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Abstract Complementarity problems are involved in
mathematical models of several applications in engi-
neering, economy and different branches of physics.
We mention contact problems and dynamics of mul-
tiple bodies systems in solid mechanics. In this pa-
per we present a new feasible direction algorithm for
nonlinear complementarity problems. This one begins
at an interior point, strictly satisfying the inequality
conditions, and generates a sequence of interior points
that converges to a solution of the problem. At each
iteration, a feasible direction is obtained and a line
search performed, looking for a new interior point with
a lower value of an appropriate potential function.
We prove global convergence of the present algorithm
and present a theoretical study about the asymptotic
convergence. Results obtained with several numerical
test problems, and also application in mechanics, are
described and compared with other well known tech-
niques. All the examples were solved very efficiently
with the present algorithm, employing always the same
set of parameters.
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1 Introduction

We consider the nonlinear complementarity problem,
(NCP):
Find x ∈ �n such that

x ≥ 0, F(x) ≥ 0 and xt F(x) = 0, (1)

where F : IRn→IRn, is continuously differentiable.
Let be � := {x ∈ IRn|x ≥ 0 , F(x) ≥ 0} the feasible

set and �0, the interior of �.
Several mathematical models in different disciplines,

like engineering, physics and economics, lead to com-
plementarity problems. This is the case of static and
dynamic contact in solid mechanics, where there is a
complementarity condition between the contact forces
and the gap, see Christensen et al. (1998), Petersson
(1995) and Tanoh et al. (2004). Limit Analysis and
Plasticity models can also include a complementarity
condition, see Zouain et al. (1993) and Tin-Loi (1999b).
When this kind of mechanical models are employed for
structural optimization, several authors employ math-
ematical programming problems with equilibrium con-
straints, MPEC, as in Tin-Loi (1999a). Models for free
boundary problems can also involve complementarity
conditions, see Leontiev et al. (2002). Optimality con-
ditions of classical constrained optimization problems
as well as bi-level programs, (Herskovits et al. 2000),
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or Nash-Cournot equilibrium include a complementar-
ity condition. Further applications of complementarity
problems are described in Ferris and Pang (1997).

The NCP can be also written as follows:
Find x ∈ IRn such that x ≥ 0, F(x) ≥ 0 and

x • F(x) ≡

⎛
⎜⎜⎜⎜⎝

x1 F1(x)

.

.

.

xn Fn(x)

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0
.

.

.

0

⎞
⎟⎟⎟⎟⎠

, (2)

where x • F(x) represents a Hadamard product.
Considerable research effort was devoted by mathe-

maticians and engineers to solve this problem, looking
for robust and efficient techniques for real engineering
applications. By employing an appropriate merit or
potential function, the NCP can be solved employing
unconstrained minimization techniques. However, this
approach generally involves non-smooth functions. An-
other drawback is that the iterates can converge to a lo-
cal minima of the potential function. See Mangasarian
and Solodov (1993), Yamashita and Fukushima (1995),
Geiger and Kanzow (1996), Kanzow (1996), Jiang and
Qi (1997).

The so called NCP functions, ψ : IR2 → IR, are such
that ψ(a, b) = 0 implies a ≥ 0, b ≥ 0 and ab = 0. Then,
a solution of the NCP can be obtained by solving the
following nonlinear system of equations in IRn:

⎛
⎜⎜⎜⎜⎝

ψ(x1, F1(x))

.

.

.

ψ(xn, Fn(x))

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0
.

.

.

0

⎞
⎟⎟⎟⎟⎠

. (3)

Several numerical techniques to solve (3), with dif-
ferent NCP functions, were proposed. We mention
Mangasarian (1973), Subramanian (1993), Kanzow
(1994) and Chen and Mangasarian (1996).

The largely employed Fischer-Burmeister NCP func-
tion, (Fischer 1992) is defined as follows:

ψFB(a, b) =
√

a2 + b 2 − a − b .

However, this function is nonsmooth and requires spe-
cial techniques to solve the nonlinear system, (Qi and
Sun 1998).

The following potential function is derived from
Fisher-Burmeister NCP function.

φFB(x) = 1

2

n∑
i=1

ψFB(xi, Fi(x))2.

This function has not derivatives at degenerated
points. That is, when xi = 0 and Fi(x) = 0 for some
index i.

Another approach is based on interior point algo-
rithms for nonlinear optimization, as path following
methods and primal-dual interior point algorithms. See
Ferris and Kanzow (2002), Wright (1997) and Tseng
(1997).

Our approach is based on the iterative solution of the
nonlinear system (2), without need of employing a NCP
function. Given an initial feasible point, the present
algorithm generates a sequence of feasible points such
that the potential function

φ(x) ≡ xt F(x)

is reduced at each iteration. At each iteration a search
direction is computed. This one is a descent direction
with respect to the potential function and a feasible di-
rection of the problem. A line search procedure ensures
that the new point is in fact feasible and the potential
lower. To define the search direction we employ some
ideas proposed in Herskovits (1982, 1986) and also
employed in the Feasible Direction Interior Point Al-
gorithm for nonlinear optimization, FDIPA, described
in Herskovits (1998).

As we know, there are not other strictly feasible
techniques for NCPs. Feasibility is a requirement in
several applications involving function that are not de-
fined at infeasible points. Since all the points satisfy the
constraints, it is not necessary to check feasibility for
stopping the iterations.

These advantages are also relevant when employ-
ing feasible directions algorithms for constraint opti-
mization in engineering applications, see Arora (2004),
Herskovits et al. (2005) and Vanderplaats (1999).

The present technique is not based on the trans-
formation of the complementarity problem in a con-
strained optimization problem, solved with a feasible
directions technique, but it is a numerical technique
that solves directly the complementarity problem with-
out modifications. Our potential function is merely a
measure of the error of (2).

