is the Lagrange multipliers
which satisfy the given moment constraints because
�(λ) is everywhere convex and the Hessian of �(λ),
which is obtained as (9), is positive definite,

Hij = ∂2�

∂λi∂λ j
= 〈

xi+ j〉 − 〈
xi〉 〈x j〉 (9)

where 〈xn〉 denotes the expected value of xn.

Another form of potential function is also defined by
introducing Lagrange multiplier λ0 as follows,

�(λ) =
∫ b

a
exp

(
−

∑nm

i=0
λixi − 1

)
dx +

∑nm

i=0
λiμ

′
i

(10)

This potential function �(λ) is also convex and its
Hessian matrix is positive definite.

The stationary points of the potential function are
the Lagrange multipliers of (7). The procedure to find
the stationary point of �(λ) is the same as that of
solving the following nonlinear system of equations,

∂�

∂λn
= 1

Z
∂ Z
∂λn

+ μ′
n = 0, n = 1, .., nm

− 〈
xn〉 + μ′

n = 0, n = 1, ..., nm where

〈
xn〉 ≡

∫ b

a
xn exp

(
−

∑nm

i=1
λixi

)
dx

∫ b

a
exp

(
−

∑nm

i=1
λixi

)
dx

(11)

Due to the properties of �(λ), the convexity and the
positive definiteness of its Hessian matrix, the station-
ary point can be determined by an iterative Newton al-
gorithm. The iterative scheme for finding the Lagrange
multipliers is shown in (12) below. The updating pro-
cedure is initialized setting all the Lagrange multipliers
equal to zero and 〈xn〉k denotes the expected value of
xn at the k-th iteration step and should be normalized
by Z, which is defined in (8).

λk+1
i = λk

i −
∑nm

j=1

(
H−1

)k
ij

∂�

∂λk
j

= λk
i −

∑nm

j=1

(
H−1

)k
ij

[
μ′

j −
〈
x j〉k

]

where Hk
ij =

∂2�

∂λi∂λ j
= 〈

xi+j〉k − 〈
xi〉k 〈

x j〉k i,

j = 1, 2, ..., nm (12)

The overall procedure to determine the Lagrange mul-
tipliers for potential function �(λ) is similar to that of
�(λ) and the nonlinear system of equations for �(λ) are
as follows,

∂�

∂λn
= −

∫ b

a
xn exp

(
−

∑nm

i=0
λixi

)
dx + μ′

n = 0,

n = 0, 1, ...nm − 〈
xn〉 + μ′

n = 0, n = 0, 1, ...nm

where
〈
xn〉 ≡

∫ b

a
xn exp

(
−

∑
nm
i=0λixi

)
dx

(13)
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Table 1 Raw moments of Gumbel distribution [a = 0.3, b = 0.06]

1st 2nd 3rd 4th 5th 6th 7th

3.34633 × 10−1 1.17901 × 10−1 4.39361 × 10−2 1.74025 × 10−2 7.36351 × 10−3 3.34480 × 10−3 1.63811 × 10−3

The iteration scheme for �(λ) is also as follows,

λk+1
i = λk

i −
∑nm

j=0

(
H−1

)k
ij

∂�

∂λk
j

= λk
i −

∑nm

j=0

(
H−1

)k
ij

[
μ′

j −
〈
x j〉k

]

where Hk
ij = ∂2�

∂λi∂λ j
= 〈

xi+ j〉k i,

j = 0, 1, 2, ..., nm (14)

The Hessian matrix of potential function �(λ) is
(nm+1) × (nm+1) matrix and its inverse matrix always
exists because of its positive definiteness. For the PDF
modeling for reliability analysis and RBDO examples,
the potential function �(λ) is used in this study because
the normalization of 〈xn〉 in (11), which is a cause of
numerical instability at the boundary of moment space,
is not necessary. Furthermore, �(λ) is not a rational
function of λ like �(λ) but a polynomial function of
λ. Therefore, it is easy to derive the derivatives of the
Langrage multipliers with respect to moments for the
sensitivity analysis.

