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Abstract This paper focuses on the metamodel-based
collaborative optimization (CO). The objective is to
improve the computational efficiency of CO in order
to handle multidisciplinary design optimization prob-
lems utilising high fidelity models. To address these
issues, two levels of metamodel building techniques are
proposed: metamodels in the disciplinary optimization
are based on multi-fidelity modelling (the interaction
of low and high fidelity models) and for the system
level optimization a combination of a global metamodel
based on the moving least squares method and trust
region strategy is introduced. The proposed method
is demonstrated on a continuous fiber-reinforced com-
posite beam test problem. Results show that methods
introduced in this paper provide an effective way of
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1 Introduction

Most real world design problems are complex and
multidisciplinary in nature. For example, both aircraft
and automotive design are characterized by multidis-
ciplinary interactions in which participating disciplines
are intrinsically coupled to each other. Over the past
several years there has been significant progress in
the application of multidisciplinary design optimization
(MDO) to solving such complex design problems. One
of typical important problems associated with MDO
is a high computational cost of analysis in individual
disciplines. The interdisciplinary couplings inherent in
MDO cause increased computational effort beyond
that encountered in a single discipline optimization.
The analysis codes for each discipline must interact
with each other for the purpose of system optimiza-
tion. These issues result in a very high overall com-
putational cost that can become prohibitive. Several
MDO approaches have been proposed that include
multiple-discipline feasible (MDF; Kodiyalam and
Sobieszczanski-Sobieski 2001), all-at-once (AAO) and
individual discipline feasible (IDF; Cramer et al. 1992),
collaborative optimization (CO; Kroo et al. 1994),
bi-level integrated synthesis (BLISS; Sobieszczanski-
Sobieski et al. 1998), concurrent subspace optimization
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(CSSO; Sobieszczanski-Sobieski 1988) and analytical
target cascading (ATC; Kim et al. 2003).

The key concept in the CO approach is the decompo-
sition of the design problem into two levels, namely dis-
ciplinary and system levels. The system level optimizer
is used to minimize the system level objective while sat-
isfying consistency requirements among the disciplines
by enforcing equality constraints at the system level
that coordinate the interdisciplinary couplings (Kroo
et al. 1994). CO is designed in such a way that it
supports disciplinary autonomy while maintaining in-
terdisciplinary compatibility thus providing added de-
sign flexibility. These features make CO well suited for
use in a practical multidisciplinary design environment
(Kroo 1995; Braun et al. 1996; Sobieski and Kroo 1996).

Despite these advantages, the CO methodology has
not become a mainstream design optimization tool in
industry due to high computational costs involved that
is a feature common to all MDO approaches. In addi-
tion, an important difficulty specifically associated with
CO is its slow system level optimization convergence
rate. This relates to the fact that CO ensures interdisci-
plinary compatibility by means of system level equality
constraints and attempts to minimize the disagreement
between disciplines by sending targets to individual
disciplines that their optimization runs are required to
meet. The discipline level optima can be non-smooth
and noisy functions of the system level variables. This,
combined with the use of equality constraints at the
system level to represent disciplinary feasible regions
introduces computational difficulties (Alexandrov and
Lewis 2000; Alexandrov et al. 1999). The implications
of these issues are that derivative-based optimization
techniques cannot be used for the system level opti-
mization whereas more robust optimization techniques
such as genetic algorithms are prohibitively expensive
for the use in CO. These issues pose significant barriers
to real-life applications of CO based on high fidelity
simulation models.

It has become increasingly important to utilize the
most accurate simulation models in the design process
to ensure a realistic design, hence high fidelity mod-
els (e.g. finite element, computational fluid dynamics,
etc.) are now used extensively. However, the con-
siderable computational expense associated with such
models makes it difficult to use them in optimization,
where achieving a solution may require hundreds or
even thousands of simulation calls. Because of this,
in the field of design optimization in general, and
MDO in particular, the use of approximations
became an effective tool for reducing the computa-
tional effort. The basic approach is to replace the
computationally expensive simulation model by an

approximate one, which is then used in optimization
runs. Such an approximate model is often referred to
as a metamodel (“model of a model”). A survey on
the use of metamodels in structural optimization has
been carried out by Barthelemy and Haftka (1993)
and in MDO by Sobieszczanski-Sobieski and Haftka
(1997) and Simpson et al. (2004). The main benefits
of using metamodels in MDO include (Giunta et al.
1995): (1) reduction of the number of expensive high
fidelity simulations during optimization; (2) smoothing
numerical noise; (3) enabling separation of the simu-
lation code from the optimization routines and easing
the integration of codes from various disciplines; (4)
making possible the utilization of parallel computer
architecture. While the use of metamodels has now
become an integral part of an optimization process,
allowing a significant reduction of computational costs,
it does have some limitations. The cost of providing
high fidelity data for building the global metamodel
increases rapidly with the number of design variables.
Toropov and Markine (1996) suggested the use of low
fidelity models (e.g. simplified numerical models) as the
basis for the high quality metamodel building.