We prove global convergence of the present method
to a solution of the complementary problem as well
as local superlinear convergence. Making stronger as-
sumptions, quadratic asymptotic convergence is also
proved.

We describe the numerical results obtained with
several test problems and also two applications in me-
chanics, the contact analysis of an elastic membrane
and a free boundary problem in a porous media. Even if
all the points given by the present algorithm are strictly
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feasible, the problems are solved very efficiently when
compared with other techniques. Our approach is also
very robust, since a solution is always found with the
same set of parameters.

In several applications, an initial feasible point can
be found from the physics of the problem. When this
is not the case, our suggestion consists on solving and
auxiliary optimization problem as in Herskovits et al.
(2005).

In the next section we give some preliminary con-
cepts about nonlinear optimization and complemen-
tarity problems. The basic ideas of our approach are
discussed in the subsequent section and a new algo-
rithm is then defined. In Section 5, we prove global
convergence, under an appropriate set of assumptions.
Asymptotic convergence is studied in Section 6. Our
numerical results with a set of test examples and with
applications in mechanics are described in session 7.
Finally we present our conclusions about the present
approach.

2 Preliminary concepts

We introduce now the following definitions:

Definition 1 The vector d ∈ IRn is a feasible direction
at x ∈ �, if for some θ > 0 we have x + td ∈ � for all
t ∈ [0, θ ].

Note that any vector is a feasible direction at x ∈ �0.

Definition 2 A vector field d(x) ∈ IRn, with x ∈ �, is a
uniformly feasible directions field if for some � > 0 and
for any point x ∈ � we have x + td(x) ∈ � for all t ∈
[0, �].

Thus, a feasible direction d contains a non null fea-
sible segment [x; x + θ(x)d], where θ depends on x.
Definition 2 is more restrictive, since requires the exis-
tence of � > 0 such that θ(x) ≥ � in �.

Definition 3 A vector d ∈ IRn is a Descent Direction of
a real function φ at x ∈ IRn if there exists δ > 0 such that
φ(x + td) < φ(x) for any t ∈ (0, δ).

The following propositions give conditions to check
if a search direction is descent and feasible, see Bazaraa
and Shetty (1979).

Proposition 1 If φ is differentiable at x and d ∈ IRn such
that dt∇φ(x) < 0, then d is a descent direction of φ.

Proposition 2 Let d ∈ IRn and x ∈ �. If d satisfies the
conditions:

a) di > 0 for all i such that xi = 0 and
b) dt∇Fi(x) > 0 for all i such that Fi(x) = 0,

then d is a feasible direction of the NCP, at x.

3 Basic ideas of the present approach

We discuss now the basic ideas involved in the present
technic. Let us consider the nonlinear system of equa-
tions (2). We have that

∇[x • F(x)] = diag[F(x)] + diag(x)∇F(x) (4)

where, given v ∈ IRn, diag(v) ∈ IRn×n is a diagonal ma-
trix such that diag(v)ii ≡ vi and the i-th row of ∇F(x) is
∇Fi(x).

A Newton - Raphson iteration to solve (2) is given
by the following expression:

[
diag

(
F
(

xk
))

+diag
(

xk
)

∇F
(

xk
)] [

xk+1−xk
]
=−xk • F

(
xk
)

.

Instead of taking xk+1 computed above, we define a
search direction as dk

1 = [xk+1 − xk]. Then, we have

[
diag

(
F
(
xk))+ diag

(
xk)∇F

(
xk)]dk

1 = −xk • F
(
xk) .

(5)

It is shown later that dk
1 is a descent direction of the

potential function. However, dk
1 cannot be taken as a

search direction of the present algorithm, since it is not
always a feasible direction. In effect, it follows from
(5) that dk

1i = 0 when xk
i = 0 and dk

1
t∇F j(xk) = 0 when

F j(xk) = 0. Then, the assumptions of Proposition 2 are
not true at the boundary of � and θ = 0 in Definition 1.
Near the boundary θ will be very small.

Adding positive numbers in the right side of (5), we
have the following linear system:

[
diag

(
F
(
xk))+diag

(
xk)∇F

(
xk)]dk =−xk • F

(
xk)+ρk E,

where ρk > 0 and E ≡ [1, 1, ..., 1]t, E ∈ IRn.
If dk is uniquely determined, it follows from

Proposition 2 that dk is a feasible direction. In effect,

i) When xk
i = 0, it is dk

i = ρk

Fi(xk)
> 0.

ii) When Fi(xk) = 0, it is ∇Fi(xk)dk = ρk

xk
i

> 0.

The vector dk is then a perturbation of dk
1 proportional

to ρk. As dk
1 is a descent direction, imposing convenient
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bounds on ρk, it is possible to ensure that dk is a descent
direction also.

In effect, since d1 is a descent direction, we have
that dkt

1 ∇φ(xk) < 0. We prove later that, taking ρk ∈(
0,

φ(xk)

n

)
, it is

∇φ
(
xk)t

dk =
[

1 − ρkn

φ
(
xk
)
]

∇φ
(
xk)t

dk
1 < 0,

where 1 − ρkn
φ(xk)

> 0.
A new iterate is then obtained by performing an

inexact line search procedure that looks for a new
feasible point with a sufficient reduction of the potential
function φ(x). We employ an extension of Armijo’s line
search that deals with inequality constraints, proposed
by Herskovits (1986).

Line search procedures based on Wolfe’s or
Goldstein’s inexact line search criteria can also be
employed, (Bazaraa and Shetty 1979; Herskovits 1995,
1998). These are more efficient in practise.