The positive definiteness of the Hessian matrix of
�(λ) is the same as one of the Hankel determinant
conditions which guarantee the existence of a PDF for
a given set of moments (Athanassoulis and Gavriliadis
2002). To apply the Hankel determinant conditions for
a given set of moments, the given moments need be
reduced to within a unit range [0,1] and therefore the
supporting range [a,b ] of PDF for random variable
x should be transformed to [0,1] and the relationship
between random variable x and normalized variable z
is as follows:

z = x − a
b − a

(15)

The relationship between the raw moment of x and the
raw moment of z is as follows:

μ′
z,i =

∫ 1

0
zi f (z) dz =

∫ b

a

(
x − a

/
b − a

)i
f (x) dx

= 1

(b − a)
i

∑i

j=0

(
i
j

)
(−a) j

∫ b

a
xi− j f (x) dx

= 1

(b − a)
i

∑i

j=0

(
i
j

)
(−a) j μ′

x,i− j (16)

μ′
x,i =

∫ b

a
xi f (x) dx =

∫ 1

0
(a + (b − a) z)

i f (z) dz

=
∑i

j=0

(
i
j

)
ai− j (b − a)

j
∫ 1

0
zi f (z) dz

=
∑i

j=0

(
i
j

)
ai− j (b − a)

j μ′
z, j (17)

where μ′
x,i and μ′

z,i are the i-th order raw moment of
random variable x and z, respectively.

3.2 Verification examples

3.2.1 Reconstruction of Gumbel distribution

The first example is to examine the performance of
the MEP as compared with the Pearson system by
considering a reconstruction of a Gumbel distribution
from a given finite number of moments. The PDF of a
test Gumbel distribution is defined as follows,

f (x) = exp
[
(a − x)

/
b − exp

[
(a − x)

/
b

]]/
b (18)

The parameters a and b are 0.3 and 0.06, respectively
and the first seven moments that are obtained by nu-
merical integration of (18), are shown in Table 1.

The estimated PDFs from the MEP (using 4, 5, 6
and 7 moments) and the Pearson system are compared
with the original PDF and the error defined as (19) is
summarized in Table 2.

Error =
∫ b

a

∣∣porg (x) − papp (x)
∣∣ dx (19)

whereporg and papp denote a original PDF and an
approximated PDF by each method, respectively.

In this example, it is observed that including higher
order moments decreases the error between the origi-
nal PDF and the approximated one as shown in Table 2.
In the following, MEP-k denotes the MEP using the
first k moments. For the case of MEP-4, although the

Table 2 Error and entropy of each method for Gumbel
distribution

Method Error Entropy

MEP-4 moments 0.057865 −1.231261
MEP-5 moments 0.038406 −1.234128
MEP-6 moments 0.013718 −1.235820
MEP-7 moments 0.008994 −1.235891
Pearson system 0.017653 −1.239820
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Fig. 3 Comparison of PDF estimated by MEP and Pearson system for Gumbel distribution

entropy of the Pearson system is less than that of MEP-
4 and both method use the same number of moments,
the error by the Pearson system is less than the error
by the MEP-4. An important observation follows. It
is obvious that the MEP method should recover the
original PDF as the number of moments approaches
infinity, if no round-off errors are involved. However
for a given finite number of moments, for example, with
four moments, it is the case that either the MEP or
the Pearson system recovers the original better than
the other because only partial information is used. In
the above case, the fact that the Pearson system has
given more similar PDF to the original PDF does not
guarantee anything and accuracy has no meaning in
reconstructing a PDF. The error defined is simply a
measure of the difference between the partial and the
whole information.

Figure 3 shows the estimated PDF by the MEP and
the Pearson system. The overall shapes of the PDF
resemble each other but there exist slight differences
around the mode as shown in Fig. 3. The supporting
range for the MEP is decided as [μ − 6σ , μ + 12σ ] in
this example.

3.3 Reconstruction of bimodal distribution

To explain the flexibility of the proposed approach, a
bimodal PDF is adopted as a second example. Equation

(20) is the mixed form of Beta distribution and there-
fore it has dual mode,

f (x) = (x − a)q−1 (b − x)
r−1 + (x − a)r−1 (b − x)

q−1

2Beta (q, r) (b − a)
q+r−1

(20)

The parameters taken are (a, b) = (−1, 1) and (q, r) =
(24, 12), and the first eight raw moments of (20) are
shown in Table 3. The resemblance of estimated PDF
is compared based on (19) as in the first example. It
is observed that including higher moments reduce the
error between the original and the estimated PDF as
shown in Table 4. In this example, the PDF by the
Pearson system as shown in Fig. 4 is not dual but single
mode. From this example, it is seen that not only the
error decreases by accommodating higher moments as
in the first example but also it is flexible enough to
recover a dual mode PDF.

