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Abstract A new method called the growing ground
structure method is proposed for truss topology op-
timization, which effectively expands or reduces the
ground structure by iteratively adding or removing bars
and nodes. The method uses five growth strategies,
which are based on mechanical properties, to determine
the bars and nodes to be added or removed. Hence,
the method can optimize the initial ground structures
such that the modified, or grown, ground structures can
generate the optimal solution for the given set of nodes.
The structural data of trusses are manipulated using
C++ standard template library and the Boost Graph
Library, which help alleviate the programming efforts
for implementing the method. Three kinds of topology
optimization problems are considered. The first prob-
lem is a compliance minimization problem with cross-
sectional areas as variables. The second problem is a
minimum compliance problem with the nodal coordi-
nates also as variables. The third problem is a minimum
volume problem with stress constraints under multiple
load cases. Six numerical examples corresponding to
these three problems are solved to demonstrate the
performance of the proposed method.
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1 Introduction

The ground structure method proposed by Dorn et al.
(1964), hereafter abbreviated as GSM, is widely used
in topology optimization of trusses. Although GSM
can easily find an optimal solution, the quality of the
solution depends on the locations of the nodes and
the connectivity of bars of the initial ground structure.
Therefore, the initial ground structure should be dense
enough to obtain optimum topology for the given set
of nodes because GSM assumes only the removal of
bars. However, it is laborious to prepare the densest
truss with a bar for every pair of nodes. Hence, another
optimization method that does not need the construc-
tion of the densest truss is necessary. It should be noted
that, throughout this paper, the term ground structure is
used to indicate the structure to which GSM is applied
regardless of its density. Hence, a sparse truss without
bars for several pairs of nodes is also called ground
structure.

It is well known for the problem with stress con-
straints that the stress constraints suddenly disappear
as the cross-sectional area approaches zero, and, ac-
cordingly, degenerated feasible regions are generated
(Kirsch 1993). Therefore, it is difficult to obtain the
optimum solution in the degenerated region by GSM
because the stress constraints of some nonexisting bars
of the optimal truss may be violated in the region. We
call this kind of solution the singular optimum solution
for brevity. For an optimization problem that has a
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singular optimum solution, it is not necessarily true that
an initial ground structure with more bars can lead to a
better optimal solution. Therefore, GSM has a short-
coming that the solution strongly depends on the initial
ground structure. Hence, another method to optimize
the topology of the ground structure is needed.

In this paper, a new method called growing ground
structure method, hereafter abbreviated as GGSM, is
proposed, which considers addition and removal of bars
and nodes based on five growth strategies to optimize
the ground structure. In the method, the initial ground
structure need not be dense because the structure is
optimized such that a better solution can be obtained
by effectively modifying the ground structure based on
the optimization results obtained after applying GSM.

Three kinds of optimization problems under static
loads are considered. The details of problem formu-
lation are presented in Section 2. Problem 1 (P1) is
to minimize the compliance under constraint on the
total structural volume with the cross-sectional areas as
design variables. The problem can be reduced to the
equivalent linear programming (LP) problem with only
the nodal displacements as design variables (Achtziger
et al. 1992; Bendsøe and Sigmund 2003). The singular
optimum solution does not exist for this problem, and
the global optimal truss with respect to the connectivity
of bars for a given set of nodes can be obtained by
assuming an initial ground structure as the trusses with
every pair of nodes connected by a bar. However, the
number of bars increases exponentially with respect to
the number of nodes. Hence, GSM may not be efficient
for problems with large sizes considering the cost for
constructing the densest trusses without the overlap-
ping bars. Therefore, we apply the GGSM for this
problem to effectively optimize the ground structure.

Problem 2 (P2) is to minimize the compliance under
constraint on the total structural volume with the cross-
sectional areas and the nodal coordinates as design
variables. The problem can be reduced to a simple
nonlinear programming (NLP) problem through the
equivalent reformulation (Achtziger 2007). For this
problem, the phenomena called coalescent nodes, or
melting nodes, and/or collinear bars may happen
(Ohsaki 1998), which are discussed in Section 3. Note
that existence of melting nodes and collinear bars leads
to convergence to a local optimal solution with respect
to the nodal coordinates and the predefined number of
nodes of an initial ground structure. The occurrence
of the phenomena mentioned above may depend on
the connectivity of initial ground structure. However,
it is difficult to predict the emergence of the phe-
nomena. Therefore, we apply GGSM, which can adap-
tively change the connectivity of the nodes and bars.

