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Abstract The reliability-based design optimization
(RBDO) using performance measure approach for
problems with correlated input variables requires a
transformation from the correlated input random vari-
ables into independent standard normal variables.
For the transformation with correlated input vari-
ables, the two most representative transformations, the
Rosenblatt and Nataf transformations, are investigated.
The Rosenblatt transformation requires a joint cumula-
tive distribution function (CDF). Thus, the Rosenblatt
transformation can be used only if the joint CDF is
given or input variables are independent. In the Nataf
transformation, the joint CDF is approximated using
the Gaussian copula, marginal CDFs, and covariance
of the input correlated variables. Using the generated
CDF, the correlated input variables are transformed
into correlated normal variables and then the cor-
related normal variables are transformed into inde-
pendent standard normal variables through a linear
transformation. Thus, the Nataf transformation can ac-
curately estimates joint normal and some lognormal
CDFs of the input variable that cover broad engineer-
ing applications. This paper develops a PMA-based
RBDO method for problems with correlated random
input variables using the Gaussian copula. Several
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numerical examples show that the correlated random
input variables significantly affect RBDO results.
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Nomenclature

NDV Number of design variables
n Number of input random variables
d Vector of design variables, d=[

d1, · · · , dNDV
]

X Vector of random variables, X=
[X1, · · · , Xn]

x Realization of vector X, x= [x1, · · · , xn]
U Vector of independent standard normal

variables, U= [U1, · · · , Un]
u Realization of vector U, u= [u1, · · · , un]
Y Vector of correlated standard normal

variables, Y= [Y1, · · · , Yn]
y Realization of vector Y, y= [y1, · · · , yn

]

�i Normalized random variable of the ith
original variable Xi, �i = (Xi − μi)

/
σi

ξi Realization of �i, ξi = (xi − μi)
/
σi

FXi (·) Marginal CDF of Xi

FXi ( ·| ·) Conditional CDF of Xi

C(·) Copula with marginal CDFs
C� (·) Gaussian copula with marginal CDFs
M(·) Fréchet–Hoeffding upper bound
W(·) Fréchet–Hoeffding lower bound∏

(·) Independent copula
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�−1(·) Inverse normal CDF
φ(·) Normal probability density function (PDF)
fX1···Xn (·) Exact joint PDF of X
f̃X1···Xn (·) Approximate joint PDF of X
ρij Correlation coefficient between Xi and X j

ρ ′
ij Reduced correlation coefficient between

Yi and Y j

P Covariance matrix of X, {ρij}
P′ Reduced covariance matrix of Y,

{
ρ ′

ij

}

1 Introduction

In many structural RBDO problems, the input random
variables such as the material properties and fatigue
properties are correlated (Socie 2003). To solve the
RBDO problems with the correlated input variables, it
is desirable to have a joint CDF of the input variables
to transform the correlated variables into independent
standard normal variables for the inverse reliability
analysis in RBDO. However, since it has been well-
known that the true input joint CDF requires infinite
data to obtain, in the literature, most studies have as-
sumed that all input random variables are independent.

To transform correlated variables into indepen-
dent standard normal variables, there exist various
methods: the Hermite polynomial transformation, the
Winterstein approximation, the Rosenblatt transfor-
mation, and the Nataf transformation (Ditlevsen and
Madsen 1996). The Hermite polynomial transforma-
tion expresses correlated variables as a linear com-
bination of Hermite polynomials of the standard
normal variables using covariance and estimated mo-
ments such as mean, variance, skewness, and kurtosis.
The Winterstein approximation is a specific type of the
Hermite polynomial, which uses a linear combination
of three Hermite polynomials. However, the accuracy
of these two transformations is directly determined
by accurately estimated statistical moments, especially
kurtosis and skewness, which are difficult to obtain
when the available data are limited. On the other hand,
the input marginal CDFs and their parameters, which
are required by the Rosenblatt and Nataf transforma-
tions, can be more correctly determined using statistical
methods based on samples than high moments.

In this paper, two commonly used transformation
methods, the Rosenblatt and Nataf transformations,
are studied for application to RBDO of problems with
correlated input variables. The Rosenblatt transfor-
mation (Rosenblatt 1952) requires complete informa-
tion about the input variables such as a joint CDF
(Melchers 1999; Ditlevsen and Madsen 1996). Unlike

the Rosenblatt transformation, which uses a given joint
CDF, the Nataf transformation approximates the joint
CDF using the Nataf model (Nataf 1962), which is
identified as a Gaussian copula. In the Nataf transfor-
mation, since a copula, which is a link between a joint
CDF and marginal CDFs, requires only the marginal
CDFs and correlation parameters such as covariance
to generate the joint CDF, the joint CDF can be eas-
ily generated in real industrial applications. Moreover,
since the copula decouples the marginal CDFs and
the joint CDF, the joint CDF type can be different
from the marginal CDF types. That is, having normal
marginal CDFs does not mean the joint CDF is normal
(this situation sometimes occurs in real applications).
Since the approximate joint CDF is obtained from the
Gaussian copula, the linear Rosenblatt transformation
(Rosenblatt 1952) can be used. That is, the Nataf
transformation converts the correlated variables to the
correlated standard normal variables, and then uses the
linear transformation (Rosenblatt transformation) to
transform the correlated standard normal variables to
independent standard normal variables.

The copula has been widely used to obtain the joint
CDF in fields such as actuarial science and statistics,
but it has not been used in the engineering field for
RBDO. This paper is the first to introduce the copula
for RBDO. In particular, the Gaussian copula, which is
one type of copula, is used in this paper to obtain the
joint CDF of input variables for the inverse reliability
analysis in RBDO.

However, since the Nataf transformation uses the
Gaussian copula, it accurately approximates the joint
normal or some lognormal CDFs with small coefficients
of variation. It cannot accurately approximate a non-
normal CDF. For instance, if the exact joint CDF is
lognormal with a large coefficient of variation or ex-
ponential, then the Gaussian copula cannot accurately
approximate the exact joint CDF.

Even though application of the Gaussian copula is
limited, it is still very broadly applicable since the nor-
mal CDF and lognormal CDF with a small coefficient of
variation cover broad engineering applications. There-
fore, in this paper, the Nataf transformation is used to
develop an RBDO method for design problems with
correlated random input variables. The amount of error
that exists between true joint CDF and approximate
joint CDF for some CDFs is investigated, as well as
the conditions in which the Gaussian copula can or
cannot be used to generate some joint non-normal
CDF. Numerical examples are used to demonstrate the
proposed method, and it is shown that the correlated
random input variables significantly affect the RBDO
results.
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2 Reliability-based design optimization formulation

The RBDO problem can be formulated to

min. cost(d)

s.t. P(Gi(X) > 0) ≤ PTar
Fi

, i = 1, · · · , NC

d=μ(X),dL ≤ d ≤dU , d ∈ RNDVand X ∈ RNRV

(1)

where X is the vector of random variables; d is the
vector of design variables; Gi(X) represents the con-
straints; PTar

Fi
is a given target probability of failure

for the ith constraint; and NC, NDV, and NRV are
the number of probabilistic constraints, number of
design variables, and number of random variables,
respectively.