The present iterations were obtained by introduc-
ing a perturbation in Newton’s algorithm, that has
quadratic rate of convergence. Then, working with a
smaller perturbation will result in a faster convergence.
Near a solution, we take ρk = O(φβ(xk)) and discuss
the cases, when β ∈ (1, 2) and β = 2.

The numerical algorithm presented here requires an
initial feasible point. In several applications, this point
can be found from the physics of the problem. When
this is not the case, a feasible point can be found with
the help of the auxiliary mathematical program

max
(x,z)

z

s. t. F(x) ≥ z,

x ≥ 0, (6)

where z ∈ IR is an auxiliary variable. Solving this prob-
lem with a nonlinear programming algorithm, a feasible
point is obtained once z becomes positive and the con-
straints are satisfied. If F(x) is convex and the feasible
region of (6) is not empty, the auxiliary problem has an
unique solution.

4 FDA_NCP: feasible directions algorithm for NCP

The present algorithm is stated as follows:

Parameters:

c > 0, α, η, ν ∈ (0, 1), β ∈ (1, 2] and ρ0 < α min{1,

1/(cβ−1)}.

Initial Data: x0 ∈ �0 such that φ(x0) < c and k = 0.

Step 1 Calculation of the search direction.

Compute dk by solving:

[
diag

(
F
(
xk))+ diag

(
xk)∇F

(
xk)]dk

= −xk • F
(
xk)+ ρk E, (7)

where ρk = ρ0
[

φβ(xk)

n

]
.

Step 2 Line search.

Compute tk, the first number of the sequence
{1, ν, ν2, ...} satisfying

xk + tkdk > 0 (8)

F
(
xk + tkdk) > 0 (9)

φ
(
xk + tkdk) < φ

(
xk)+ tkη∇φ

(
xk)t

dk (10)

Step 3 Updates.

Set xk+1 := xk + tkdk and k := k + 1.

Go back to Step 1.

The present algorithm is very simple to implement
and requires a computer effort similar to that of
Newton method for nonlinear systems of equations.

In Fig. 1. we represent the Newton direction dk
N and

the search direction dk at a point on the boundary of the
feasible domain. In order to illustrate better the present
algorithm, we include dk

R, that restores feasibility, even
if it is not explicitly computed.

Fig. 1 Representation of directions
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5 Study of global convergence

In this section we define a set of assumptions about the
NCP and prove global convergence to a solution of the
problem.

Assumption 1 The set

�c ≡ {x ∈ �|φ(x) ≤ c}, c > 0

is a compact set and has an interior �0
c . Each x ∈ �0

c
satisfies x > 0 and F(x) > 0.

Assumption 2 The function F(x) is continuously differ-
entiable and ∇F(x) satisfies Lipschitz condition

‖∇F(y) − ∇F(x)‖ ≤ γ0‖y − x‖,
for any x, y ∈ �c, where γ0 is a positive real number.

Assumption 3 The matrix

diag(F(x)) + diag(x)∇F(x)

has an inverse in �c.

The last assumption implies that x and F(x) are not
zero simultaneously for x ∈ �c. We also have that the
linear system (7) has always a solution.

Since ∇F(x) is continuous, we have that the matrix
in the last assumption has a continuous inverse in �c.
Thus, there exists a scalar κ > 0 such that

‖[diag(F(x)) + diag(x)∇F(x)]−1‖ ≤ κ (11)

for any x ∈ �c.
The following results prove that the search direction

of the present algorithm is bounded, is a descent di-
rection and constitutes an uniformly feasible directions
field. These are valid for β ∈ [1, 2].

Lemma 1 For any xk ∈ �c, the search direction dk

satisfies

‖dk‖ ≤ κφ(xk). (12)

Proof Let be xk ∈ �c. We have,

∥∥∥−xk • F
(

xk
)

+ ρk E
∥∥∥2 =

∥∥∥xk • F
(

xk
)∥∥∥2 − 2ρkφ

(
xk
)

+ n
(
ρk
)2

.

Since
∥∥xk • F(xk)

∥∥2 ≤ φ2(xk) , we deduce
∥∥−xk • F(xk) + ρk E

∥∥2 ≤ (n − 1)(ρk)2 + (φ(xk) − ρk)2.

From the definition of ρk given in the algorithm, we
have ρk ≤ φ(xk)

n . Then, we conclude that
∥∥−xk • F(xk) + ρk E

∥∥ ≤ φ
(
xk) . (13)

Considering now (7) and (11), we obtain the follow-
ing bounds on ‖dk‖:
∥∥dk ‖≤ κ‖ − xk • F

(
xk)+ ρk E

∥∥ . (14)

Thus, the result follows from (13) and (14). 
�

As a consequence of the previous lemma, we deduce
that

‖dk‖ ≤ κc. (15)

Lemma 2 The search direction dk is a descent direction
for φ(x) at any xk ∈ �c such that φ(xk) > 0.

Proof We have that

∇φ
(
xk)t = Et [diag

(
F
(
xk))+ diag

(
xk)∇F

(
xk)] .

Then, it follows from (5) and (7) that

∇φ
(
xk)t

dk
1 = −φ

(
xk)

and

∇φt (xk)dk = −φ
(
xk)+ nρk.

In consequence,

∇φt (xk)dk =
(

1 − ρkn

φ
(
xk
)
)

∇φt(xk)dk
1 < 0.

The result follows from Proposition 1. 
�

Lemma 3 The search direction dk, given by the present
algorithm, constitutes a uniformly feasible directions
field of the problem for xk ∈ �c.

Proof It follows from Assumption 2 that ∇(x • F(x))

satisfies Lipschitz condition in �c. Let be γ a positive
real number such that
∥∥∇(y • F(y))i − ∇(x • F(x))i

∥∥ ≤ γ ‖y − x‖
for all x, y ∈ �c.