Moreover, addition of nodes is also considered to in-
crease the degrees of freedom that may be reduced due
to emergence of the melting nodes.

Problem 3 (P3) is to minimize the total structural
volume under stress constraints with the cross-sectional
areas as design variables. The truss is subjected to mul-
tiple load cases. It is well-known that the optimum solu-
tion may be singular for this problem. There are some
approaches for obtaining singular optimum solutions.
The ε-relaxation approach proposed by Cheng and
Guo (1997) is widely used and discussed intensively.
The approach aims at obtaining a singular optimum so-
lution by relaxing the stress constraints by small amount
ε, thereby avoiding the degeneracy of the feasible re-
gion. However, the parameter ε should be assigned
through trial-and-error. There exists an extension of the
approach based on the continuation method (Cheng
and Guo 1997). In the method, the cost for adjusting
ε may be alleviated; however, there still remains a few
parameters to be adjusted through trial-and-error. For
these methods, the discontinuity of the optimal objec-
tive value with respect to ε has been reported (Stolpe
and Svanberg 2001). Hence, it is inevitable for the
methods to find singular optimum solution by adjusting
ε or the parameters. Singular optimum solution can
also be found by a branch-and-bound method (Ohsaki
and Katoh 2005), which leads to substantial computa-
tional effort for large problems. Therefore, we apply
GGSM for P3 to obtain the singular optimum solution
within the practically acceptable computational cost.

There have been some topology optimization meth-
ods considering the addition of bars and nodes by
heuristics (Rule 1994). Reddy and Cagan (1994) pro-
posed the shape annealing method based on the shape
grammar to generate neighborhood solutions. The
neighborhood solutions are evaluated one by one, then
the best solutions among them are chosen to update the
current best solution. The method considers not only
the reduction but also the expansion of the number of
bars and nodes of truss. Hence, the number of nodes
and bars are also optimized in the optimization. How-
ever, the shape grammar is not related to the mechani-
cal properties of the trusses obtained so far. Therefore,
the method is purely heuristic and requires a large com-
putational effort to evaluate a large number of neigh-
borhood solutions to obtain a high-quality solution.
The growth method has been proposed in Martinez
et al. (2007), Mckeown (1998), Rule (1994). They pro-
posed an interesting multistage topology optimization
method in which topological growth plays a vital role
to expand, or to grow, the trusses. The addition of node
was performed to increase the orthogonality of bars in
the trusses. However, the increase of the orthogonality
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may not have clear relation to the mechanical prop-
erties of the trusses. Moreover, the iterative addition
of bars is not considered and the removal of bars is
preformed by GSM. Hence, the method is applicable
to a few kinds of truss optimization problems. Con-
sidering the difficulties stated above, we introduce the
growth strategies based on the mechanical properties
of the trusses under static loads. The details of the
growth strategies are summarized in Section 3. Then,
we propose the algorithms of GGSM that integrate the
addition/removal strategies and GSM. The details of
the algorithms are summarized in Section 4.

Kirsch (1996) proposed a two-phase method for truss
topology optimization that integrates reduction and ex-
pansion processes. However, it may be laborious to im-
plement the method using a procedural programming
language, e.g., FORTRAN, because the reformulation
of the problem is necessary with the change of the
connectivity or the number of degrees of freedom. We
use the C++ standard template library and Boost Graph
Library to implement the algorithms of GGSM. The
details are summarized in Section 5.

In Section 6, the performance of GGSM is examined
through six numerical examples and, finally, we discuss
the advantages of applying GGSM over the traditional
GSM. Moreover, for P3, the efficiency of GGSM is
evaluated by comparing the optimization results with
those by the continuation method.