3.3.1 Fortini’s clutch

The third example is the overrunning clutch assembly
known as Fortini’s clutch (Lee and Kwak 2006). The
contact angle y in Fig. 5 is determined by the indepen-
dent random variable, x1, x2, x3 and x4 as follows,

y = arccos
[
2x1 + (x2 + x3)

/
2x4 − (x2 + x3)

]
(21)

Table 3 Raw moments of bimodal distribution [a = −1, b = 1, q = 24, r = 12]

1st 2nd 3rd 4th 5th 6th 7th 8th

0.000000 1.35135 × 10−1 0.000000 2.89237 × 10−2 0.000000 7.82940 × 10−3 0.000000 2.48483 × 10−3
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Table 4 Error and entropy of each method for bimodal
distribution

Method Error Entropy

MEP-4 moments 0.137718 0.203027
MEP-6 moments 0.095519 0.195235
MEP-8 moments 0.047616 0.189842
Pearson system N/A N/A

The distribution parameters of random variables are
listed in Table 5. The moments of a performance func-
tion evaluated by five-level MBQR are compared with
MCS results to check the accuracy of the moment es-
timation in Table 6. The Pearson system and MEP use
these moments calculated by MBQR to determine the
PDF of the contact angle y. The cumulative densities of
the contact angle by each method and the entropies for
each PDF model are listed in Table 7. In this example,
the true PDF of the contact angle is unknown and
therefore the MCS result is adopted as a reference
PDF. However, the MCS result also has variations and
therefore it is checked whether the estimated probabil-
ity falls in the confidence interval, which is defined as
follows (Hahn and Shapiro 1968),

p′ − E ≤ p ≤ p′ + E where E2 = p′ (1 − p′)

n′ z2
1−α/2

(22)

where n′, p′ and p are the number of experiments
for the Monte Carlo simulation (MCS), the estimated
failure probability and the true failure probability, re-
spectively. The subscript 1–α denotes the confidence
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Fig. 4 Comparison of PDF estimated by MEP and Pearson
system for bimodal distribution

Fig. 5 Overrunning clutch assembly

level and for 1 - α = 95% confidence level, z is 1.96 as
can be verified from the standard normal distribution
table. The estimated PDFs by each method are shown
in Fig. 6. In Fig. 7, the lower and upper bound of
confidence interval for each case are normalized into
0 and 1, and the existence of an estimated probability
in the confidence bound is checked. Although all PDFs
are similar each other graphically in Fig. 6, as shown
in Fig. 7, the probability by the Pearson system exists
out of the confidence bound, which means that the
estimated probability does not coincide with the real
one. However, the probability by the MEP (except
MEP-4 for Pr[y < 6] and Pr[y < 9]) exists inside the
confidence bound.

4 Sensitivity analysis

4.1 Formulation

The failure probability of a performance function is a
function of its moments which are dependent on the
design variables and defined as follows,

Pr
[
g (x) < 0

] = Pr
(
μ′ (d)

) =
∫

g(x)<0

p (x) dx

=
∫ 0

a
exp

(
−

∑nm

i=0
λixi

)
dx

=
∫ α

0
exp

(
−

∑nm

i=0
λizi

)
dz (23)

Table 5 Random variables in Fortini’s clutch

Variables Mean [mm] STD [mm] Dist. type Parameters

x1 55.29 0.0793 Beta q = r = 5.0
x2 22.86 0.0043 Normal
x3 22.86 0.0043 Normal
x4 101.60 0.0793 Rayleigh 101.45 ≤ x4,

s = 0.1211
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Table 6 Raw moment of Fortini’s clutch

1st × 10−1 2nd × 10−2 3rd × 10−3 4th × 10−4 5th × 10−5 6th × 10−6

Five-level 1.21930 1.50034 1.86258 2.33217 2.94447 3.74752
MCSa 1.21930 1.50034 1.86258 2.33217 2.94471 3.74752

aNumber of experiments for MCS = 106

where d, a, nm and z denote the design variable vector,
the lower bound of the PDF supporting range in the
original range, the number of moments used to estimate
the PDF and the random variable reduced in the unit
range, respectively. A value α in the unit range [0,1]
corresponds to zero in the original range [a,b ].

The derivative of the failure probability with respect
to the i-th design variable can be written as follows
using chain rule.