There have been several metamodel building ap-
proaches based on low fidelity models. Mason et al.
(1994) used a coarse 2D finite element model as a
low fidelity model to predict failure stresses, and cor-
rections are calculated using a full 3D finite element
model. Venkataraman et al. (1988) demonstrated the
effectiveness of correcting inexpensive analysis based
on low fidelity models by results from more expensive
and accurate models in the design of shell structures for
buckling. Vitali et al. (1998) used a coarse low fidelity
finite element model to predict the stress intensity fac-
tor, and corrected it with high fidelity model results
based on a detailed finite element model for optimizing
a blade-stiffened composite panel. These approaches
have been developed for single discipline problems. In
the field of MDO, there have been several approaches
in the use of metamodels to large multidisciplinary opti-
mization problems. The variable complexity modelling
proposed by Giunta (1997) simultaneously utilizes low
and high fidelity models. The low fidelity predictions
were corrected using a scaling factor obtained from
the high fidelity model. Toropov and Markine (1996)
and Rodriguez et al. (1997) introduced a trust region
approach for low fidelity approximate model manage-
ment for constrained approximate optimization prob-
lems to manage convergence. Alexandrov et al. (1998)
proposed the trust region management framework to
manage the solution of MDO by alternating the use
of high and low fidelity models during the optimization
process.
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In this study two levels of metamodel building tech-
niques are introduced in order to significantly reduce
the computational effort while handling high fidelity
discipline level simulation models in CO. Metamodels
in the disciplinary optimization are based on multi-
fidelity modelling and for the system level optimization
global metamodels are introduced using the moving
least squares method (MLSM) combined with a trust
region strategy. The multi-fidelity modelling consists
of computationally efficient simplified numerical mod-
els (low fidelity) and expensive detailed (high fidelity)
models. The main advantage of using simplified nu-
merical models is that they reflect the most prominent
features of the original model whilst remaining compu-
tationally inexpensive (can be used repeatedly in the
optimization process).

2 Collaborative optimization

CO is a bi-level optimization framework, with discipline-
specific optimization runs that are free to obtain local
designs, and a system level optimizer to coordinate this
process while minimizing the overall design objective
(Kroo 1995; Braun et al. 1996). Using the terminol-
ogy defined by Alexandrov and Lewis (2000), and,
for brevity, assuming that there are only two individual
disciplines in an MDO problem, each discipline is based
on a disciplinary analysis, which takes as its input a
set of design variables li, a set of system level design
variables s (also referred to as shared variables) and
some other parameters. The total outputs from a dis-
cipline i including all data passed to the other discipline
as parameters and quantities passed to design con-
straints and objectives are denoted by qi. For example,
q1 = {

qp
1 , qg

1

}
where gp

1 are parameters passed to the
discipline 2 (e.g. aerodynamics loads), and qg

1 are the
responses essential to the discipline 1 (e.g. drag or
lift) that serve in the definition of the objective and
constraints of discipline 1.

The system level optimization problem for a two-
discipline case can be stated as (Alexandrov and Lewis
2000):

Minimize : f (s, t1, t2) (1)

subject to : C (s, t1, t2) = 0 (2)

where C = {C1,...,CN} are the N interdisciplinary con-
sistency (or compatibility) constraints, and t1 and t2 are
the interdisciplinary coupling variables for discipline 1
and 2, respectively, serving as system level targets for
the disciplinary outputs q1 and q2. Note that the output
qi of the discipline i can be an input for the discipline j.

The system level optimization provides target values
t1, t2 and required values of shared (system level)
variables to disciplines 1 and 2. The discipline level
optimizer seeks to match these values (s, t1, t2) passed
down by the system level. The variables ψ1 and ψ2 are
introduced to relax the coupling between the disciplines
introduced by the shared design variables s. Thus the
variables ψ i are used as local copies (for discipline i) of
the shared variables s.

For discipline 1, ψ1 (s, t1, t2) and l̄1 (s, t1, t2) are
components of the solution of the following minimiza-
tion problem in ψ1 and l1:

Minimize : ∥∥ψ1 − s
∥∥2 +

∥∥∥qg
1

(
ψ1, l1, qps

2

) − t1

∥∥∥
2

(3)

subject to : g1

(
ψ1, l1, qg

1

(
ψ1, l1, qps

2

)) ≤ g∗
1 (4)

where (s, t1, t2) are target values passed to the dis-
ciplinary optimizer by the system level as parameters
(fixed values), qps

i are parameters that are frozen in the
discipline i, g1 are disciplinary constraint functions and
g∗

1 are limits on them.
Similarly, discipline 2 optimization problem can be

expressed as:

Minimize : ∥∥ψ2 − s
∥∥2 +

∥∥∥qg
2

(
ψ1, l2, qps

1 − t2
)∥∥∥

2
(5)

subject to : g2

(
ψ2, l2, qg

2

(
ψ2, l2, qps

1

)) ≤ g∗
2 (6)

The minimum values of the compatibility functions (3)
and (5) will then serve as constraints (2) in the system
level optimization problem.