The probability of failure is estimated by a multiple
integral of the joint PDF of the input variables over the
failure region as

P(Gi(X) > 0) =
∫

Gi(x)>0
· · ·
∫

fX1···Xn(x)dx1 · · · dxn,

i = 1, · · · , NC (2)

where x is the realization of the random vector X. How-
ever, since it is difficult to compute these multiple in-
tegrals analytically, approximation methods such as the
first order reliability method (FORM) or the second or-
der reliability method (SORM) are used. Since FORM
often provides adequate accuracy and is much easier
to use than SORM, it is commonly used in RBDO.
Since FORM and SORM require the transformation of
the correlated random input variables into the standard
normal variables, the Rosenblatt transformation or the
Nataf transformation is used.

Using a performance measure approach (PMA+;
Youn et al. 2005a, b), the ith probabilistic constraint can
be defined from (1)

P
[
Gi(X) > 0

]− PTar
Fi

≤ 0 ⇒ Gpi

(
x∗) ≤ 0 (3)

where Gpi (x
∗) is the ith probabilistic constraint evalu-

ated at the most probable point (MPP) x∗ in X-space.
Using FORM, (3) can be rewritten as

P
[
Gi(X) > 0

]− �
(−βti

) ≤ 0 ⇒ Gpi

(
x∗) ≤ 0 (4)

where PTar
Fi

= �
(−βti

)
and βti is the target reliability

index.
To satisfy the feasibility of the probabilistic con-

straint, the MPP needs to be estimated for each con-
straint by solving the following optimization problem:

max . Gi(U)

s.t. ‖U‖ = βti
(5)

where Gi is the ith constraint, which is transformed
from X-space into the standard normal space, U-space.
Using the estimated MPPs, the value of the probabilis-
tic constraint can be estimated (Youn et al. 2005a, b).

3 Rosenblatt transformation

The Rosenblatt transformation is a well-known trans-
formation method that maps the correlated variables
onto the independent standard normal variables. It is
defined by the following successive conditioning:

u1 = �−1
[
FX1 (x1)

]

u2 = �−1
[
FX2 ( x2| x1)

]

...

un = �−1
[
FXn ( xn| x1, x2, · · · , xn−1)

]
(6)

where n is number of input variables, FXi ( xi| x1, x2,

. . . , xi−1) is the CDF of Xi conditional on X1 =
x1, X2 = x2, · · · , Xi−1 = xi−1, and �−1(·) is the inverse
CDF of the standard normal variables. Based on (6),
when the joint CDF is known, the Rosenblatt transfor-
mation is exact. For independent input variables, the
Rosenblatt transformation also can be used because the
joint CDF is the multiplication of the marginal CDFs
of each variable. In addition, analytically, the result of
the Rosenblatt transformation is not affected by the
ordering adopted for the variables X as shown in the
following equation:

Pf =
∫

g(X)>0

. . .

∫
fX1...Xn(x1, . . . , xn)dx1 . . . dxn

=
∫

g(X)>0

. . .

∫
fX1(x1) fX2( x2| x1) · · · fXn

×( xn| x1, . . . xn−1)dx1 . . . dxn

=
∫

g(X)>0

. . . fU1···Un(u1, u2, . . . un)

×∂(u1, . . . , un)

∂(x1, . . . , xn)
dx1 . . . dxn

=
∫

g(U)>0

. . .

∫
φ(u1) · · · φ(un)du1 . . . dun (7)

where φ(ui) is the marginal PDF of the ith independent
variable ui.

Even though the Rosenblatt transformation is exact,
since it requires the joint CDF, it can be used only for
limited cases where all input variables are independent



4 Y. Noh et al.

or a joint CDF is provided. In addition, the result of the
Rosenblatt transformation is supposed to be theoreti-
cally independent of the ordering, but the estimation
of probability of failure might be different for an input
joint non-normal CDF due to the approximation error
of FORM. This behavior is discussed in Section 5.

4 Nataf transformation

The Nataf transformation uses the Gaussian copula
to transform correlated input variables into corre-
lated standard normal variables and linear transforma-
tion to transform correlated standard normal variables
into independent standard normal variables. Since the
Gaussian copula originates from the copula family, it
is beneficial to study copulas to understand the Nataf
transformation.

4.1 Copula

A true joint CDF, which is necessary for the exact
transformation, is usually unknown because it requires
infinite number of data that are difficult to obtain in in-
dustrial applications. However, a copula only requires
marginal CDFs and correlation parameters to obtain
an approximate joint CDF, so that the joint CDF can
be easily obtained from limited data.

The copula originates from a Latin word for “link”
or “tie” that connects two different things. In statistics,
the definition of copulas is stated by Roser (1999):
“Copulas are functions that join or couple multivariate
distribution functions to their one-dimensional mar-
ginal distribution functions. Alternatively, copulas
are multivariate distribution functions whose one-
dimensional margins are uniform on the interval [0, 1].”

According to Sklar’s theorem, if the random vari-
ables have a joint distribution FX1...Xn (x1, . . . , xn) with
marginal distributions, FX1 (x1) , · · · , and FXn (xn), then
there exists an n-dimensional copula C such that

FX1...Xn(x1, . . . , xn) = C
(
FX1(x1), . . . , FXn(xn)

)
(8)

If marginal distributions are all continuous, then C
is unique. Conversely, if C is an n-dimensional copula
and FX1 (x1) , · · · , and FXn (xn) are the marginal distrib-
utions, then FX1...Xn (x1, . . . , xn) is the joint distribution
(Roser 1999).

Since the joint CDF is expressed as a function of
marginal CDFs, it is easy to obtain a joint CDF from
marginal CDFs and correlation parameters. Moreover,
since the copula decouples marginal CDFs and the joint

CDF, the joint CDF generated from the copula can be
expressed as any type of marginal CDFs. Thus, it is
desirable to use the copula for constructing the joint
CDF in real applications that may have correlated input
variables with a joint CDF but with different types of
marginal CDFs of the input variables.