∂ Pr

∂di
=

nm∑

k=0

∂ Pr

∂λk

nm∑

j=0

∂λk

∂μ′
j

∂μ′
j

∂di

where Pr =
∫ α

0
p (z) dz =

∫ α

0
exp

(∑nm

i=0
−λizi

)
dz

(24)

∂Pr/∂λk in (24) can be calculated from the PDF esti-
mated by MEP as follows,

∂ Pr

∂λk
= −

∫ α

0
zk exp

(∑nm

i=0
−λizi

)
dz (25)

However, a direct derivation of ∂λk/∂μ′
j is difficult and

therefore the relations between the estimated PDF and

the normalized raw moment are used to derive the
derivatives. Differentiation of both sides of (26) with
respect to the j-th order normalized raw moment yields
(27) and (28) as,

∫ 1

0
zn exp

(
−

∑nm

i=0
λizi

)
dz = μ′

n, n = 0, 1, ...nm (26)

∂

∂μ′
j

∫ 1

0
zn exp

(
−

∑nm

i=0
λizi

)
dz

=
∫ 1

0
−zn+k exp

(
−

∑nm

i=0
λizi

)
dz

nm∑

k=0

∂λk

∂μ′
j

= −μ′
n+k

nm∑

k=0

∂λk

∂μ′
j
, n, j = 0, 1, ...nm (27)

∂μ′
n

∂μ′
n

= δnj, n, j = 0, 1, ...nm (28)

The system of linear equations given by (26), (27)
and (28) can be rearranged in a matrix form as follows,

Table 7 Cumulative density of Fortini’s clutch

MCS MEP-4 MEP-5 MEP-6 Pearson

Pr[y < 5◦] 0.001288 0.001376 0.001237 0.001193 0.001396
Pr[y < 6◦] 0.073922 .072832 0.073530 0.073672 0.072715
Pr[y < 7◦] 0.503160 0.504265 0.503126 0.503144 0.504525
Pr[y < 8◦] 0.936726 0.936147 0.936793 0.936631 0.935948
Pr[y < 9◦] 0.999190 0.999306 0.999192 0.999227 0.999345
Entropy −3.03111 −3.03116 −3.03117 −3.03112

⎡

⎢⎢⎢
⎣

μ′
0 μ′

1 . . . μ′
nm

μ′
1 μ′

2 · · · μ′
nm+1

...
...

. . .
...

μ′
nm μ′

nm+1 · · · μ′
2nm

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

∂λ0
/
∂μ′

0
∂λ1

/
∂μ′

0
...

∂λnm
/
∂μ′

0

∂λ0
/
∂μ′

1
∂λ1

/
∂μ′

1
...

∂λnm
/
∂μ′

1

· · ·
· · ·
. . .

· · ·

∂λ0
/
∂μ′

nm
∂λ1

/
∂μ′

nm
...

∂λnm
/
∂μ′

nm

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

−1
0
...

0

0
−1
...

0

· · ·
· · ·
. . .

· · ·

0
0
...

−1

⎤

⎥⎥⎥
⎦

(29)
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Fig. 6 Comparison of PDF estimated by MEP and Pearson system for Fortini’s clutch

After solving (29), the derivative of the Lagrange mul-
tiplier with respect to the normalized raw moment is
calculated as follows,

∂λi

∂μ′
j
=−C ji where C=A−1=

⎡

⎢⎢⎢
⎣

μ′
0 μ′

1 . . . μ′
nm

μ′
1 μ′

2 · · · μ′
nm+1

...
...

. . .
...

μ′
nm μ′

nm+1 · · · μ′
2nm

⎤

⎥⎥⎥
⎦

−1

(30)

The derivative of the j-th order normalized raw mo-
ment with respect to the i-th design variable is obtained
by using FDM as follows,

∂μ′
j

∂di

∼= �μ′
j

�di
(31)

The above equations are summarized as follows,

∂ Pr

∂di
=

nm∑

k=0

∂ Pr

∂λk

nm∑

j=0

∂λk

∂μ′
j

∂μ′
j

∂di

where Pr =
∫ α

0
p (z) dz =

∫ α

0
exp

(∑nm

i=0
−λizi

)
dz

∂ Pr

∂λk
= −

∫ α

0
zk exp

(∑nm

i=0
−λizi

)
dz ,

∂λk

∂μ′
j
= −C jk ,

∂μ′
j

∂di

∼= �μ′
j

�di
(32)