3 Metamodel-based CO framework

The organization of the optimization process and the
main components of the metamodel-based CO frame-
work are shown in Fig. 1 and are described in the
sections below.

3.1 Disciplinary optimization

Constraints gi at the discipline level in CO correspond
to functions describing the behaviour of a typical en-
gineering system as related to a particular discipline i.
The construction of metamodels at the discipline level
is based on well-established global metamodelling con-
cepts. In this paper, the multi-fidelity modelling concept
(Toropov and Markine 1996; Zadeh and Toropov 2002)
is used. Here, the multi-fidelity modelling concept is
implemented to simultaneously utilize computational
models of different levels of fidelity in a CO process
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Fig. 1 Metamodel-based
collaborative optimization
framework

to facilitate the solution of an MDO problem with high
fidelity models, see schematic illustration in Fig. 1.

It consists of expensive detailed (high fidelity) mod-
els and computationally efficient simplified numerical
(low fidelity) models. The low fidelity models are tuned
using a small number of high fidelity model runs and
then used in place of expensive high fidelity models in
the optimization process. The tuned low fidelity model
approaches the same level of accuracy as a high fidelity
model but at the same time remains computationally
inexpensive to be used repeatedly in the optimization
process.

3.1.1 Metamodels based on low fidelity numerical
models

The quality of a metamodel has a profound effect on
the computational cost and convergence characteristics
of metamodel-based optimization. It was shown by Box
and Draper (1987) that a mechanistic model (one that
is built upon some prior knowledge of the system)
can often provide a higher quality metamodel than a
purely empirical (e.g. polynomial) model. An example
of an application to material parameter identification
can be seen in Toropov and van der Giessen (1993).
A more general way of constructing high quality meta-
models adopted here is based on the use of a lower

fidelity numerical model (Toropov and Markine 1996).
This can be achieved either by simplifying the analysis
model (e.g. coarser finite element mesh) or simplify-
ing the modelling concept (e.g. simpler geometry and
boundary conditions, use of 2D instead of 3D model,
etc.). Such a model should reflect the most prominent
physical features of the system under consideration and
at the same time remain computationally inexpensive.
The low fidelity numerical model can then be used to
build the metamodel as follows:

F̃ (x, a) ≡ F̃ ( f (x), a) (7)

where x is the vector of all design variables in a disci-
pline being considered including the local copies ψ of
the system level variables and the local variables l, see
(3), (4) and (5), (6); f (x) is the function presenting a
response obtained by the low fidelity model. The tuning
parameters x are used for minimizing the discrepancy
between the high fidelity and the low fidelity models. In
building metamodels, F̃(x), it is necessary to select an
appropriate structure of the metamodel, i.e. to define
them as a function of design variables x and tuning pa-
rameters a. The efficiency of the optimization process
depends strongly on the accuracy of such a metamodel.
Zadeh and Toropov (2002) examined several types of
metamodel functions on a test problem. The selection
of the best metamodel function was based on the error
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of the corrected low fidelity model as compared to the
high fidelity model at points of a design of experiments
(DoE) referred to as a verification DoE. The following
types of the metamodel functions have been suggested
by Toropov and Markine (1996).

Type 1 Linear and Multiplicative Metamodel with
Two Tuning Parameters

The simplest form of the metamodel function is a linear
or intrinsically linear function with two tuning parame-
ters, which can be represented as follows:

Type 1 linear : F̃ (x, a) = a0 + a1 f (x) (8)

Type 1 multiplicative : F̃ (x, a) = a0 f (x)a1 (9)

where a = [a0 a1]T

Type 2 Correction Functions

The type 2 metamodels are based on an explicit cor-
rection function C(x, a) that depends on the design
variables and tuning parameters, such as:

multiplicative function:

F̃ (x, a) = f (x) C (x, a) (10)

where C (x, a) = a0

N∏

l=1
xa1

l ;

or a linear function:

F̃ (x, a) = f (x) + C (x, a) (11)

where C(x, a) can be a low order polynomial in x
with coefficients a, e.g. a linear, quadratic or a cubic
function.

Type 3 Use of model inputs as tuning parameters

A low fidelity model, f (x), which is used as a basis
for building an metamodel depends not only on the
design variables x but also on other parameters, e.g.
geometrical and material properties, etc. Some of these
parameters can be considered as tuning parameters a
so that a metamodel function can be represented in the
following form:

F̃ (x, a) = f (x, a) . (12)

Once the metamodel type is chosen, the tuning para-
meters a included in the metamodel are obtained by
minimizing the sum of squares of the errors over the
p sampling points at which both high fidelity and low
fidelity models have been run:

Minimize : G (a) =
P∑

p=1

wp

(
Fp − F̃

(
xp, a

))2
(13)

where xp is pth sampling point, wp is a weight that
determines the relative contribution of the information
at the pth point and Fp is the corresponding value of
response from the high fidelity model, for more details
see Toropov (2001).