Let FXi (xi) = ui for i = 1, · · · , n. Any copula
C (u1, · · · , un) lies between the Fréchet–Hoeffding
lower and upper bounds for every (u1, · · · , un) in In,

and the bounds are themselves copulas, which are
given as

max (u1 + · · · + un − n + 1, 0) ≤ C(u1, · · · , un)

≤ min (u1, · · · , un) (9)

where In = I × I × · · · × I (I = [0, 1]).
For the two-dimensional case, (9) can be written as

max (u1 + u2 − 1, 0) ≤ C(u1, u2) ≤ min (u1, u2) (10)

Let W (u1, u2) = max (u1 + u2 − 1, 0) , M (u1, u2) =
min (u1, u2), and consider an independent copula∏

(u1, u2)=u1 ·u2. These copulas W(u1, u2) , M(u1, u2),
and

∏
(u1, u2) are graphically shown in Fig. 1 in u1–u2

space.
Three copulas can be easily compared by drawing

these copulas along the diagonal direction u1 = u2 as
shown in Fig. 2. The graph of any two-dimensional
copula is a continuous surface within I3 (Fig. 1), and
along the horizontal, vertical, and diagonal directions,
all copulas are non-decreasing functions and uniformly
continuous on I (Roser 1999).

Fig. 1 Graph of the copulas W, M, and
∏
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Fig. 2 Graph of copulas W, M, and
∏

along the diagonal
direction

4.2 Gaussian copula

The Nataf transformation transfers correlated input
variables X with marginal CDF FXi (xi) and covariance
matrix P = {ρij

}
into independent standard normal

variables U (the covariance matrix of U is an identity
matrix I) through the multivariate correlated standard
normal variables Y with reduced covariance matrix
P′ =

{
ρ ′

ij

}
, which is the covariance matrix of Y, using

the Gaussian copula.
The Gaussian copula is a link between a multivariate

normal distribution and marginal distributions. The n-
dimensional Gaussian copula with reduced covariance
matrix P′ is defined as

C�(u) = �P′(�−1(u1), . . . , �
−1(un)), u ∈ In (11)

where ui can be any arbitrary marginal CDF FXi (xi).
The Gaussian copula in (11) might be confused with
the joint normal CDF, which has been widely known,
in (12).

�P (x1, . . . , xn)

=
∫ xn

−∞
· · ·
∫ x1

−∞

exp
[− (x−μ)T P−1 (x−μ)

/
2
]

(2π)n/2 |P|1/2 dx1 · · ·dxn

(12)

The difference between the Gaussian copula and the
joint normal CDF is that the Gaussian copula allows
having different marginal CDF types from the joint
CDF type whereas the joint normal CDF does not.
Thus, the Gaussian copula is indeed distinguished from
the joint normal CDF.

The first step of the Nataf transformation is to trans-
fer the margin of X into the standard normal margin Y
using

yi = �−1
[
FXi(xi)

]
, i = 1, · · · , n. (13)

The covariance matrix of Y, which is called as the
reduced covariance matrix P′ is unknown. The second
step of the Nataf transformation is to estimate the
reduced covariance matrix. If the multivariate stan-
dard normal variable Y has the joint PDF (probabil-
ity density function) φ(y, P′), the covariance matrix
P = {ρij} of the correlated input variables X should be
defined as

ρij = E[�i� j] =
∫ ∞

−∞

∫ ∞

−∞
ξiξ jφ(yi, y j; ρ ′

ij)dyidy j (14)

where �i = (Xi − μXi

)/
σXi is the normalized random

variable of Xi, ξi is the realization of �i, and ρij is the
correlation coefficient between Xi and X j (Melchers
1999; Ditlevsen and Madsen 1996). However, since the
iterative process is very tedious and unknowns are
within the double integral, (14) is approximated by

ρ
′
ij = Rijρij (15)

to obtain the reduced correlation coefficient. In (14),
Rij is approximated by

Rij = a + b Vi + cV2
i + dρij + eρ2

ij + fρijVi

+gV j + hV2
j + kρijV j + lViV j (16)

where Vi and V j are the coefficients of variation(
V = σ

/
μ
)

for each variable, and the coefficients de-
pend on the types of input variables. For different
types of input variables, the corresponding coefficients
are given by Liu and Der Kiureghian (1986), Melchers
(1999), and Ditlevsen and Madsen (1996). The maxi-
mum error of the estimated correlation coefficient ob-
tained from (15) is normally much less than 1%, and
even if the exponential CDF or negative correlation is
involved, the maximum error in the correlation coeffi-
cient is at most up to 2% (Melchers 1999). Therefore,
the approximation provides adequate accuracy with
less computational effort.

As stated in Section 2, the reliability analysis is car-
ried out using the transformed standard independent
normal variables U. Since the relationship between the
correlated input variables X and the correlated stan-
dard normal variables Y is given in (13), the next step is
to transform the correlated standard normal variables
Y to the independent standard normal variables U
using a linear transformation.

Consider the following linear equation:

Y = AU + B (17)
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where Y∼ N(0,I) has the reduced correlation matrix
�Y = P′ and U∼ N(0,I) has the covariance matrix �U =
I. The mean of Y can be calculated as

E[Y] = E
[
AU + B

] = AE[U] + B = B = 0 (18)

In the same way, the covariance matrix of Y can be
calculated as

P′ =�Y =Var
[
AU+B

]=Var
[
AU

]=A�UAT =AAT

(19)

Since the covariance matrix of Y is positive definite,
P′ can be decomposed into the lower and upper triangu-
lar matrix using Cholesky factorization. Therefore, the
matrix A can be expressed as a lower triangular matrix.
If the joint input CDF is normal, the Rosenblatt trans-
formation becomes a linear transformation (Rosenblatt
1952). In the Nataf transformation, since the correlated
normal variables Y has a joint normal CDF, the Nataf
transformation can be viewed as a combination of the
Gaussian copula and the linear Rosenblatt transforma-
tion. Instead of using the Rosenblatt transformation,
eigenvalues and eigenvectors of the reduced covariance
matrix can be used to transform the correlated normal
variables into the independent normal variables. In that
case, the transformation matrix A consists of the eigen-
vectors of the reduced covariance matrix and this linear
transformation is called as an orthogonal transforma-
tion (Madsen et al. 1986). However, since the two linear
transformations provide the same RBDO results, only
the Rosenblatt transformation was used in this paper.