4.2 Verification

Numerical examples are taken from RBDO example of
Tu et al. (2001) to verify the accuracy of the derived

sensitivity formulation and the results are compared
with the sensitivity obtained by FDM. The first four
moments are used and the moments of each perfor-
mance function are obtained by five-level MBQR. The
sensitivities are compared at three design points, which
are iteration points during the optimization. The first
performance function is a polynomial of random vari-
ables, x1 ∼ N(μ1,0.5) and x2 ∼ N(μ2,0.4),

Pr
[
g1 ≤ 0

]
where g1 = x2

1x2

20
− 1 (33)

The results are summarized in Table 8. The derived
formula and the FDM give almost the same results with
less than 0.12% difference. For the FDM, a forward

Pr [y<5] Pr [y<6] Pr [y<7] Pr [y<8] Pr [y<9]
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Fig. 7 Lower and upper bound of 99% confidence level and
failure probability by each method
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Table 8 Comparison of sensitivity of a performance function 1

Design point Derived formulation FDMa Difference [%]
x1 x2 x1 x2 x1 x2

(4.000, 4.000) −3.431 × 10−3 −1.132 × 10−3 −3.427 × 10−3 −1.132 × 10−3 −0.12 −0.04
(3.500, 3.500) −8.029 × 10−2 −3.160 × 10−2 −8.022 × 10−2 −3.159 × 10−2 −0.09 −0.03
(3.968, 2.540) −8.536 × 10−2 −6.434 × 10−2 −8.529 × 10−2 −6.431 × 10−2 −0.07 −0.05

aFinite difference size = 0.001 × σ

Table 9 Comparison of sensitivity of a performance function 2

Design point Derived formulation FDMa Difference [%]
x1 x2 x1 x2 x1 x2

(4.000, 4.000) 3.564 × 10−5 2.217 × 10−5 3.569 × 10−5 2.195 × 10−5 0.13 −1.03
(3.500, 3.500) 6.581 × 10−8 3.546 × 10−8 6.749 × 10−8 3.249 × 10−8 −2.56 −8.34
(3.968, 2.540) 8.377 × 10−8 2.645 × 10−8 8.390 × 10−8 2.522 × 10−8 0.15 −4.63

aFinite difference size = 0.001 × σ
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Fig. 8 Comparison of optimal point of each method for numerical example

Table 10 Optimization result
of numerical example

aOptimization results are
taken from Huh (2006)
bIteration (function calls)

p f 0 = 0.02275 x1 x2 Objective value Remarks

FORMa 3.974 2.470 6.444 HL-RF algorithm
FAMM + Pearsona 4.023 2.476 6.530 Three-level MBQR
FFMM + Pearson 4.004 2.480 6.484 Five-level MBQR 47(483)b

FFMM + MEP-4 3.968 2.540 6.508 Five-level MBQR 38(412)b

FFMM + MEP-5 3.990 2.500 6.485 Five-level MBQR 14(75)b
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Table 11 Constraint verification by MCS at optimal point for
numerical example

p f 0 = 0.02275 g1 g2 g3

FORM 0.026340 0.023320 0.000000
FAMM + Pearson 0.021640 0.023660 0.000000
FFMM + Pearson 0.022849 0.022800 0.000000
FFMM + MEP-4 0.021500 0.015200 0.000000
FFMM + MEP-5 0.023000 0.020565 0.000000

g1 and g2 are active constraints; number of experiment for
MCS = 106

difference is used with an increment of 0.1% of stan-
dard deviation.

The second performance function is shown below
and the properties of random variables are the same as
those of the first case,

Pr
[
g3 ≤ 0

]
where g3 = 80

(
x2

1 + 8x2 + 5
) − 1 (34)

The results are compared with the FDM results as listed
in Table 9. An acceptable level of differences is shown
at the first design point with less than 1% but a large
difference by more than 1% is shown at the second and
third design point. These points, however, are located
rather far from the failure surface as shown in Fig. 8,
where the failure probability is nearly zero.

5 RBDO examples

5.1 Numerical examples

The accuracy of the sensitivity by MEP is studied using
numerical examples. Two RBDO problems are also
solved by using the derived sensitivity formulation. The

optimization results, by MEP-4 and MEP-5, are com-
pared with those obtained by other reliability analysis
method such as FORM and FAMM. The Pearson sys-
tem is used as the PDF modeling method in FAMM.