The linear and multiplicative functions of type 1 and
2 have been successfully used for a variety of design
optimization problems (Toropov 2001). The advantage
of these metamodels is that a relatively small number
of tuning parameters a are required. For higher order
metamodels of type 2, such as full quadratic and cu-
bic polynomials, the error measure reduces but meta-
models can become prone to overfitting. In addition,
these metamodels would require a significantly larger
number of designs to be evaluated. The type 3 meta-
model similarly to mechanistic metamodels, is based
on deeper understanding of a process being modelled,
which can be useful (Toropov 2001) but is problem-
dependent.

3.1.2 Design of experiments

The selection of sampling points in the design variable
space, where the response must be evaluated, is com-
monly referred to as Design of Experiments (DoE).
DoE is an essential part of metamodel building process,
and allows the designer to build metamodels more
efficiently by employing set points at which to evaluate
the response function(s). The planning of DoE (i.e. the
choice of points in the design variable space) can have
a considerable effect on the accuracy and the efficiency
of the metamodel building. There are many schemes
available in the literature for generating plans of exper-
iments (Simpson et al. 1997). In this study the scheme
suggested by Audze and Eglais (1977) is adopted. It is
a space-filling DoE that is based on a Latin hypercube
design.

The Latin hypercube (LH) approach McKay et al.
(1979) is independent of the mathematical model of
a problem. It can be considered as an N-dimensional
extension of the traditional Latin square design
(Montgomery 1997). In each level of every design varia-
ble only one point is placed. In this approach the num-
ber of design points to be analysed can be defined
without an explicit dependence on the number of de-
sign variables. There are two variations of LH ap-
proach, the random sampling and the optimal LH
method. The optimal LH method is based on opti-
mizing the uniformity of the distribution of the design
points. There are a number of methods are available for
obtaining optimal LH, e.g. Bates et al. (2004). Audze
and Eglais (1977) introduced an optimality criterion
using an analogy with the potential energy of the system
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of points in the design space for obtaining a uniform
distribution of design points that is used in this work.

3.2 System level optimization

Constraints at the system level are equality constraints
(discrepancy functions C = 0) in (2) that are much
more computationally expensive as compared to dis-
cipline level constraints. Values of the system level
constraints are obtained by solving disciplinary opti-
mization problems and correspond to a measure of
disagreement between the targets given to a discipline
by the system level optimizer. Hence, they are non-
smooth at the transition from a plane of zero values
(discipline compliance with given targets) to a region of
non-zero values (discipline non-compliance). This fea-
ture can cause slow convergence of the CO system level
optimization. Also, these characteristics of the system
level optimization in CO make it more demanding in
terms of a choice of a metamodelling technique.

Figure 2a and b show a 50-point uniform Latin Hy-
percube plan, obtained corresponding to the system
level design variables for disciplines 1 and 2 for the
test problem used in this study (see Section 4 below).
In these figures, larger dots indicate points at which
the corresponding disciplinary optimizer returned non-
zero values of the objective function. The remaining
points correspond to zero values of the disciplinary
optimization runs.

An initial study was carried out using a cubic poly-
nomial response surface to build a metamodel for the
system level optimization. Figure 3 shows the discipline
1 objective function (a constraint at the system level)
represented by a cubic polynomial response surface
with negative values removed by forcing them to zero.

The cubic metamodel captures the basic behavior
of the function, but can exhibit an unrealistic non-
zero domain (“hump” in Fig. 3) in the region of the
zero-level plateau. It is therefore necessary to employ
a metamodel strategy, suitable for the characteristics
of the discrepancy function, for more accurate and
efficient modelling within a CO framework. Jang et al.
(2005) used kriging-based metamodels to approximate
the system level constraints and Zadeh et al. (2004)
used the moving least squares method (MLSM) for the
same purpose In this study the use MLSM is demon-
strated on a test example.

3.2.1 Moving least squares method

The moving least squares method (Wang and Yang
2000; Choi et al. 2001) is a method for metamodel
building in design optimization. It can be thought of as

Fig. 2 Characteristics of the system level equality constraints
shown by the 50 point uniform Latin Hypercube DoE for the test
problem. Larger circular dots correspond to violated constraints
and remaining dots indicate that constraints are satisfied

a weighted least squares method with weight functions
that vary with respect to the location at which the
metamodel is evaluated. In the space of all system
level variables z that includes s, t1, t2 in (1), (2) the



Metamodel-based collaborative optimization framework 109

Fig. 3 Cubic metamodel, discipline 1 objective function (with
negative values removed)

weight associated with a particular sampling point, zi,

decays as a prediction point z moves away from zi

so the metamodel obtained by the least squares fit is
termed a moving least squares metamodel of the orig-
inal function F(z). Since the weights wi are functions
of z, the polynomial basis function coefficients are also
dependent on z. This means that it is not possible to
obtain an analytical form of the function F̃(z) but its
evaluation is computationally inexpensive. It is possible
to control the “closeness of fit” of the metamodel to the
sampling data set by changing a parameter in a weight
decay function wi(r), where r is the distance from the
ith sampling point. Such a parameter defines the rate
of weight decay or the radius of a sphere beyond which
the weight is assumed to be zero (sphere of influence of
a sampling point zi).