2 Problem formulations

Three kinds of truss topology optimization problems
(P1–P3) are formulated in this section. We assume
two-dimensional trusses for simple presentation of the
formulations.

Let m and N denote the total numbers of bars
and nodes, respectively. The numbers of fixed and
free degrees of freedom are denoted by t and n,
respectively; i.e. 2N = t + n. The so-called geometry
vector b̂i ∈ R

2N (i = 1, . . . , m) is defined as

b̂ i,p =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cos θi if p = 2r − 1

− cos θi if p = 2s − 1

sin θi if p = 2r

− sin θi if p = 2s

0 otherwise

(1)

where b̂ i,p is the pth component of vector b̂i. r and s
(r < s) are the indices of the end nodes of bar i and θi

is the angle between the x-coordinate axis and the ith
bar directing from node r to node s. bi ∈ R

n denotes
the reduced geometry vector, which is composed by

removing the components corresponding to the fixed
degrees of freedom from b̂i. The equilibrium matrix
B ∈ R

n×m is defined as B = [b1, . . . , bm]. We denote ax-
ial force vector and external load vector as q ∈ R

m and
f ∈ R

n, respectively. Then, the equilibrium equation
is written as

Bq = f (2)

Let u ∈ R
n denote the nodal displacement vector.

Then, the elongation of bar i is written as bT
i u. The

global stiffness matrix K ∈ R
n×n is defined as

K =
m∑

k=1

Ki (3)

Ki = ai
Ei

li
bibT

i (4)

where ai, Ei and li are the cross-sectional area, Young’s
modulus, and the length of bar i, respectively.

The first problem is to minimize the compliance
under constraint on the total structural volume, consid-
ering the cross-sectional areas of bars a ∈ R

m as design
variables, where the single load case is assumed. The
problem is formulated as

(P1′) min
a,u

fTu

s.t. K(a)u = f
m∑

i=1

aili ≤ V

ai ≥ 0, (i = 1, . . . , m) (5)

where V is the upper bound on the total structural
volume.

(P1′) can be reduced to the following LP problem
(P1) with only the nodal displacements as design vari-
ables (Achtziger et al. 1992):

(P1) max
u

fTu

s.t. − 1 ≤
√

Ei

li
bT

i u ≤ 1, (i = 1, . . . , m) (6)

It is well-known that the dual problem of (P1) is the
classical plastic design with the axial forces as design
variables (Bendsøe and Sigmund 2003).

The second problem is to minimize the compliance
under constraint on the total structural volume with
the cross-sectional areas and the nodal coordinates as
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design variables, where the single-load case is assumed.
The problem is formulated as

(P2′) min
y,a,u

fTu

s.t. K(y, a)u = f
m∑

k=1

aili(y) ≤ V

ai ≥ 0, (i = 1, . . . , m) (7)

where the vector y ∈ R
2N represents the nodal coordi-

nates in two directions.
(P2′) can be reduced to the following simple NLP

problem (P2) (Achtziger 2007):

(P2) min
y,λ,μ

m∑

i=1

(λi + μi)yTCiy

s.t.
m∑

i=1

(μi − λi)
√

EiPCiy + f = 0

λi ≥ 0, μi ≥ 0, (i = 1, . . . , m) (8)

where λ ∈ R
m and μ ∈ R

m are the variables corre-
sponding to the Lagrange multipliers for displacement
formulation of (P2′). See Achtziger (2007) for definition
of P ∈ R

2N×2N and Ci ∈ R
n×2N , which can successfully

incorporate, in the optimization process, the existence
of melting nodes discussed in Section 3.