The first example is taken from Tu et al. (2001), often
cited when comparing RBDO algorithms. The problem
with design variables d = [d1,d2]T = [μ1, μ2] is defined
as follows,

minimize f (d) = d1 + d2

subject to Pr
[
gi (x) ≤ 0

] ≤ p f , i = 1, 2, 3

0 ≤ d ≤ 10

where g1 = x2
1x2

20
− 1 , g2 =

(
10x3

2 − x2
1x2 − 2x1

)

10
− 1 ,

g3 = 80
(
x2

1 + 8x2 + 5
) − 1 (35)

The initial design point is d0 = [4.0,4.0]T and statistical
properties of random variables are x1 ∼ N(d1,0.5) and
x2 ∼ N(d2,0.4). The target failure probability taken is
p f = 0.02275. The moments are evaluated using five-
level MBQR and the optimization algorithm used is
SQP. The results are summarized in Table 10. It is
seen that the prescribed probabilistic constraints are
satisfied when evaluated by MCS at each optimal point
as shown Table 11. The 99% confidence interval of
MCS result and the lower and upper bounds for each
case are shown in Fig. 10, where pearson1 and pearson2
denote FFMM + Pearson system and FAMM + Pearson
system, respectively.

FORM gives the lowest minimum among the five
methods as listed in Table 10 but the constraint verifica-
tion by MCS at the optimal point in Fig. 10 shows that
all active constraints violate the probability constraints.
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Fig. 10 MCS verification of active constraints with 99% confidence level

Table 12 Random variables
in ONERA M6 wing

Variables Mean STD Initial PDF type Var. bound

Mach # 0.84 0.003 0.84 Normal [0.830, 0.850]
AoA 3.06 0.02 3.06 Normal [3.015, 3.105]
Sweep angle μsweep 0.10 30.26 Normal [27.00, 45.00]
Taper ratio μtaper 0.02 0.56 Normal [0.300, 0.600]

3625 30 35 40 45 35.75 35.8 35.85 35.9 35.95 36.05 36.1 36.15 36.2 36.25
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Fig. 11 Comparison of optimal point of each method for ONERA M6 wing

Table 13 Optimization result for OENRA M6 wing

Sweep angle Taper ratio Obj.(L/D) CL Cm Remarks

Initial 30.2600 0.5600 19.6846 0.3620 −0.2265
Deter. Opt. 38.63 0.4419 24.5748 0.3500 −0.2800
TR-SQPa 35.87 0.4420 21.9438 0.3665 −0.2665
FFMM + MEP-4 35.8936 0.4439 21.9773 0.3663 −0.2664 14(58)b

FFMM + MEP-5 35.8908 0.4439 21.9757 0.3663 −0.2664 15(61)b

FFMM + Pearson 35.8995 0.4437 21.9802 0.3663 −0.2664 36(373)b

aOptimization results are taken from Ahn and Kwon (2005)
bIteration (function calls)
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Fig. 12 History of optimization for ONERA M6 wing

The result obtained by FAMM + Pearson system
also violates the active constraint g2 as shown in
Fig. 10. However, the result obtained by FFMM + MEP
does satisfy constraints, and especially for the case of
FFMM + MEP-5, the constraints are satisfied more
tightly than FFMM + MEP-4 while improving the
objective value: In fact, the constraints are not active,
which means that there is a margin to improve the
objective function. The optimal points are compared
with each other in Fig. 8. In this example, compared
with the MEP-based moment method, it is observed
that the Pearson system-based method gives somewhat
better result, but within the tolerance of stopping crite-
ria. The Pearson system-based solution has constrains
active, but there is still margin for them to become
active in case of the MEP solution. The optimization
histories for FFMM + MEP-4 and FFMM + MEP-5
are compared in Fig. 9. When five moments are used,
the total number of iterations is reduced as shown in
Fig. 9, showing a case that MEP-5 is more efficient
than MEP-4 and the Pearson system. The amount of
calculation for the moments at each iteration is the
same for the Pearson system, the MEP-4 and MEP-5.