There are several types of weight decay function that
can be used to control the closeness of fit. Some of
these are described by Toropov et al. (2005). The most
frequently used function is the Gaussian function, ex-
pressed by wi = exp

(−θ r2
i

)
where θ defines the close-

ness of fit. The case θ = 0 is equivalent to conventional
least squares regression. When θ is large it is possible
to obtain a very close fit through the sampling points
(approaching interpolation).

4 Numerical example

This section presents a demonstration of the proposed
metamodel-based CO framework for solving MDO
problems with high fidelity models used in individual
disciplines on an intentionally simple problem. It is
attempted to mimic some of the essential features of
real-life problems such as multidisciplinarity and also
potential for the use of high and low fidelity FE models

Fig. 4 Beam subjected to a parabolic distributed load p(ξ)

in the disciplinary simulation without involving a mas-
sive computing effort. This test problem deals with the
weight minimization of a continuous fiber-reinforced
composite cantilever beam subject to a parabolic dis-
tributed load p(ξ) as shown in Fig. 4. The objective
function (to be minimized) is the weight of the beam.
The design constraints include a limitation on the max-
imum deflection at the free end of the beam δmax, a
constraint on the maximum bending stress in the beam
ámax and the geometric requirement that the depth of
the beam h does not exceed ten times the width w

to avoid torsional lateral buckling, as well as the side
constraints on the design variables. The design data for
this problem are listed in Table 1.

The maximum stress and deflection of the beam can
be calculated as follows:

max = Mmaxh
2I

= 3

2

p0L2

wh2
= p0L2h

8I
(14)

δmax = 19p0L4

360EI
(15)

where the parabolic load p(ζ ) over the beam is
defined as:

q (z) = p0

(
1 − ζ 2

L2

)
(16)

and the second moment of area I = wh2

12 . Based on
the rule of mixtures for a continuous fiber-reinforced
composite material with a fiber volume fraction vf and
a matrix volume fraction vm, the following relationship
must be satisfied:

vf + vm = 1 (17)

Table 1 Design data

Description (notation) Unit Value

Parameter in the parabolic N/mm 1.0
distributed load p0

Length of the beam L mm 1,000
Elastic modulus, graphite fiber Ef N/mm2 2.3 × 105

Elastic modulus, epoxy resin Em N/mm2 3.45 × 103

Weight density, graphite fiber ρf N/mm3 1.72 × 10−5

Weight density, epoxy resin ρm N/mm3 1.2 × 10−5

Stress limit ∗ N/mm2 166.667
Displacement limit δ∗ mm 12.9387



110 P. M. Zadeh et al.

The longitudinal (fiber direction) Young’s modulus E
and the composite weight density, ρ, in terms of the
fiber volume fraction using the rule of mixtures can be
expressed as:

E = Efvf + Em (1 − vf) (18)

ρ = ρfvf + ρm (1 − vf) (19)

where Ef and Em are the elastic moduli for graphite
fiber and epoxy resin respectively, ρf and ρm are the
weight density values of the graphite fiber and epoxy
resin, respectively.

The fiber volume fraction can vary from zero (no
fiber) to the maximum value of vmax

f . The maximum
possible fiber volume fraction using the packing geom-
etry provided in Fig. 5 is calculated as follows:

vmax
f = Afiber

Atotal
= 3π R2

6
√

3R2
= π

2
√

3
= 0.9069. (20)

4.1 Conventional optimization problem formulation

The objective is to minimize the weight of a composite
cantilever beam. The design variables are shown in the
Table 2. The function to be minimized is the weight of
the beam:

Objective : weight = AL ρ

where A = 12I
h2

(
mm2

)
, L = 1,000 (mm) and ρ = ρm +

vf (ρf − ρm).
The constraints are:

g1 (I, h) = σmax

σ ∗ = p0 L2h
8Iσ ∗ ≤ 1 (21)

g2 (I, vf) = δmax

δ
= 19q0L4

360EIδ∗

= 19p0L4

360I
[

Em + vf
(
Ef − Em

)]
δ∗

≤ 1 (22)

Fig. 5 Geometry of fiber
packing in a unit volume

.  

Table 2 Design variables

Description (notation) Unit Lower limit Upper limit

Second moment of area I mm4 0.333 × 104 20.833 × 104

Height of the beam h mm 20 50
Fiber volume fraction vf 0.4 0.9069

g3 (I, h) = h
10w

= h4

120I
≤ 1. (23)

The inequalities (21)–(23) represent, respectively, the
constraints on the maximum stress, maximum deflec-
tion at the end of the beam and the geometric require-
ments that the depth of the beam must be equal or
greater than ten times of the width of the composite
beam. The limiting values of stress and displacement
are shown in Table 1, and they correspond to the values
for the baseline design. The side constraints on the
design variables are obtained by the lower and upper
limits, see Table 2.