Let be xk ∈ �c and θ such that [xk, xk + τdk] ⊂ �c

for τ ∈ [0, θ ]. If follows from the Mean Value Theorem
that

[(
xk + τdk) • F

(
xk + τdk)]

i ≥ [
xk • F

(
xk)]

i

+ τ∇ [xk • F(xk)
]t

i dk − τ 2γ ‖dk‖2

for any τ ∈ [0, θ ] and i = 1, 2, ..., n. Since

∇ [xk • F
(
xk)]t

i dk = − [
xk • F

(
xk)]

i + ρk (16)
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it is

[(
xk + τdk) • F

(
xk + τdk)]

i ≥ (1 − τ)
[
xk • F

(
xk)]

i

+ (
ρk − τγ ‖dk‖2

)
τ.

Then, for τ ≤ min
{

1,
ρk

γ ‖dk‖2

}
, it is

[(
xk + τdk) • F

(
xk + τdk)]

i ≥ 0

for i = 1, 2, ..., n. Considering now (15), for ρk defined
in the algorithm, we have that the previous inequality is
also true for

τ ≤ min

{
1,

ρ0

γ nκ2
φβ−2

(
xk)
}

. (17)

Since β ≤ 2, the present lemma is valid for

θ = min

{
1,

ρ0cβ−2

γ nκ2

}
.


�

Lemma 4 There exists ζ > 0 such that, for xk ∈ �c, con-
dition (10) is satisfied for any tk ∈ [0, ζ ].

Proof Let be tk ∈ (0, θ ], where θ was obtained in the
previous lemma. Applying the Mean Value theorem for
i = 1, 2, ..., n and do xk+1 = xk + tkdk, we have

[
xk+1 • F

(
xk+1

)]
i ≤ [

xk • F
(
xk)]

i

+ tk∇ [xk • F
(
xk)]t

i dk + tk2
γ ‖dk‖2.

Summing the previous n inequalities and considering
(16), we get:

φ(xk+1) ≤
[

1 −
(

1 − ρkn

φ
(
xk
)
)

tk

]
φ(xk) + ntk2

γ
∥∥dk

∥∥2
.

Then, if

[
1 −

(
1 − ρkn

φ(xk)

)
tk
]

φ
(
xk)

+ ntk2
γ ‖dk‖2 ≤

[
1 − tkη

(
1 − ρkn

φ
(
xk
)
)]

φ(xk)

is true, (10) is satisfied. Thus, it is enough to have

tk ≤
(1 − η)

(
1 − ρkn

φ(xk)

)
φ
(
xk
)

γ n‖dk‖2
.

As in the previous lemma, we get

tk ≤ (1 − η)
(
1 − ρ0φ

β−1 (xk)) φ
(
xk
)−1

γ nκ2
. (18)

Then, the present lemma is true for

ζ = inf

{
(1 − η)

(
1 − ρ0cβ−1

)
γ nκ2c

, θ

}
,

where θ was obtained in Lemma 3. 
�

As a consequence of the two previous lemmas, we
deduce that the number of steps required by Armijo’s
line search included in Step 2) of the algorithm is finite
and bounded above. The following theorem proves
global convergence of the present algorithm to a solu-
tion of the complementarity problem.

Theorem 1 Given an initial feasible point, x0 ∈ �c, the
sequence {xk} generated by the present algorithm con-
verges to x∗, a solution of problem (1).

Proof It follows from the previous results that xk ∈ �c

for k = 1, 2, 3.... Since �c is a compact, {xk} has accu-
mulation points in �c. Let x∗ be an accumulation point.
Since the step length is always positive, we deduce that
‖dk‖ → 0. Considering (7), we deduce that {φ(xk)} →
0. Thus, x∗ is a solution of the problem. 
�

6 Study of asymptotic convergence

The search direction of the present algorithm is a
perturbation of Newton’s iteration for nonlinear sys-
tems of equations. Including a line search, Newton’s
method has quadratic convergence, provided that the
step-length goes to one, (Dennis and Schnabel 1996). It
is natural to expect better rates of convergence of our
algorithm for smaller values of ρk.

As in Maratos effect, encountered in nonlinear con-
strained optimization, we cannot ensure that a uni-
tary step-length is always obtained, see Herskovits and
Santos (1998), Herskovits et al. (2005). In the present
case, taking smaller values for ρk increases de possibil-
ity of having this effect.

Theorem 2 Consider the sequence {xk} generated by the
present algorithm that converges to a solution x∗ of (1).
Then,

(i) Taking β ∈ (1, 2), then tk = 1 for k large enough
and the rate of convergence of the present algo-
rithm is at least superlinear.

(ii) If tk = 1 for k large enough and β = 2, then the rate
of convergence is quadratic.
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Table 1 Test problems

No Problems n

1 Kojima-Josephy 4
2 Kojima-Shindo’s 4
3 Nash-Cournot (Harker’s) 5
4 Nash-Cournot (Harker’s) 10
5 Nash-Cournot (Pang and Murphy’s) 5
6 Nash-Cournot (Pang and Murphy’s) 10
7 Mathiesen Modified 4
8 PNL Kanzow 5
9 PNL HS - 34 8
10 PNL HS - 35 4
11 PNL HS - 66 8
12 PNL HS - 76 7
13 NCP - 01 3
14 NCP - 02 3
15 NCP - 03 4
16 Chen and Ye 3

Proof Considering Theorem 1, we deduce from (17)
and (18) that for k large enough, the step length
obtained with Armijo’s line search is tk = 1.