5.2 3-D wing optimization

The second RBDO example is taken from Ahn and
Kwon (2005). A three-dimensional wing optimization
under uncertainties is performed using the MEP-based
moment method and the result is compared with other
reliability analysis methods such as TR-SQP and the
Pearson system-based moment method. The initial

geometry of the wing is the ONERA M6 wing and
the aerodynamic performances such as lift coefficient
(CL), pitching moment coefficient (Cm) and lift to drag
ratio (L/D) are obtained by a compressible Euler code
with an O–H type gird and 129 × 33 × 33 grid points.
The deliberated random variables are categorized into
geometric random variables and operational random
variables. The sweep angle and the taper ratio are
geometric random variables and these are also design
variables for optimization. The Mach number and the
angle of attack are operational random variables. The
statistical properties of the four random variables are
listed in Table 12 and the initial design values are se-
lected as those of OENRA M6 wing. A realistic RBDO
formulation of the three-dimensional wing design is as
follows,

maximize L/D

subject to Pr[CL ≤ 0.35] ≤ 0.00125

Pr[Cm ≤ −0.28] ≤ 0.00125

27 ≤ dsweep ≤ 45, 0.3 ≤ dtaper ≤ 0.6 (36)

Table 14 Constraint verification by MCS at optimal point for
ONERA M6 wing

Pr[CL < 0.35] Pr[Cm < −0.28]

TR-SQP 0.000962 0.001368
FFMM + MEP-4 0.001234 0.001224
FFMM + MEP-5 0.001267 0.001294
FFMM + Pearson 0.001236 0.001331

Number of experiment for MCS = 106
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Fig. 13 MCS verification of active constraints with 99% confidence level

The lift to drag ratio, lift coefficient and pitching mo-
ment coefficient are evaluated by a regression model
made by the Kriging method. A six-level full factorial
experiment is used and therefore the total number of
experiments to make the regression model is 6 × 6 ×
6 × 6 = 1,296. Figure 11 shows the design space and the
initial design values and the optimized design values for
each method. The failure surfaces for lift coefficient and
pitching moment coefficient are also shown in Fig. 11.
The optimization results are summarized in Table 13.
Among the three moment-based methods, the Pearson
system-based moment method finds the largest objec-
tive value but it is observed that the total iteration

is larger than the MEP-based moment methods. The
objective value histories for MEP-4 and MEP-5 are
shown in Fig. 12. Table 14 shows MCS verification
of each constraint. The 99% confidence intervals of
each constraint for each method are shown in Fig. 13.
With respect to the accuracy, all methods except TR-
SQP, which is based on FORM, satisfy more plausibly
the probabilistic constraints as shown in Fig. 13. Also
the MEP-based moment methods show higher effi-
ciency than the Pearson system-based one as shown in
Table 13. The optimized wing shapes and their pressure
contours by each method are shown in Figs. 14 and 15.
It is observed that the λ-shocks appear stronger for all

Fig. 14 Optimized wing
shapes for ONERA M6 wing

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 Initial Shape

 Deter. Shape

 TR-SQP Shape

 MEP-5 Shape



Application of maximum entropy principle for reliability-based design optimization 345

Fig. 15 Pressure contours for
OENRA M6 wing

RBDO methods than the deterministic optimization as
shown in Fig. 15 and therefore the λ-shocks need be
considered in the design formulation with additional
constraints as a further work.

6 Discussions and conclusions

The maximum entropy principle is first adopted for re-
liability calculation and reliability-based design and its
performance is studied by several numerical examples
including a three-dimensional wing design problem. It
is found flexible enough of handling higher order mo-
ments, and efficient and accurate in obtaining RBDO
solutions.

The possibility of allowing higher order moments
in MEP formulation is a flexibility that the Pearson
system does not have. Given more and more informa-
tion a convergent solution is also expected. For a finite
number of moments, the error introduced as a square
error form denotes simply the gap between the partial
information and the whole information case. Therefore
this should not be interpreted as a measure of accuracy.

The Gumbel distribution example is such a case;
under the same condition, i.e., using the first four mo-
ments, the Pearson system looks to give better PDF
than the MEP-4 as far as reconstructing the given an-
alytical distribution. This is not a matter of accuracy.

The sensitivity analysis of failure probability based
on MEP is performed and applied to RBDO examples.
The effect of higher order moments is studied through
RBDO examples. For four moment case, it is not con-
clusive whether the MEP is better than the Pearson

system-based method. However, it is observed for our
example that including the fifth moment can improve
the efficiency in terms of the reduction of total itera-
tions, and the accuracy, which is verified by MCS.
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