Conventional (all-at-once) optimization is carried
out using a sequential quadratic programming (SQP)
algorithm. Results are shown in Table 3.

4.2 Collaborative optimization formulation

The composite beam test problem is now posed to
suit the collaborative optimization framework. The test
problem is decomposed into two disciplines (the stress-
constrained and the deflection-constrained problems)
and a system level optimizer to coordinate the overall
optimization procedure. The design variables shown in
Table 3 are grouped into two disciplines 1 and 2, shown
in Table 4.

The system level design variables s1, s2 and s3 repre-
sent the second moment of area I, depth of the beam
h and the fiber volume fraction v f , respectively. In the
discipline 1 the variable ψ1,1 is a local copy of s1 and
ψ1,2 is that of s2, and in the discipline 2 the variable
ψ2,1 is a local copy of s1 and ψ2,2 is that of s3. An
optimization run at the discipline level finds optimum
values of the design variables which satisfy the disci-
pline’s own constraints and minimize the discrepancy

Table 3 Results of optimization (All-At-Once) using SQP

Design variables Unit Baseline design Optimum

I = x1 mm4 2.25 × 104 3.361 × 104

h = x2 mm 30 44.814
v f = x3 0.785 0.5205
Objective F(x) N 4.8246 2.9535
C1(x) 1.0 1.0
C2(x) 1.0 1.0
C3(x) 0.3 1.0
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Table 4 Design variables and constraints of the test problem
using (CO)

Discipline levels Design variables Constraints

Discipline 1 ψ1,1, ψ1,2 g1,1 = g1, g1,2 = g3

Discipline 2 ψ2,1, ψ2,2 g2,1 = g2

System level s1, s2, s3 C1, C2

from the target values generated by the system level
optimizer. At the system level the constraints are:

C1 (s) = 0, C2 (s) = 0 (24)

where C1(s) and C2(s) are the discrepancies between
the actual and target values returned from discipline
1 and discipline 2, respectively. The system level op-
timization must satisfy these consistency requirements
among disciplines 1 and 2 by enforcing the equality
constraints (24).

4.3 Discipline level optimization

This section demonstrates the multi-fidelity modelling
strategy in the discipline level optimization using the
test problem and focusing on the use of a tuned low
fidelity model in place of a high fidelity model in the
optimization process. The models used here involve
two levels of fidelity: a coarse FE model consisting of
2 beam elements as a low fidelity model and a fine-
meshed FE model consisting of 100 beam elements
as a high fidelity model. In order to make this sim-
ple example mimic an important feature of real-life
problems, a commercial FE software ANSYS was used.
The tuned low fidelity model is used in optimization.
The discrepancy function to be minimized in the first
discipline is

(
s1 − ψ1,1

)2 + (
s2 − ψ1,2

)2
. (25)

The constraints in discipline 1 are:

g1,1 = p0L2ψ1,2

8ψ1,1σ ∗ ≤ 1 (26)

g1,2 = ψ4
1,2

120ψ1,1
≤ 1 (27)

The discrepancy function of discipline 2 can be ex-
pressed as:

Minimize : (
s1 − ψ2,1

)2 + (
s3 − ψ2,2

)2 (28)

The second discipline has one constraint on the maxi-
mum deflection of the beam:

g2,1 = 19p0L4

360ψ2,1

[
Em + ψ2,2

(
Ef − Em

)]
δ∗

≤ 1. (29)

4.4 Implementation of multi-fidelity modelling
methodology in CO

The main steps in the multi-fidelity modelling method-
ology applied to creation of a metamodel utilised in the
discipline level optimization in CO are described below,
following Zadeh and Toropov (2002).

Step 1 Choice of a design of experiments. In this step,
the scheme suggested by Audze and Eglais
(1977) is used to uniformly plan P points in
the design variable space. In order to find what
number of points is sufficient for the construc-
tion of high quality metamodel models, five
separate designs of experiments of ten, five,
four, three and two points were studied on the
above test problem.

Step 2 Run low and high fidelity simulation models.
Response values are computed at the selected
DoE points using a low fidelity (two beam ele-
ments) and a high fidelity (100 beam elements)
FE model.

Step 3 Choice of metamodel function. In this step,
the original high fidelity simulation model is
replaced by the tuned low fidelity model and
used as a metamodel. Six types of a metamodel
(linear and multiplicative of types 1 and 2,
quadratic and cubic of type 2) were examined
on the above test problem. The selection of
the metamodel type was based on the root
mean square (RSM) error and the maximum
deviation error of the tuned low fidelity model
as compared to the high fidelity model at
points of another DoE, referred to as a veri-
fication DoE.
The five-point plan was selected as an appro-
priate one for building metamodels for con-
straints in both disciplines. This was checked
against the verification plan. Based on the re-
sults the linear metamodel type 1 was selected
for the use in the collaborative optimization
framework.