Standard Newtons’s method analysis procedures can
be used to show that

‖xk+1 − x∗‖ ≤ (
1 − tk) ‖xk − x∗‖

+ κρ0φ
β
(
xk
)

√
n

+ O
(‖xk − x∗‖2

)
, (19)

see Dennis and Schnabel (1996), for example.

It follows from the mean value theorem and
Lipschitz condition that

φβ(y) ≤ φβ(x) + φβ−1(x)β
√

n O(‖y − x‖),
where x = x + ε(y − x) for some ε ∈ (0, 1). Taking
x = x∗, for all y = xk sufficiently near x∗ it is

φβ
(
xk) ≤ φβ−1(x)β

√
n O

(‖xk − x∗‖) .
(i) Then, for β ∈ (1, 2), φβ(xk) = o(‖xk − x∗‖). By

substitution in (19) we get

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0.

Thus, the rate of convergence is superlinear.
(ii) The result for β = 2 is obtained in a similar way.


�

Introducing a line search along an arc, as in
(Herskovits and Santos 1998; Herskovits et al. 2005),
it seems possible to avoid Maratos effect, even in the
case when β = 2.

7 Numerical study

To study the numerical behavior of the present algo-
rithm in practical applications we solve a set of test
problems largely employed in mathematical program-
ming literature.

Two applications in Mechanics are also solved. The
first one is the solution of a numerical model of a

Table 2 Iterations Alg NCP-FDA FB

β 1.1 2 -
Problem Iter Iter LS Iter Iter LS Iter Iter LS

1 13 0 8 0 6 11
2 1001 25683 21 47 � 6 6
3 17 0 12 0 7 12
4 21 0 16 0 10 42
5 15 0 10 1 4 0
6 18 0 15 2 6 1
7 11 7 9 12 5 42
8 142 0 141 0 * *
9 21 39 371 5152 � 9 57
10 13 0 16 12 � 8 62
11 17 16 147 1407 � 29 711
12 12 1 15 13 � 6 18
13 16 0 11 0 6 2
14 21 0 20 0 6 2
15 22 0 21 0 7 17
16 11 0 6 0 5 1
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Table 3 Iterations for problem 17

Alg NCP-FDA FB

β 1.1 2 -

n Iter Iter LS Iter Iter LS Iter Iter LS

8 12 0 7 0 5 2
16 12 0 7 0 5 2
32 13 0 8 0 6 1
64 13 0 8 0 6 1
128 14 0 10 2 6 1
256 14 0 9 0 6 1
512 15 0 11 2 6 1
1024 15 0 10 0 6 1
2048 16 0 12 2 6 1

membrane with contact and, the second one, of a dam
with percolation. In both application the usual notation
in each of the corresponding disciplines is employed.

We take ρ0 = α min[1, φβ−1(xk)] in the numerical im-
plementation. In this way, extremely large deflections
are avoided far of the solution and ρ0 is constant when
φ(xk) is small. We study two cases, for β = 1.1 and
β = 2, and take α = 0.25, η = 0.4 and ν = 0.8.

Our technique is compared with the algorithm de-
scribed in Jiang and Qi (1997) which uses Newton itera-
tions to solve (3) for �(a, b)=�FB(a, b). An Armijo’s
line search with φFB(x) as potential is included.

The present algorithm stops when φ(xk) < 10−8,
for all the examples. Employing Fischer-Burmeister
function, feasibility must be also checked. A solution
is accepted when φ(xk) < 10−8 and xk

i > −10−8 and
Fi(xk) > −10−8, for i = 1, 2, ..., n. The iterations re-
quired to solve the problems with the stopping criteria
previously defined are presented in the correspond-
ing tables, where “NCP-FDA” refers to the present
method and “FB”, to Newton iteration with Armijo’s

Table 4 Iterations for problem 18

Alg NCP-FDA FB

β 1.1 2 -

n Iter Iter LS Iter Iter LS Iter Iter LS

8 13 0 8 0 4 0
16 15 0 10 0 5 0
32 17 0 12 0 5 0
64 20 1 15 2 5 0
128 22 4 17 5 5 0
256 24 7 20 9 5 0
512 26 10 22 12 5 0
1024 28 13 24 15 5 0
2048 30 16 27 19 5 0

Table 5 Iterations for problem 19

Alg NCP-FDA FB

β 1.1 2 -

n Iter Iter LS Iter Iter LS Iter Iter LS

8 15 1 10 1 4 0
16 16 3 12 3 4 0
32 18 6 13 6 4 0
64 20 8 15 8 4 0
128 21 11 12 11 4 0
256 23 14 13 14 4 0
512 24 17 15 17 4 0
1024 26 20 16 20 4 0
2048 27 24 17 24 4 0

line search employed to minimize Fischer-Burmeister
function. “Iter” represents the main iterations to solve
the problem for the given stopping criteria and “Iter
LS”, the total number of extra function evaluations
required by Armijo’s line search. The symbol * indi-
cates that convergence was not obtained and �, that the
unitary step length was not attained.

7.1 A collection of test problems

Problems 1 to 16 are listed in Table 1 , where n is the
number of variables. The problems 1 to 9, 11 and 13 to
15 are NCPs, while problems 10, 12 and 16 are linear.
Kojima-Josephy problem (Yamashita et al. 2004) has
an unique nondegenerate solution. Kojima-Shindo’s
problem (Geiger and Kanzow 1996) has two solutions,
one of them is degenerate. Nash-Cournot problems
(Harker 1988; Murphy et al. 1982) have a single non-
degenerate solution. Mathiesen modified (Jiang and
Qi 1997) and Chen-Ye problems (Chen and Ye 2000)
have several nondegenerate solutions. PNL Kanzow