The third problem is to minimize the total structural
volume under stress constraints considering multiple
load cases. In the following, the number of load cases
is restricted to two for simple presentation of the for-
mulation. The problem is written as

(P3) min
a,q1,q2,u1,u2

m∑

i=1

ai li

s.t. Bq1 = f1

Bq2 = f2

q1,i = ai(Ei/ li)bT
i u1, ( i = 1, . . . , m )

q2,i = ai(Ei/ li)bT
i u2, ( i = 1, . . . , m )

−aiσ
a
i ≤ q1,i ≤ aiσ

a
i , ( i = 1, . . . , m ) (9)

−aiσ
a
i ≤ q2,i ≤ aiσ

a
i , ( i = 1, . . . , m ) (10)

ai ≥ 0, ( i = 1, . . . , m ) (11)

where σ a
i is the allowable stress for bar i, for which the

absolute values of the bounds in tension and compres-
sion are assumed to be the same. f1 ∈ R

n and f2 ∈ R
n

are the two nodal load vectors. q1 ∈ R
m, u1 ∈ R

n and
q2 ∈ R

m, u2 ∈ R
n are the axial force vectors and nodal

displacement vectors for f1 and f2, respectively. Note

that there may exist a singular optimum solution for
this problem. We exclude a single load case because a
singular optimum solution for single load case can be
found by solving an equivalent LP problem, which is
the dual problem of P1 (Stolpe and Svanberg 2004).

ε-relaxation approach formulates P3 by relaxing con-
straints (9), (10) and (11) as (12), (13) and (14), respec-
tively as

− aiσ
a
i − ε ≤ q1,i ≤ aiσ

a
i + ε, ( i = 1, . . . , m ) (12)

− aiσ
a
i − ε ≤ q2,i ≤ aiσ

a
i + ε, ( i = 1, . . . , m ) (13)

ai ≥ ε2, ( i = 1, . . . , m ) (14)

Then, the value for ε is determined through trial-
and-error to obtain a singular optimum solution. We
call the ε-relaxed P3 as (P3ε).

On the other hand, there exists an extension of the
ε-relaxation approach based on the continuation
method (Cheng and Guo 1997), in which the value for ε

is decreased at a specified rate starting from a relatively
large value for the initial ε. If we denote the epsilon,
the solution vector at kth iteration, and the reduction
rate by εk, sk, and γ , the algorithm of the continuation
method is summarized as

Initialization (k = 1, εk ← ε0, and sk ← s0)
While (εk > εmin)

Solve (P3εk
) with sk as the initial solution.

Obtain solution s, and set k = k + 1.
Update sk ← s, εk ← γ × εk−1 (0 < γ < 1) .

End

The continuation method would reduce the cost
for adjusting ε; however, (P3εk

), namely the relaxed
NLP problem, needs to be solved at each iteration. In
Section 6, we apply the method to evaluate the effi-
ciency of the GGSM by simply comparing the number
of times the NLP problems are solved to obtain opti-
mal, or nearly optimal, solution.

It should be noted that, in the continuation method,
the values of ε0, γ , s0 and εmin should be determined
through trial-and-error. However, the values of s0,
namely the initial cross-sectional areas, are not influen-
tial for obtaining better solution if ε0 is large because, in
that case, the constraints (14) at first iteration become
too severe, accordingly the cross-sectional areas would
reach their lower bounds.

εmin can be set very small because we can observe
the performance of the method with a larger value of
εmin by tracing the history. Hence, we would change
the values of ε0 and γ several times and compare the
efficiency with GGSM in Section 6.
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3 Growth strategies for addition and removal
of bars and nodes

In this section, five growth strategies for addition and
removal of bars and nodes are presented based on
mechanical properties of the truss. These strategies are
vital components to expand and/or reduce, or grow, the
ground structures in the algorithms of GGSM proposed
in Section 4.

3.1 Growth strategy 1: addition of a bar

The growth strategy 1, hereafter abbreviated as
GSTRG1, for addition of a single bar is introduced.
GSTRG1 is used in Algorithms 1 and 2 in Section 4.
First, the strategy chooses candidate bars, which do
not exist for a given set of nodes (see Fig. 1). Then,
potential strain is calculated for each candidate bar from
the nodal displacements of the truss. The procedure for
calculating the potential strain is summarized as follows
(see Fig. 2):

(a) Let wi = (ui,x, ui,y)
T and w j = (u j,x, u j,y)

T denote
the displacement vectors of end nodes i and j
of bar k, where ui,x denotes the displacement of
node i in x-direction, and ui,y, u j,x and u j,y are
used similarly. The coordinates of nodes i and j
are denoted by xi = (xi, yi)

T and x j = (x j, y j)
T ,

respectively.
(b) The potential strain η̄k of bar k is calculated fol-

lowing the definition of the engineering strain as

wij = w j − wi, dij = x j − xi

||xi − x j||

η̄k = wT
ij dij

||xi − x j|| (15)

where || • || denotes Euclidean vector norm.