Step 4 Tuning low fidelity model. Since the approxi-
mation of the original high fidelity model F(x)

by the simplified numerical model f (x) is not
exact, the discrepancy between them (7) is to
be minimized using the tuning parameters a.
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This procedure was used in the metamodel
type selection in the previous step.

Step 5 Run optimization using corrected low fidelity
model. In this step, the tuned low fidelity
model is used in place of the original high fi-
delity model in the optimization process. In the
composite beam test problem the discrepancy
between the results obtained using the high
fidelity model and the metamodel is negligible.

4.5 System level optimization using MLSM

This section focuses on the system level optimization in
the test problem, which is described by:

Minimize : f = 12s1

s2
2

L
[
ρm + s3

(
ρf − ρm

)]
(30)

subject to : C1 (s) = 0, C2 (s) = 0 (31)

0.333 × 104 ≤ s1 ≤ 20.833 × 104,

20.0 ≤ s2 ≤ 50.0, 0.4 ≤ s3 ≤ 0.9069 (32)

where s1, s2 and s3 are system level design variables;
C1(s) and C2(s) are the system level equality com-
patibility constraints. The values of functions C1(s)
and C2(s) are produced as a result of the disciplinary
optimization runs and can be expensive to evaluate,
hence they are replaced by inexpensive metamodels.
The main steps are outlined below.

Step 1 Choice of a design of experiments. The selec-
tion of points in the design variable space is
based on a Audze–Eglais uniform Latin hyper-
cube shown in Fig. 2a and b for disciplines 1
and 2, respectively.

Step 2 Compute the values of compatibility constraints
C1 and C2. The values of C1 and C2 are com-
puted by the disciplinary optimization runs
where targets correspond to the DoE points
established in Step 1.

Step 3 Construct a metamodel. Compatibility con-
straint and, if needed, objective function values
are used to build global metamodels for all
disciplines.

In the moving least squares method there are several
parameters such as the order of the base polynomial
(e.g. linear, quadratic, etc), the size of the domain of
influence and the type of the weight decay function that
can be used to control the quality of a metamodel. In
this study the Gaussian function, wi = exp

(−θ r2
i

)
, is

used as a weight decay function and a quadratic poly-
nomial is used as the base function with θ = 10. Zadeh
et al. (2005) investigated on the same test problem the

effects of the order of the base polynomial considering
linear, quadratic and cubic ones, and also of the value
of θ . They concluded that settings mentioned above
produced the best quality of the MLSM metamodel.
It should be mentioned that these conclusions are not
universal, e.g. for a case of a larger number (say, over
10) of design variables even a quadratic base function
could lead to an excessive amount of data needed to
build a metamodel. Zadeh et al. (2005) demonstrated
that a good quality metamodel can be also obtained
using a linear base polynomial, this can be a reasonable
choice for such a case of a larger number of design
variables. As related to the best value of the parameter
θ , several measures of the metamodel quality can be
used in an optimization process in which θ is treated
as a variable. This can be done either on the same
data (e.g. using a “leave-K-out” approach, see, e.g.
Meckesheimer et al. 2002) or data points from a sep-
arate design of experimenrs, see Wang and Shan (2007)
and Narayanan et al. (2007). Figure 6 shows the global
metamodel obtained for the constraint C1 related to the
discipline 1.

Step 4 Solve the system level optimization problems.
Metamodels constructed in Step 3 are used
in the system level optimization. The process
treats response values below 2 × 10−4 (due to
the metamodel error which is corrected during
the optimization process) as zero. A genetic
algorithm (GA) was used to solve the system
level optimization in this example.

Step 5 Trust region strategy: After solving the op-
timization problem with global metamodels,

Fig. 6 Global metamodel built by MLSM for constraint C1
(discipline 1)
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Table 5 Results of metamodel-based collaborative optimization and comparison with all-at-once method

Iteration Number of plan points System level Discipline levels
number used in disciplines 1 and 2 Design variables Constraints Objective Discipline 1 Discipline 2

Discipline 1 Discipline 2 s1 s2 s3 C1 C2 f Objective g1,1 g1,2 Objective g2,1

(×104) (g1) (g3) (g2)

Global range 50 50 6.771 42.889 0.401 0 0 6.221 0 1.53 1.58 0 1.36
Trust region 1 35 30 2.620 36.577 0.402 0 0 3.312 0 1.0 1.45 0.07 1.0
Trust region 2 39 28 3.314 43.350 0.497 0 0 3.085 0 1.02 1.11 0 1.0
Trust region 3 25 24 3.359 44.819 0.524 0 0 2.955 0 1.0 1.0 0 1.0
All-at-once 3.361 44.814 0.521 2.954 1.0 1.0 1.0