Using (13) and (17), the relationship (Nataf transfor-
mation) between the correlated input variables X and
the independent standard variables U is obtained as

x1 = F−1
X1

(�(a11u1))

x2 = F−1
X2

(�(a12u1 + a22u2))

...

xn = F−1
Xn

(�(a1nu1 + a2nu2 + · · · + annun)) (20)

where the entries aij in the lower triangular matrix
A is expressed in terms of the reduced correlation
coefficients as shown in (21).

aij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√√√
√
(

1 −
i−1∑

k=1

a2
ik

)

, i = j

(

ρ ′
ij −

j−1∑

k=1

aika jk

)

/a jj, i > j

(21)

Since the correlated variables can be expressed in
terms of the independent standard normal variables,
the reliability analysis can be carried out by substituting

(20) into the constraint function Gi in (1). As previously
stated, if only the covariance matrix and marginal CDF
are available, Gaussian copula needs to be used to
construct the joint CDF of the input random variables.

4.3 Applicability of Gaussian copula

An advantage of Nataf transformation is that it involves
a Gaussian copula that can generate a joint CDF for
various types of correlated input variables based on
limited information. As a result, many industrial prob-
lems with various types of the correlated input variables
can be solved using RBDO. However, it is noted that
Gaussian copula can approximate joint normal or some
lognormal CDFs more accurately than other joint non-
normal CDFs.

For the first case, consider mixed normal X1 :
N
(
μ1, σ

2
1

)
and lognormal X2 : LN (λ2, ξ2) input ran-

dom variables. The exact joint PDF of normal and
lognormal variables is given as
fX1 X2(x1, x2)

= 1

2πσ1ξ2

√
1 − η2

2x2

× exp

⎧
⎪⎨

⎪⎩
−1

2

⎡

⎣

(
ln x2−λ2

ξ2

)
− η2

(
x1−μ1

σ1

)

√
1 − η2

2

⎤

⎦

2

− 1

2

(
x1 − μ1

σ1

)2

⎫
⎪⎬

⎪⎭
(22)

where ξ2 =
√

ln

(
1 +

(
σ2
μ2

)2
)

=
√

ln
(
1 + κ2

2

)
, λ2 =

ln μ2 − 1
2ξ 2

2 , and η2 = ρ12κ2

ξ2
. The approximate joint PDF

can be obtained by differentiating the Gaussian copula
given in (11):

f̃x1···xn (x1, . . . , xn) = ∂2C�

∂x1∂x2
= ∂2C�

∂y1∂y2
· ∂y1

∂x1
· ∂y2

∂x2

= φ
(
y1, y2, ρ

′
12

) fx1(x1) fx2(x2)

φ(y1)φ(y2)
(23)

where ∂2C�

∂y1∂y2
= φ

(
y1, y2, ρ

′
12

)
,

∂yi

∂xi
= f (xi)

φ(yi)
, fXi(xi) is

the marginal PDF of Xi, φ(yi) is the normal PDF of
Yi for i = 1, 2, and φ

(
y1, y2, ρ

′
12

)
is the joint normal

PDF of Y1 and Y2. The reduced correlation coefficient
ρ

′
12 between the correlated standard normal variables

Y1 and Y2 is obtained from the correlation coefficient
ρ12 between X1 and X2 (Melchers 1999; Ditlevsen and
Madsen 1996)

ρ
′
12 = κ2√

ln
(
1 + κ2

2

)ρ12 = η2 (24)
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Using (23) and (24), the approximate joint PDF of
the normal and lognormal variables is

f̃X1 X2(x1, x2)

= fX1(x1) · fX2(x2)

φ(y1) · φ(y2)
φ
(

y1, y2, ρ
′
12

)

= 1

2πσ1ξ2

√
1 − ρ

′2
12x2

exp

{

− y2
1 − 2ρ

′
12 y1 y2 + y2

2

2
(
1 − ρ

′2
12

)

}

= 1

2πσ1ξ2

√
1−ρ

′2
12x2

exp

{

−
(
y2−ρ

′
12 y1

)2+(1−ρ
′2
12

)
y2

1

2
(
1−ρ

′2
12

)

}

= 1

2πσ1ξ2

√
1 − η2

2x2

exp

⎧
⎪⎨

⎪⎩
−1

2

⎡

⎣ y2 − η2 y1√
1 − η2

2

⎤

⎦

2

− 1

2
y2

1

⎫
⎪⎬

⎪⎭

(25)

where y1 = x1−μx1
σx1

, y2 = ln x2−λ2
ξ2

. In (25), fX1 (x1) and
fX2 (x2) are given as

fX1(x1) = 1

σ1

√
2π

exp

{

−1

2

(
x1 − μ1

σ1

)2
}

fX2(x2) = 1

ξ2x2

√
2π

exp

{

−1

2

(
ln x2 − λ2

ξ2

)2
}

. (26)

Note that (25) is the same as (22). Thus, the Gaussian
copula can construct the exact joint PDF of normal and
lognormal variables in the two-dimensional case.

As a second case, consider two lognormal variables,
X1 ∼LN(λ1, ξ 1) and X2 ∼LN(λ2, ξ 2). The exact joint
lognormal PDF is given as

fX1 X2(x1, x2) = 1

2πξ1ξ2

√
1 − ρ2

12x1x2

× exp

{

− y2
1 − 2ρ12 y1 y2 + y2

2

2
(
1 − ρ2

12

)

}

(27)

where yi = ln xi−λi
ξi

, ξi =
√

ln
(
1 + κ2

i

)
and λi = ln μi −

1
2ξ 2

i for i = 1,2. Differentiating the Gaussian copula
given in (11), the approximate joint PDF of two log-
normal variables can be obtained as

f̃X1 X2(x1, x2) = fX1(x1) · fX2(x2)

φ(y1) · φ(y2)
φ
(

y1, y2, ρ
′
12

)

= 1

2πξ1ξ2

√
1 − ρ

′2
12x1x2

.

× exp

{

− y2
1 − 2ρ

′
12 y1 y2 + y2

2

2
(
1 − ρ

′2
12

)

}

(28)

The reduced correlation coefficient between the log-
normal variables is obtained as

ρ
′
12 = ln (1 + ρ12κ1κ2)√

ln
(
1 + κ2

1

) · ln
(
1 + κ2

2

) (29)

Since (27) and (28) have the same formulation
except for the correlation coefficients, the Gaussian
copula can accurately approximate a joint CDF of the
lognormal variables if the difference between the re-
duced correlation coefficient and the original correla-
tion coefficient is small.