Table 6 Iterations for problem 20

Alg NCP-FDA FB

β 1.1 2 -

n Iter Iter LS Iter Iter LS Iter Iter LS

8 17 0 14 0 7 16
16 20 0 16 0 7 29
32 23 0 19 0 8 54
64 25 0 22 0 10 122
128 28 0 24 0 9 77
256 30 1 27 1 15 334
512 33 1 30 1 7 39
1024 35 1 32 1 12 232
2048 38 2 35 2 10 139
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Table 7 Iterations for the
membrane in contact –
obstacle ψ1

Alg NCP-FDA FB

β 1.1 2 -

n Iter Iter LS Iter Iter LS Iter Iter LS

625 18 7 21 24 9 12
2500 20 19 24 41 11 42
5625 22 25 26 51 15 138
10000 24 47 29 76 19 202
15625 26 57 30 86 26 364
22500 27 64 32 100 35 363
30625 28 70 32 104 40 515

(Jiang and Qi 1997) has one degenerate solution. The
examples 9 to 12 are Nonlinear Programs written as
Complementarity Problems, (Hock and Schittkowski
1981). F(x) in problems 13 to 15, (Yamashita et al.
2004), is monotone. Problems 14 and 15 has an unique
degenerate solution.

For the results shown in Table 2, the initial points are
the same as in the corresponding references. When this
point is not feasible, a feasible initial point is obtained
solving the auxiliary problem (6) with FAIPA, the
Feasible Arc Interior Point Algorithm.

The iterations for Problem 2 described in Table 2
converge to a degenerate solution and the result with
FB Function is better than with the present algorithm.
However, making experiments with 1000 feasible initial
points randomly obtained, FDA-NCP converged in all
the cases while, with FB Function, convergence was
not obtained for about 8% of the tests. In a similar
study with Problem 1, it was observed 100% of conver-
gence with the present algorithm and only 72% with FB
function.

We present now the results for different values
of n, with four sets of linear complementarity prob-
lems having ∇F(x) symmetric and positive definite. In
consequence, F(x) is monotonic and the solution is
unique.

Table 8 Iterations for the membrane in contact - obstacle ψ2

Alg NCP-FDA FB

β 1.1 2 -

n Iter Iter LS Iter Iter LS Iter Iter LS

625 13 3 16 15 8 16
2500 13 3 17 18 10 47
5625 13 5 17 20 12 82
10000 14 6 18 22 16 123
15625 14 6 18 24 16 141
22500 15 8 18 24 21 257
30625 24 7 19 27 22 314

The initial point for Problem 17 (Geiger and Kanzow
1996), Problem 19 (Murty 1988; Xu 2000) and Problem
20 (Fathi 1979; Xu 2000) is x0 = [1, 1, ...1], x0 ∈ Rn.

For Problem 18 the initial point is x0 = [n, n − 1, ...1].
Tables 3, 4, 5, and 6 describe the iterations required
by both techniques for different dimensions n. Prob-
lems 17–19 are very well conditioned, and the results
are better with Fischer-Burmeister NCP function than
with our approach. However, the number of iterations
required with NCP-FDA remains almost unchanged
for a larger dimension or a worst conditioning of the
problem.

7.2 Two dimensions membrane in contact

We consider an elastic membrane subject to a vertical
distributed loading with the boundary fixed and con-
strained to lie on one side of a rigid obstacle. Let �

denote the open bounded set in IR2 occupied by the
undisturbed membrane, whose boundary is ∂�. We
call f (x, y) the loading, u(x, y) the transverse displace-
ments of the membrane and ψ(x, y) the shape of the
obstacle, all these functions are defined in �. The fixed
boundary is represented by g(x, y), defined on ∂�.The
subsets in � with contact and without contact are
designated by �0 and �+ respectively.
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Fig. 2 Membrane shape for a 52 × 52 mesh - obstacle ψ1
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Fig. 3 Membrane shape for a 52 × 52 mesh - obstacle ψ2

We employ a linear elastic model described by the
following equations:

− �u(x, y) = f (x, y) in �+, (20)

u(x, y) = ψ(x, y) in �0, (21)

u(x, y) = g(x, y) on ∂�. (22)

Equation 20 represents the equilibrium, (21) the con-
tact condition and (22) the boundary condition. The
following inequalities must be also satisfied:

u(x, y) ≥ ψ(x, y) in �, (23)

− �u(x, y) ≥ f (x, y) in �, (24)

where (23) prevents penetration in the obstacle and
(24) imposes that the membrane is stretched.

The boundary between �+ and �0, that we call �, is
unknown. Thus, the present is a free boundary problem
that can be stated as the following complementarity
problem:
Find u(x, y) ∈ K such that:
⎧⎨
⎩

u(x, y) − ψ(x, y) ≥ 0
−�u(x, y) − f (x, y) ≥ 0

(u(x, y) − ψ(x, y))[−�u(x, y) − f (x, y)] = 0
(25)

where K ≡ {v(x, y) ∈ �|v(x, y) = g(x, y) on ∂�} and �

is the set of admissible functions defined in �.
We study two examples with �=[0, 1]×[0, 1], f (x,

y)=0 in � and

g(x, y) =
{

1 − (2x − 1)2, if y = 0, 1
0 otherwise

The obstacles for the first problem are given by

ψ1(x, y) =
{

1 if
∣∣x − 1

2

∣∣ ≤ 1
4 ,

∣∣y − 1
2

∣∣ ≤ 1
4 ,

0 otherwise

and for the second one:

ψ2(x, y) =
⎧⎨
⎩

400
(
x − 1

4

) (
x − 3

4

) (
y − 1

4

) (
y − 3

4

)
if

∣∣x − 1
2

∣∣ ≤ 1
4 ,

∣∣y − 1
2

∣∣ ≤ 1
4

0, otherwise

H

WET

DRY

Water

Water
0 a

Fig. 4 The dike problem

A central finite differences numerical model is em-
ployed. The mesh is regular and several cases are stud-
ied changing the discretization.