construct a new sub-region (trust region) in
the design space, add new DoE points and
return to Step 2. This step focuses on the
localised search for an optimum solution. The
new sub-region is centred on the design point
obtained in Step 4, which is resized to be
smaller part (here, a half of the range of
each of the design variables) of the original
size of the design variable domain. The new
DoE points are generated in such a way as
to ensure the homogeneous distribution of the
points inside a search sub-region. The follow-
ing strategy was adopted: the initial DoE had
50 uniformly spaced points (see Fig. 2a and b)
and each subsequent trust region had 20 new
DoE points added and used together with ex-
isting points from the previous iterations. The
new DoE points were added randomly whilst
controlling the minimum distance ε from the
already planted points. In the test problem
above the value of ε is chosen as 5% of the
diagonal of a current trust region. If the dis-
tance from a new point to any of the existing
points is smaller than ε then such a candidate
point is abandoned and another random point
is chosen. This is repeated until all the new
points have been allocated. The optimization
problem is solved and checked for conver-
gence of the solution (stop if convergence is
obtained, otherwise the trust region allocation
process is continued until the optimum solu-
tion is reached). The acceptance criteria for
convergence include constraint violation and

Table 6 Evaluation of predictive capabilities of metamodels con-
structed during CO runs for the system level (discipline 1)

Iterations RMSE R-square RMAE RAAE

Global meta-model 0.5355 0.9021 1.3235 0.1402
Trust region 1 0.2895 0.9267 0.7582 0.1590
Trust region 2 0.3207 0.9914 0.2255 0.0711
Trust region 3 0.0903 0.9980 0.1173 0.0323

objective function improvement. The result of
CO based on the multi-fidelity modelling is
shown in Table 5.

5 Optimization algorithms used in CO

In the discipline level optimization runs various opti-
mization techniques can be used (e.g. SQP) in conjunc-
tion with metamodels. At the system level, however,
the use of equality constraints to represent the disci-
plinary feasible regions introduces numerical and com-
putational difficulties that hinder the application of
gradient-based optimization algorithms. In this study,
three different optimization algorithms SQP, Nelder–
Mead (Nelder and Mead 1965) and GA were compared
for the system level in the optimization on the above
test problem. Due to the special features of the sys-
tem level optimization discussed above, both SQP and
Nelder–Mead algorithms failed to provide a converged
solution and, consequently, a more robust optimiza-
tion algorithm (GA) was used for solving the CO sys-
tem level optimization. SQP was successfully used for
solving the optimization problems in the disciplines 1
and 2.

6 Evaluation of predictive capabilities
of the metamodels

The construction of highly accurate metamodels is a
requirement for system level optimization within a CO

Table 7 Evaluation of predictive capabilities of metamodels con-
structed during CO runs for the system level (discipline 2)

Iterations RMSE R-square RMAE RAAE

Global metamodel 0.1924 0.7984 2.1062 0.1801
model

Trust region 1 0.0147 0.9300 0.6985 0.1716
Trust region 2 0.1591 0.9789 0.3612 0.1215
Trust region 3 0.0571 0.9909 0.2858 0.0611
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framework and it is therefore important to evaluate the
predictive capabilities of such models. An accuracy es-
timation using several statistical criteria was used in this
work. These include root mean square error (RMSE),
R-square, relative average absolute error (RAAE) and
relative maximum absolute error (RMAE) over DoE
points. The larger R-square and smaller RMSE and
RAAE values indicate a more accurate metamodel.
Note that the parameters of the MLSM-based meta-
models were fixed in all runs.

In Tables 6 and 7, R-square values for disciplines 1
and 2 increases from 0.9021 to 0.998 and from 0.7984 to
0.9909, respectively. This is indicative of the fact that as
the trust region reduces the accuracy of the metamodel
increases.

7 Conclusions

This paper described a metamodel-based CO approach
to multidisciplinary optimization with high fidelity sim-
ulation models. The obtained results (Table 5) show a
high degree of accuracy in discipline level optimization
using multi-fidelity modelling. It has been observed that
a tuned low fidelity model can have virtually the same
accuracy as the high fidelity model. The discrepancy
of the optimum solutions using the high fidelity and
the tuned low fidelity models is negligible in the test
example.

Construction of metamodels poses significant diffi-
culties because of the peculiar characteristics of the sys-
tem level constraints. The results obtained here show
that the MLSM can be used effectively for the con-
struction of metamodels at the system level to capture
the behavior of highly non-linear surfaces (in particular
the transition from a plateau of zero to non-zero val-
ues on the equality constraint surfaces constructed at
the system level). MLSM predicted the response with
sufficient accuracy and required only four iterations to
reach an optimum solution. Good agreement was found
between the results obtained using conventional all-at-
once optimization and metamodel-based collaborative
optimization using high fidelity models for the test
problem (Table 5). In terms of reducing computing
time, it was observed that with the implementation of
metamodels in CO it was reduced from around 10 h
(when no metamodels were used at either discipline
level or system level) to several minutes of computing
time on a typical Windows PC. This is an encouraging
result for future applications to complex MDO prob-
lems with high fidelity models (e.g. for vehicle crash
simulation, aerospace design, etc.).
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