Assume μ1 = μ2 = 1.0 and σ1 = σ2 = 0.3. Figure 3
shows the original correlation coefficient and the re-
duced correlation coefficient obtained from (29). If two
lognormal input variables are positively correlated, the
difference between the reduced correlation coefficient
and the original correlation coefficient is small. How-
ever, for negative correlation coefficients, the original
correlation coefficient and the reduced correlation co-
efficient is rather different. Thus, if two variables are
positively correlated or independent, the joint CDF can
be accurately estimated using the Gaussian copula, but
for the negatively correlated input variables, the joint
CDF may not be accurate.

To investigate how the relative error between the
reduced correlation coefficient and the original cor-
relation coefficient affects the accuracy of the esti-
mated joint CDF, Fig. 4 shows the relative error
between the exact joint CDF and the approximate joint
CDF obtained from the Gaussian copula for different

Fig. 3 Relative error between original correlation coefficient and
reduced correlation coefficient
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Fig. 4 Relative error between exact joint CDF and approximate
joint CDF obtained from Nataf transformation

correlation coefficients along the diagonal direction
(x1 = x2). The relative error is calculated by

Relative error (%)

=
∣
∣∣F̃X1 X2(x1, x2)−FX1 X2(x1, x2)

∣
∣∣

FX1 X2(x1, x2)
×100 (30)

where F̃X1 X2 (x1, x2) and FX1 X2 (x1, x2) are the approxi-
mate and exact joint CDFs of the lognormal variables,
respectively. As shown in Fig. 4, the more negatively
the lognormal variables are correlated, the more signif-
icant are the relative errors contained in the approxi-
mate CDF.

If the correlation coefficients are positive, even if
the lognormal input variables are highly correlated,
the relative error in CDF is less than 15%, as shown
in Fig. 4. The maximum error (15%) occurs near
ρ = 0.5. The reason is that, for a positive high corre-
lation coefficient, even though the difference between
the reduced correlation coefficient and the original cor-
relation coefficient is small, the correlation significantly
affects estimation of the joint CDF. On the other hand,
for positive low correlation coefficient values, even
if the values of the original correlation coefficient
and the reduced correlation coefficient are rather dif-
ferent, the effect of the correlation is negligible in esti-
mating the joint CDF. Thus, the mid-range correlation
(ρ = 0.5) causes a maximum error when the joint CDF
is approximated.

Therefore, the Gaussian copula is very effective for
building a joint CDF for the problem with positive
correlated and independent lognormal input variables,
but not applicable to the ones with negative correlated

lognormal input variables. From the above result, it
might be possible to change the sign of input variables
to convert the negative correlation into the positive
correlation to make the Gaussian copula accurately
approximate lognormal CDF with negative correlation.
However, it may not be a simple process.

In this example, the coefficient of variation, which
is the ratio of the standard deviation to the mean, is
moderately small (i.e., σ1

/
μ1 = σ2

/
μ2 = 0.3), and thus

the difference between the exact and approximate CDF
values is small. As a result, the shape of the lognormal
distribution is very similar to the normal distribution.
On the other hand, if the coefficient of variation is large,
the lognormal distribution is rather similar to the ex-
ponential distribution. Thus, the Gaussian copula may
accurately estimate the lognormal distribution with a
small coefficient of variation but not accurately esti-
mate non-normal distributions that are rather different
from the normal distribution.

In fact, if the input variables are all normal, i.e.,
marginal CDFs and joint CDF are normal, the linear
transformation, such as the orthogonal transformation,
can be directly used. However, if the marginal CDFs
or joint CDF are not normal, then the orthogonal
transformation is not applicable since it might be sig-
nificantly erroneous. To deal with various types of input
variables, Youn et al. (2007) categorized the input types
as four cases and used a linear transformation involving
the eigenvalues and eigenvectors of the covariance of
the input variables. However, since the linear transfor-
mation is only applicable when the joint CDF is normal,
it is accurate for only normal and some lognormal
CDFs, as explained in Fig. 4, but cannot accurately
estimate the joint non-normal CDF.

This paper shows the applicable range of the
Gaussian copula that is most commonly used in real
applications and leads to a new investigation of other
types of copulas that can be used to generate the joint
non-normal CDF. The generated joint CDF using a
copula can be used in the Rosenblatt transformation.
The next research topic will address this issue.

5 Accuracy of reliability analyses using two
transformations

In this section, a mathematical example is used to
demonstrate how the Rosenblatt and Nataf transfor-
mations yield the reliability analysis results when the
input variables are correlated with a joint exponential
CDF. This example was introduced by Hohenbichler
and Rackwitz (1981), and was discussed by Madsen
et al. (1986).
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Consider the following joint PDF of the exponential
input variables:

fX1 X2(x1, x2)=

⎧
⎪⎨

⎪⎩

(x1+x2 + x1x2) exp (−x1 − x2 − x1x2),

x1, x2 ≥ 0

0, otherwise

(31)

where the correlation coefficient is ρ = −0.40366. The
constraint function is given as

G(x) = 18 − 3x1 − 2x2 (32)

Since the joint PDF can be written in two different ways
as shown in (33),

fX1 X2(x1, x2) = fX1(x1) fX2( x2| x1) = fX2(x2) fX1( x1| x2)

(33)

the independent standard normal variables also can be
expressed as correlated input variables in two different
ways using the Rosenblatt transformation.

u1 = �−1
[
FX1(x1)

] = �−1
[
1 − exp (−x1)

]

u2 = �−1
[
FX2( x2| x1)

]

= �−1
[
1 − (1 + x2) exp [−(x2 + x1x2)]

]
(34)

and

u1 = �−1
[
FX2(x2)

] = �−1
[
1 − exp (−x2)

]

u2 = �−1
[
FX1( x1| x2)

]

= �−1
[
1 − (1 + x1) exp [−(x1 + x1x2)]

]
(35)

Similarly, using the Nataf transformation, the inde-
pendent standard normal variables can be obtained in
terms of the correlated input variables in two different
ways.
⎧
⎪⎪⎨

⎪⎪⎩

u1 = �−1
[
1 − e−x1

]

u2 = �−1
[
1 − e−x2

]− ρ ′�−1
[
1 − e−x1

]

√
1 − ρ ′2

(36)

and
⎧
⎪⎪⎨

⎪⎪⎩

u1 = �−1
[
1 − e−x2

]

u2 = �−1
[
1 − e−x1

]− ρ ′�−1
[
1 − e−x2

]

√
1 − ρ ′2

(37)

where ρ ′ ≈ Rρ = −0.556 with R = 1.229 − 0.376ρ +
0.153ρ2.

As can be seen in (34) through (37), the Rosenblatt
transformation uses the complete information such as
the joint CDF of the input variables, while the Nataf
transformation uses only marginal CDFs and covari-
ance of input variables for transformation from X
to U.