Tables 7 and 8 describe the iterations required to
solve the membrane problem for different meshes. The
dimension of the problem, n, is equal to the number
of internal nodes, since the nodal displacements on the
boundary are prescribed.

Figures 2 and 3 show the vertical displacements of
the membrane for a mesh with 52x52 nodes, for the
obstacles ψ1 and ψ2 respectively.

7.3 The dike problem with vertical walls

We consider now the classical problem of seep-
age through a porous dam studied by several au-
thors, (Baiocchi and Capelo 1984; Kinderlehrer and
Stampacchia 1980; Crank 1984; Leontiev and Huacasi
2001).

Let be a dam of rectangular cross section made
of porous material with permeable vertical walls and
impermeable horizontal base, separating two reservoirs
of levels H and h, represented by Fig. 4. Assuming that
the dam is long, the problem can be represented in a
bi-dimensional domain, defined in the rectangle � =
[0, a] × [0, H], which corresponds to the cross section
of the dam. The wet area is

�w = {(x, y) ∈ � ; 0 ≤ y ≤ φ(x)},
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Table 9 Iterations for the
dike problem

Alg NCP-FDA FB

β 1.1 2 -

n Iter Iter LS Iter Iter LS Iter Iter LS

10000 27 15 27 24 104 791
40000 27 21 27 28 188 2939
90000 27 22 27 30 331 6064
160000 28 26 27 33 492 9822
250000 28 22 27 78� * *
360000 28 29 27 101� * *
490000 28 30 27 155� * *

where y = φ(x) satisfies φ(0) = H and φ(a) ≥ h. This is
a free boundary problem that consists on determining
the wet domain �w and the flow velocity potential,
ϕ(x, y) in �w.

We solve this problem employing a formulation pro-
posed in Baiocchi and Capelo (1984). This formulation,
as well as a complete description of the physical model,
are described in Crank (1984).

Let us consider the transformed of Baiocchi, defined
as follows:

ψ(x, y) =
∫ φ(x)

y
[ϕ(x, t) − t]dt , (x, y) ∈ �w. (26)

The mentioned formulation for the Dike Problem
solves a Complementarity Problem in � (Table 9):

Find ψ(x, y) such that:

⎧⎨
⎩

ψ(x, y) ≥ 0
1 − �ψ(x, y) ≥ 0

ψ(x, y)[1 − �ψ(x, y)] = 0
(27)

in �, with ψ(x, y) = g(x, y) on ∂�, where

g(x, y)=
⎧⎨
⎩

1
2 (H−y)2+ x

2a [(h−y)2−(H − y)2] for 0≤ y≤h

1
2 (H−y)2− x

2a (H−y)2 for h≤ y≤ H

The wet domain is given by the set of points (x, y)

such that ψ(x, y) > 0. It follows from (26) that

ϕ(x, y) = y − ∂ψ(x, y)

∂y
in �w.

To solve the problem with NCP-FDA, we define a
regular mesh and compute derivatives by central finite
differences. We take H = 6.3014, h = 1.2359 and a =
6.1592. The wet domain is represented in Fig. 5.

The present algorithm solves all the tests with a
similar number of main and line search iterations, even
for very large size problems. Minimization of Fischer-

Burmeister NCP function with Newton’s method fails
for large values of n.

8 Conclusions

In this paper a new feasible points algorithm for NCP
is presented. Global convergence is proved and two
theoretical results about the asymptotic convergence
are obtained. Taking β ∈ (1, 2), a strong prove of super-
linear convergence is presented. When β = 2, a weaker
proof of quadratic convergence is also obtained.

The performance of the present algorithm in the nu-
merical examples is very good, even in the cases when
the solution is degenerate. The number of iterations
remains almost unchanged when n is increased.

The present technique is simple and also robust,
since there are not significant parameters to be adjusted
and all the test problems were solved with the same set
of parameters.

We also remark that conditioning of the linear sys-
tem (7) is improved by the fact that all the iterates are
strictly feasible.

Even if Maratos effect is rarely observed, including
a line search along an arc should improve the efficiency
and robustness of the present method in a similar way
as in Herskovits et al. (2005) and Herskovits and Santos
(1998).

Our results can also be extended to other problems,
like mixed complementarity or optimization problems
with complementarity constraints.

Acknowledgements Research partially supported by the
Brazilian Research Councils: CAPES, CNPq and FAPERJ.

References

Arora JS (2004) Introduction to optimum design, 2nd edn.
Academic, London

Baiocchi C, Capelo A (1984) Variational and quasivariational in-
equalities. Applications to free-boundary problems. Wiley,
Chichester



446 J. Herskovits, S.R. Mazorche

Bazaraa MS, Shetty CM (1979) Theory and algorithms. Nonlin-
ear programming. Wiley, New York

Chen C, Mangasarian OL (1996) A class of smoothing functions
for nonlinear and mixed complementarity problems. Com-
put Optim Appl 5:97–138

Chen X, Ye Y (2000) On smoothing methods for the P_0 matrix
linear complementarity problem. SIAM J Optim 11:341–363

Christensen PW, Klarbring A , Pang JS, Stroömberg N (1998)
Formulation and comparison of algorithms for frictional
contact problems. Int J Num Meth Eng 42:145–173

Crank J (1984) Free and moving boundary problems. Oxford
University Press, New York

Dennis JE, Schnabel RB (1996) Numerical methods for un-
constrained optimization and nonlinear equations. SIAM,
Philadelphia

Fathi Y (1979) Computational complexity of LCPs associated
with positive definite symmetric matrices. Math Program
17:335–344