When the Nataf and Rosenblatt transformations are
used, the linear constraint function in (32) becomes
highly nonlinear as shown in Fig. 5. In Fig. 5, the
solid line (ordering 1) and the dashed line (ordering
2) indicate the constraint functions obtained from the
Rosenblatt transformation for the ordering 1 and 2 of
the input variables. The dotted line (ordering 1) and
the dash-dot line (ordering 2) indicate the constraint
functions obtained from the Nataf transformation for
two different orderings of the input variables.

When the Rosenblatt and Nataf transformations are
used in reliability analysis, almost the same MPP points
are obtained in U space for the ordering 1, but different
MPP points are obtained for the ordering 2 due to the
nonlinearity of the constraint function. Accordingly,
results such as MPP points and the probability of fail-
ure become different for different transformations and
different orderings of the input variables as shown in
Table 1.

As stated in Section 3, the Rosenblatt transforma-
tion should be theoretically independent of orderings
of the input variables and provide accurate reliability
analysis results when the exact joint input CDF is given.
However, as shown in Table 1, the probability of failure
result from the ordering 1 is accurate, but the result
from the ordering 2 is inaccurate because the joint non-

Fig. 5 Constraint functions for different transformations and
orderings
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Table 1 Reliability analysis
results for different
transformations and
orderings

X MPP* MPP in X space,
U MPP* MPP in U space,
MCS Monte Carlo simulation

Rosenblatt transformation Nataf transformation Independent

Ord. 1 Ord. 2 Ord. 1 Ord. 2

X MPP∗
1 5.911 5.907 5.954 5.954 4.969

X MPP∗
2 0.125 0.140 0.069 0.070 1.545

U MPP∗
1 2.781 −1.123 2.795 −1.493 2.460

U MPP∗
2 0.064 2.399 0.064 2.364 0.795

β 2.782 2.649 2.796 2.796 2.585
P f 2.703E - 3 4.037E - 3 2.587E - 3 2.587E - 3 4.865E - 3
Error (%) 8.05 37.31 12.01 12.01 65.48
MCS 2.940E-3

normal CDF yields a high nonlinearity of the constraint
function near the MPP, which cannot be accurately
estimated by FORM. On the other hand, in the Nataf
transformation, since the linear transformation does
not change nonlinearity of the constraint functions near
the MPPs, the probability of failure results are very
similar for different orderings. Table 1 also provides the
results obtained if we assume that two input variables
are independent when in fact these two input variables
are correlated. As shown in the last column of the
table, the assumption that two correlated variables are
independent could lead to wrong results such that the
MPP points, reliability index, and probability of failure
have significant errors compared with the Monte Carlo
simulation result. On the other hand, if the correlation
in the input variables is considered in the reliability
analysis, the errors are reduced. Thus, it is very im-
portant to consider the correlation in carrying out the
reliability analysis and RBDO.

Even though the Nataf transformation results do not
depend on the orderings of the input variables, unlike
those of the Rosenblatt transformation, there still exists
the approximation error between the generated joint
CDF and the true joint CDF, as well as the FORM
error in estimating the probability of failure. Thus,
the Nataf transformation should be used carefully for
approximating the joint non-normal CDF. When the
exact joint non-normal CDF is given, the Rosenblatt
transformation should be used. However, the nonlin-
earity of the transformation causes difficulty in accu-
rate estimation of the probability of failure, especially
when FORM is used. To resolve the inaccuracy of the
FORM, a higher order approximation methods such
as the SORM needs to be used. A recently developed
MPP-based dimension reduction method (DRM; Lee
et al. 2008), which reduces the FORM error, can offer
a method that reduces the ordering effect. This MPP-
based DRM is currently being investigated.

6 Limitation of Gaussian copula

It is noted that the Gaussian copula is applicable to
approximate the joint normal CDF and joint lognormal
CDF with a small coefficient of variation. It is informa-
tive to study whether it is also applicable to other joint
non-normal CDFs whose CDF shapes are rather differ-
ent from the joint normal CDF, since design variables
in real industrial problems could include other types of
input distributions.

For instance, for two exponential input variables
with a joint exponential CDF, which could be used
to analyze the reliability of an electronic system, the
original joint exponential PDF is given as (Kotz et al.
2000)

fX1 X2(x1, x2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{(1 + θx1)(1 + θx2) − θ}
× exp [−(x1 + x2 + θx1 · x2)],

x1 ≥ 0 , x2 ≥ 0

0, otherwise

(38)

The corresponding exponential joint CDF is

FX1 X2(x1, x2)=

⎧
⎪⎨

⎪⎩

1−e−x1 −e−x2 +exp [−(x1+x2+θx1x2)] ,

x1 ≥0, x2 ≥0

0, otherwise

(39)

where the mean and standard deviation are μ1 = μ2 =
1.0 and σ1 = σ2 = 1.0, respectively. The correlation co-
efficient for the exponential variables is

ρij = −1 + 1

θ
e1/θ Ei

(
1

θ

)
(40)

where Ei (z) = ∫∞
1

(
e−tz

/
t
)

dt. If the parameter θ varies
from 0.0 to 1.0, the correlation coefficient ρ ranges
from 0.0 to −0.40366. In this example, it is assumed that
θ = 1.0 and, thus, ρ = −0.40366.
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Fig. 6 Exact and approximate exponential CDFs

Differentiating the joint CDF obtained from the
Gaussian copula given in (11), an approximate joint
PDF can be obtained as

f̃X1 X2(x1, x2) = fX1(x1) · fX2(x2)

φ(y1) · φ(y2)
φ
(
y1, y2, ρ

′)

= e−x1 · e−x2

φ(y1) · φ(y2)
φ
(
y1, y2, ρ

′) (41)

where Ei (z) = ∫∞
1

(
e−tz

/
t
)

dt, y2 = �−1
[
1 − e−x2

]
, and

ρ ′ ≈Rρ = −0.556. The approximate joint exponential
CDF can be estimated by integrating the approximate
joint PDF in (41) as

F̃X1 X2 (x1, x2) =
∫ x2

0

∫ x1

0
f̃ (x1, x2) dx1dx2 (42)

The approximate joint exponential CDF obtained
from the Gaussian copula is compared with the exact
joint exponential CDF at different reliability index lev-
els, where the reliability index is obtained from

β = −�−1(F(x1, x2)) (43)

by comparing these CDFs along the line x1 = x2, as
shown in Fig. 6.

From Fig. 6, where the vertical axis is drawn in log
scale, the difference of the exact and approximate CDF
values is small, but the relative error is significant in
the interval from β = 2.0 to 6.0 as shown in Fig. 7. As
the reliability index increases, the relative error of the
approximate joint CDF increases rapidly.

Further, at a certain target reliability index, e.g.,
β = 3.0, the relative error is significant for most values
of the correlation coefficient (Fig. 8). Thus, when the

Fig. 7 Relative error of joint exponential CDF obtained from the
Gaussian copula at different reliability index levels

joint CDF is exponential, the Gaussian copula can be
used for the small target reliability index (i.e., less than
2.0), but it may not be appropriate for the large target
reliability index due to the large relative error in the
CDF.

Since the exponential variables have a large coeffi-
cient of variation, which is 1, the approximated joint
CDF using the Gaussian copula contains significant
error compared to the true exponential CDF. On the
other hand, the lognormal variables have a wide range
of coefficient of variations. Thus, the Gaussian copula
can accurately approximate the joint lognormal CDF
with a small coefficient of variation.

Fig. 8 Relative error versus correlation coefficient for β = 3.0
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Fig. 9 Exact and approximate lognormal CDFs

Similarly, consider the joint lognormal CDF in (27)
in Section 4.3. Figure 9 shows a comparison of the exact
joint CDF and the approximate joint lognormal CDF
at different reliability index levels. Assume that the
correlation coefficient is −0.40366 and the coefficient
of variation is 0.3. As shown in Fig. 9, the difference
between the approximate joint CDF and exact joint
CDF is small for up to β = 3. The trend can be more
clearly observed by the relative error shown in Fig. 10.

The relative error of the approximate joint lognor-
mal CDF also can be calculated for the whole range
of the correlation coefficient at certain target reliability
index, e.g., β = 3. Figure 11 shows that the relative
error is significant for low values of negative correlation
coefficients, but that it is small for correlation coeffi-
cients between −0.3 and 1. Thus, the Gaussian copula
is applicable for the problem with positively correlated
lognormal variables and some values of negative corre-
lation coefficients with small target reliability index if
the coefficient of variation is small.

Fig. 10 Relative error in lognormal CDF versus reliability index

Fig. 11 Relative error in CDF versus correlation coefficients

Instead of using the Gaussian copula, it might be
possible to use an exponential copula to generate a
joint exponential CDF; like using the Gaussian copula
to generate a joint normal CDF. In fact, significant
research has been carried out to develop exponential
copulas. However, the currently developed exponential
copulas do not seem to be applicable to RBDO because
they are not continuous for multi-variables and do not
have a wide range of correlation coefficients (Gembel
1965; Marshall and Olkin 1967; Freund 1961; Basu and
Sun 1997; Block and Basu 1974; Raftery 1984).

Consider the joint exponential CDF in (39). The
joint exponential CDF has a more limited admissible
range of correlation coefficients than the Gaussian cop-
ula. As shown in Fig. 12, the exponential CDF covers
only the correlation coefficient ranging from −0.404
to 0, while the approximate joint CDF obtained from
the Gaussian copula has a wider range of correlation

Fig. 12 Diagonal contour diagrams for different copulas
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Fig. 13 Optimal design points and reliability target contours for
different correlation coefficients.

coefficients, from −0.65 to 1.0, which is obtained from
(15) for two exponential variables as

ρ
′
ij = ρijRij = ρij

(
1.229 − 0.367ρij+0.153ρ2

ij

)
(44)

When the Gaussian copula is used to approximate
joint exponential CDF, it provides a limited range of
correlation between variables, but for other types of
non-normal variables, it provides a much larger range
of correlation coefficients (Liu and Der Kiureghian
1986) than for the exponential variables. Thus, the
Nataf transformation provides a large admissible range
of the correlation coefficients for most non-normal
variables. In particular, for normal variables, since the
Nataf transformation originates from the Gaussian cop-

ula, it can be used for the full range of the correlation
coefficients, from −1.0 to 1.0, which corresponds to
the lower and upper bound copulas, respectively. In
addition, it can accurately estimate the joint lognormal
CDF for a wide range of correlation coefficients if the
coefficient of variation and the target reliability index
are small, i.e., less than three.

Finally, since the normal CDF and lognormal CDFs
with small coefficients of variation cover broader ap-
plication areas, such as material properties (strength),
fatigue life, chemical process, fatigue, crack propaga-
tion, and loads (Tobias and Trindade 1995; Hahn and
Shapiro 1994), in terms of applicability to broad indus-
trial applications, the Nataf transformation is valuable.
For engineering applications with joint non-normal
CDFs, an alternative copula needs to be used. Selection
of a copula for given data and application of the se-
lected copula to RBDO will be our next research topics.

7 Numerical examples

7.1 Mathematical example

Consider a mathematical problem with input random
variables Xi ∼ N

(
5.0, 0.32

)
, i = 1, 2. The RBDO for-

mulation is defined as

min. cost(d)=−d1+d2

st. P (Gi(X)>0)≤�(−βti), i=1, 2, 3

0≤d1 ≤10, 0≤d2 ≤10, βti = 3.0

G1(X)=1−X2
1 X2/20

G2(X)=1−(X1+X2−5)2/30−(X1−X2−12)2/120

G3(X)=1−80/(X2
1 +8X2+5). (45)

Table 2 Optimum designs for
the mathematical problem

No. of FE = function
evaluation + sensitivity
calculation

ρ X1 X2 Cost No. of FE

−1.0 6.886 2.695 −4.191 38 + 38
−0.8 6.571 2.971 −3.601 51 + 51
−0.6 6.335 3.147 −3.188 43 + 43
−0.4 6.145 3.271 −2.874 44 + 44
−0.2 5.985 3.362 −2.623 44 + 44
0.0 5.846 3.433 −2.414 44 + 44
0.2 5.726 3.482 −2.244 44 + 44
0.4 5.622 3.516 −2.105 44 + 44
0.6 5.530 3.535 −1.995 44 + 44
0.8 5.452 3.540 −1.912 44 + 44
1.0 5.387 3.531 −1.856 34 + 34



14 Y. Noh et al.

Fig. 14 Coil spring

Using the inverse reliability analysis method PMA+
(Youn et al. 2005a, b) for RBDO, the reliability-based
optimum design can be obtained for the different cor-
relation coefficients that range from −1.0 to 1.0 at 0.2
intervals. In Fig. 13, the circle indicates the norm of
the standard random variables U, called the reliability
target contour, where the radius is the target reliability
index when the input variables are independent. How-
ever, when input variables are correlated, the circle be-
comes an ellipse, which has either positive or negative
angle according to the sign of the correlation coeffi-
cient. For selected correlation coefficients that range
from −1.0 to 1.0, reliability-based optimum designs are
obtained as shown by the “+” sign in Fig. 13. The dots
are the optimal design points where the correlation
coefficients are −0.8, 0.0, and 0.8, respectively.