Ferris MC, Kanzow C (2002) Complementarity and related prob-
lems: a survey. Handbook of applied optimization. Oxford
University Press, New York, pp 514–530

Ferris MC, Pang JS (1997) Engineering and economic applica-
tions of complementarity problems. SIAM Rev 39:669–713

Fischer A (1992) A special newton-type optimization method.
Optim 24:269–284

Geiger C, Kanzow C (1996) On the resolution of monotone com-
plementarity problems. Comput Optim Appl 5:155–173

Harker PT (1998) Accelerating the convergence of the diagonal
and projection algorithms for finite-dimensional variational
inequalities. Math Program 41: 29–59

Herskovits J (1982) Développement d’une méthode númerique
pour l’Optimisation non linéaire. Dr. Ing. Thesis, Paris IX
University, INRIA-Rocquencourt (in English)

Herskovits J (1986) A two-stage feasible directions algorithm for
nonlinear constrained optimization. Math Program 36:19–38

Herskovits J (1995) A view on nonlinear optimizaton. In:
Herskovits J (ed) Advances in structural optimization.
Kluwer Academic, Dordrecht, pp 71–117

Herskovits J (1998) A feasible directions interior point technique
for nonlinear optimization. J Optim Theory Appl 99(1):
121–146

Herskovits J, Santos G (1998) Feasible arc interior point algo-
rithm for nonlinear optimization. In: Fourth world congress
on computational mechanics, (in CD-ROM), Buenos Aires,
June–July 1998

Herskovits J, Leontiev A, Dias G, Santos G (2000) Contact shape
optimization: a bilevel programming approach. Struct Multi-
disc Optim 20:214–221

Herskovits J, Mappa P, Goulart E, Mota Soares CM (2005) Math-
ematical programming models and algorithms for engineer-
ing design optimization. Comput Methods Appl Mech Eng
194(30–33):3244–3268

Hock W, Schittkowski K (1981) Test example for nonlinear pro-
gramming codes. Springer, Berlin Heidelberg New York

Jiang H, Qi L (1997) A new nonsmooth equations approach to
nonlinear complementarity problems. SIAM J Control Op-
tim 35(1):178–193

Kanzow C (1994) Some equation-based methods for the non-
linear complementarity problem. Optim Methods Softw 3:
327–340

Kanzow C (1996) Nonlinear complementarity as unconstrained
optimization. J Optim Theory Appl 88:139–155

Kinderlehrer D, Stampacchia G (1984) An introduction to varia-
tional. Oxford University Press, New York

Leontiev A, Huacasi W (2001) Mathematical programming ap-
proach for unconfined seepage flow problem. Eng Anal
Bound Elem 25:49–56

Leontiev A, Huacasi W, Herskovits J (2002) An optimization
technique for the solution of the signorini problem using
the boundary element method. Struct Multidisc Optim 24:
72–77

Mangasarian OL (1973) Equivalence of the complementarity
problem to a system of nonlinear equations. SIAM J Appl
Math 31:89–92

Mangasarian OL, Solodov MV (1993) Nonlinear complementar-
ity as unconstrainede and constrained minimization. Math
Program (Serie B) 62:277–297

Murphy FH, Sherali HD, Soyster AL (1982) A mathematical
programming approach for determining oligopolistic market
equilibrium. Math Program 24:92–106

Murty KG (1988) Limear complementarity, linear and nonlinear
programming. Sigma series in applied mathematics, vol 3.
Heldermann, Berlin

Petersson J (1995) Behaviourally constrained contact force opti-
mization. Struct Multidisc Optim 9:189–193

Qi L, Sun D (1998) Nonsmooth equations and smoothing newton
methods. Technical Report, School of Mathematics, Univer-
sity of New South Wales, Sydney

Subramanian PK (1993) Gauss-Newton methods for the comple-
mentarity problem. J Optim Theory Appl 77:467–482

Tanoh G, Renard Y, Noll D (2004) Computational experience
with an interior point algorithm for large scale contact prob-
lems. Optimization Online

Tin-Loi F (1999a) On the numerical solution of a class of unilat-
eral contact structural optimization problems. Struct Multi-
disc Optim 17:155–161

Tin-Loi F (1999b) A smoothing scheme for a minimum weight
problem in structural plasticity. Struct Multidisc Optim
17:279–285

Tseng P (1997) An infeasible path-following method for mono-
tone complementarity problems. SIAM J Optim 7:386–
402

Vanderplaats G (1999) Numerical optimization techniques for
engineering design, 3rd edn. VR&D, Colorado Springs

Wright SJ (1997) Primal-dual interior-point methods. SIAM,
Philadelphia

Yamashita N, Fukushima M (1995) On stationary points of the
implicit lagrangian for nonlinear complementarity problems.
J Optim Theory Appl 84:653–663

Yamashita N, Dan H, Fukushima M (2004) On the identifica-
tion of degenerate indices in the nonlinear complementarity
problem with the proximal point algorithm. Math Program-
ming 99:377–397

Xu S (2000) The global linear convergence of an infeasi-
ble non-interior path-following algorithm for complemenar-
ity problems with uniform P-functions. Math Program 87:
501–517

Zouain N, Herskovits J, Borges LA, Feijóo RA (1993) An iter-
ative algorithm for limit analysis with nonlinear yield func-
tions. Int J Solids Struct 30(10):1397–1417


	A feasible directions algorithm for nonlinear complementarity problems and applications in mechanics
	Abstract
	Introduction
	Preliminary concepts
	Basic ideas of the present approach
	FDA_NCP: feasible directions algorithm for NCP
	Study of global convergence
	Study of asymptotic convergence
	Numerical study
	A collection of test problems
	Two dimensions membrane in contact
	The dike problem with vertical walls

	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