Table 2 shows the optimum designs, optimum costs,
and number of function evaluations for the different
correlation coefficients. In the table, all optimum de-
signs have two active constraints G2 and G3, and the
optimum designs and the corresponding optimum costs
significantly depend on the correlation coefficients.

7.2 Coil spring problem

In next example, an engineering problem is used to
show how the correlation in input variables affects
RBDO results. The coil springs are widely used in
practical applications. The design objective of the coil
spring (Fig. 14) is to minimize the mass to carry a given
axial load such that the design satisfies the minimum de-
flection and allowable shear stress requirement, and the

surge wave frequency is above the lower limit (Arora
2004).

In this example, five design parameters, which are
the mean inner diameter of coil spring (D), wire diame-
ter (d), number of active coils (N), shear modulus (G),
and mass density of material (ρ), are selected. Other
data are given as: weight density of spring material, γ =
0.285 lb/in.3; shear modulus, G = (1.15 × 107) lb/in.2;
allowable shear stress, τa = 80, 000 lb/in.2; number of
inactive coils, Q = 2; applied load, P = 10 lb; minimum
spring deflection, � = 0.5 in.; and lower limit of surge
wave frequency. The design and random variables such
as number of active coils (X1), coil inner diameter (X2),
wire diameter (X3), mass density of material (X4), and
shear modulus (X5) have normal CDFs and have the
properties shown in Table 3.

As stated before, the constraints shown in (46)
through (48) must be satisfied to carry out a given axial
load without material failure. The first constraint is that
the deflection δ under the load P should be at least
� as

δ = P
K

= 8P(D + d)3 N
d4G

≥ � (46)

The second constraint is that the shear stress in the
wire should not be larger than τa, which is formu-
lated as

τ = 8kP(D + d)

πd3
= 8P(D + d)

πd3

×
(

4(D + d) − d
4D

+ 0.615d
D + d

)
≤ τa (47)

where k is Wahl stress concentration factor. The third
constraint requires that the surge wave frequency of the
spring should be higher than ω0 as

ω = d
2π N(D + d)2

√
G
2ρ

≥ ω0 (48)

Table 3 Properties of design
and random variables for the
coil spring

Random variable Standard deviation dL d dU

X1 0.1 7.0 30.0 100.0
X2 0.1 0.8 1.0 1.5
X3 0.01 0.1 0.15 0.3
X4 0.10E − 4 0.85E − 4 7.38E − 4 10.0E − 4
X5 0.10E + 7 0.10E + 7 1.15E + 7 3.00E + 7
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Table 4 RBDO results for
different correlation
coefficients

No. of FE = function
evaluation + sensitivity
calculation

ρ23 0.0 0.2 0.4 0.6 0.7

X1 0.107 E + 2 0.990 E + 1 0.821 E + 1 0.798 E + 1 0.784 E + 1
X2 0.137 E + 1 0.134 E + 1 0.137 E + 1 0.127 E + 1 0.121 E + 1
X3 0.111 E + 0 0.110 E + 0 0.110 E + 0 0.106 E + 0 0.104 E + 0
X4 0.850 E − 4 0.850 E − 4 0.850 E − 4 0.850 E − 4 0.850 E − 4
X5 0.115 E + 8 0.115 E + 8 0.115 E + 8 0.115 E + 8 0.115 E + 8
G1 0.000 0.000 0.000 0.000 0.000
G2 −0.055 −0.070 −0.085 −0.063 −0.051
G3 −0.389 −0.621 −0.993 −1.430 −1.811
No. of FE 30 + 30 30 + 30 30 + 30 30 + 30 30 + 30
Cost 4.863 4.386 3.825 3.224 2.905

Using the data and normalized constraints for
the coil spring problem, the RBDO formulation is
defined as

min. mass(d)=25000 × (d1+Q)π2(d2+d3)d2
3d4

st. P (Gi(X)>0)≤�(−βt), i=1, 2, 3

G1(X)=1.0− 8P(X2+X3)
3 X1

X4
3 X5�

G2(X)=−1.0+ 8P(X2+X3)

π X3
3τa

[
(4X2+3X3)

4X2
+ 0.615X3

(X2+X3)

]

G3(X)=1.0− X3

2π X1(X2+X3)2w0

√
X5

2X4
. (49)

In the manufacturing process, it may be possible
that the coil inner diameter and the wire diameter are
correlated, and thus the correlation coefficient between
those two variables is considered for RBDO.

Table 4 shows the optimal designs, constraints, func-
tion evaluation, and cost for the different correlation
coefficients. As shown in the table, the optimum de-
signs and costs significantly depend on the correlation
coefficients. To minimize the mass of the spring, the
mass density goes to the lower bound and the shear
modulus does not change because the third constraint
is always inactive and the shear modulus does not affect
the cost. From these two examples, it is clear that
the correlation should be considered in the RBDO of
practical applications.

8 Conclusions

In this paper, an RBDO method that deals with
the correlation of input variables is proposed. The
Rosenblatt transformation and the Nataf transforma-

tion are investigated for applicability to RBDO prob-
lems with correlated input variables. The Rosenblatt
transformation is a mathematically exact transforma-
tion method, but it requires a joint CDF to transform
the correlated random variables to the independent
standard normal variables, so that it can be used when
the joint CDF is available or when input variables are
independent. On the other hand, the Nataf transfor-
mation approximates the joint CDF using the Gaussian
copula. Since the copula only requires marginal CDFs
and correlation parameters such as covariance to gener-
ate a joint CDF, the joint CDF can be easily constructed
for real engineering applications. The Gaussian copula
provides an exact joint CDF when the input joint CDF
is normal or when the normal and lognormal variables
are combined in a two-dimensional case. When the
joint CDF is lognormal, the Gaussian copula can ac-
curately construct a joint CDF for positive and some
negative correlations with small target reliability index
if the coefficient of variation is small. Another advan-
tage of the Gaussian copula is that it covers a wide
range of correlation coefficients. In this paper, using
the Nataf transformation, RBDO is carried out to solve
numerical examples with correlated input variables to
demonstrate that the correlation in the input variables
significantly influences the optimum results of RBDO.

This paper focused on how much error exists be-
tween the true joint CDF and the approximate joint
CDF using the Gaussian copula. For future research,
other types of copulas for correlated input variables
with joint non-normal CDF will be investigated to gen-
erate joint CDF and will be applied to RBDO.
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