: Existing  bars

: Candidate bars
Fig. 1 Candidate bars

Candidate bar k

x

y

O

w

i

i

w ij

d ij

xi

x j

wj

j

Fig. 2 Potential strain

GSTRG1 decides the bar to be added by comparing
the absolute values of potential strains for candidate
bars, namely the most strained bar should be added.
However, the effect of the addition of a bar should
be compared by assigning the same volume to each
candidate bar. Hence, we multiply the potential strain
by the cross-sectional area 1/ lk corresponding to the
unit volume to the potential bar. Therefore, GSTRG1
can be written as

(GSTRG1) Find k ∈ {candidate bars}
which maximize

1

lk
|η̄k| (16)

It should be noted that GSTRG1 does not directly
evaluate the nodal displacements of the modified truss
with a candidate bar added. Therefore, it does not
require additional structural analysis; i.e., the compu-
tational cost is very small.

To clarify this point, we consider the effect of adding
bar k with unit volume to a given truss. The stiffness
equation for finding the additional nodal displacements
δuk is given as

(K + Kk)δuk = −Kku (17)

Kk = Ek

l2
k

bkbT
k (18)

where u is the nodal displacement vector before adding
bar k. It is seen from (17) that the internal force −Kku
emerges by adding bar k, and it generates δuk. If we
specify Ek = 1, the right term in (17) is equivalent to
the potential strain multiplied by cross-sectional area
ak = 1/ lk. Hence, GSTRG1 only evaluates the internal
force from u without calculating δuk.
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Growth strategies 2, 3, and 4, hereafter abbreviated
as GSTRG2, GSTRG3, and GSTRG4, respectively, are
introduced in the following. These strategies directly
evaluate the effect of adding bar k by calculating
u + δuk.

3.2 Growth strategies 2 and 3: addition of a bar

GSTRG2 and GSTRG3 for addition of a single bar are
introduced. GSTRG2 is used in Algorithms 1 and 2
and GSTRG3 is used in Algorithm 3 in Section 4.
Both GSTRG2 and GSTRG3 choose candidate bars in
the same manner as in GSTRG1. These strategies use
criteria based on the displacement after the addition of
a candidate bar to a given truss to compare their effec-
tiveness. Hence, the structural analysis should be per-
formed many times to calculate the displacements for
the candidate trusses corresponding to candidate bars.
However, we can apply the so-called exact reanalysis
well-developed in, e.g., Kirsch (2002), Ohsaki (2001)
because we assume addition of a single candidate bar.
Hence, the computational effort is reduced if we use the
methods. The criteria used to compare the effectiveness
of adding a bar for two strategies are introduced in the
following.

For GSTRG2 and GSTRG3, u + δu j is calculated
after adding a candidate bar j. Then, the elongation
dk, j, the strain ηk, j , and the stress σk, j are calculated for
each bar k, (k = 1, .., m + 1) of the modified truss as

dk, j = bT
k (u + δu j), ηk, j = dk, j

lk
, σk, j = Ekηk, j (19)

GSTRG2 is used in Algorithms 1 and 2 in Section 4
for solving P1 and P2 formulated in Section 2, namely,
the standard compliance minimization problem, for
which the optimal solution is fully strained. Hence, it is
appropriate to evaluate the effect of adding candidate
bar j with the specified volume based on the deviation
τ j of the strains for all the bars of the truss as:

τ j = 1

m + 1

m+1∑

k=1

(|ηk, j| − ν j)
2, ν j = 1

m + 1

m+1∑

k=1

|ηk, j| (20)

Because a larger value of τ j gives more disturbance
to the truss, it increases the possibility of obtaining a
better optimal solution as a result of searching different
design space. Hence, GSTRG2 can be written as:

(GSTRG2) Find j ∈ {candidate bars}
which maximize τ j

s.t. a jl j = const. (21)

GSTRG3 is used in Algorithm 3 in Section 4 for
solving P3 formulated in Section 2, that is, the volume

minimization problem under stress constraints, for
which the optimal solution may be fully stressed in
almost all bars. Hence, we can directly evaluate the
effectiveness of adding bar j with the specified volume
based on the deviation H j of the stress constraints
defined as:

H j = 1

m + 1

m+1∑

k=1

( |σk, j|
σ a

k

− 1
)2

(22)

Based on the similar observation as GSTRG2, the
candidate bar with the maximum H j is to be added.
Therefore, GSTRG3 is summarized as:

(GSTRG3) Find j ∈ {candidate bars}
which maximize H j

s.t. a jl j = const. (23)

3.3 Growth strategy 4: removal of a bar

GSTRG4, for removing a single bar from a given truss,
is introduced. GSTRG4 is used in Algorithm 3 in
Section 4, which is used to solve P3 formulated in
Section 2. It is known that there sometimes exists a
singular optimum solution for P3. Hence, the addition
of bars is not enough to obtain optimal ground structure
that can generate the singular optimum solution. There-
fore, we extend the concept of GSTRG3 to formulate
GSTRG4 to remove ineffective bars. To evaluate the
effectiveness of removing bar j, Mj is introduced as

Mj = 1

m

m∑

k=1

( |σk, j|
σ a

k

− 1
)2

(24)

where σk,l is calculated by removing existing bar j from
a given truss in the similar manner as (19). However, it
should be noted that bar j is not removed completely.
Instead, the cross-sectional area of bar j is reduced to a
very small value ζa to prevent the truss to be unstable.
The bar that minimizes Mj is to be removed. Hence,
GSTRG4 is summarized as:

(GSTRG4) Find j ∈ {existing bars}
which minimize Mj

s.t. a j = ζa. (25)

It is well-known that P2 in Section 2, which simul-
taneously optimizes the cross-sectional areas and nodal
coordinates, sometimes has melting nodes, where a few
nodes connected with each other share the same coor-
dinate, and/or collinear bars, where two or more bars
are aligned in one line and can be substituted by a
single bar.
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When the melting nodes exist, these nodes cannot
move separately because these nodes are not distin-
guishable if the nodes connected to each of them by
bars are the same during the optimization. Accordingly,
the nominal degrees of freedom decrease. Similarly, if
the collinear bars emerge, a few bars have the same
cross-sectional area and the nodes connecting these
bars are functionless, namely, the nominal degrees of
freedom are reduced. Hence, it is highly likely that the
solution with melting nodes and/or collinear bars is a
local optimal solution with respect to the locations of
the nodes of truss because the solution can be replaced
by a truss with fewer degrees of freedom generated by
replacing melting nodes with a node and collinear bars
with a bar.

The fundamental difficulty in topology optimization
with melting nodes and/or collinear bars is the reduc-
tion of predefined degrees of freedom. The possibility
of emergence of melting nodes and/or collinear bars
depends on the connectivity of the initial ground struc-
ture, and it is very difficult to prevent these phenomena
(Ohsaki 1998). Therefore, we introduce GGSM, which
can iteratively change the connectivity of a truss to
alleviate these difficulties. Moreover, the strategy to
add a node is introduced to complement the reduction
of degrees of freedom.

3.4 Growth strategy 5: addition of a node and bars

Growth strategy 5, GSTRG5 in short, is presented for
adding a node and n f bars connected to the node.
GSTRG5 is used only in Algorithm 2 in Section 4. Let
xk = (xk, yk)

T denote the coordinate vector of the new
node k. The displacement vectors of nodes of a truss are
denoted as w′

i = (ui,x, ui,y)
T , (i ∈ {existing nodes}). Let

F denote a subset of the nodes with the size n f , which
are candidates to be connected to the node k by bars.
The relative displacement vectors w j ( j ∈ F) are cal-
culated by subtracting the average nodal displacement
vector wc over F as

w j = w′
j − wc, wc = 1

n f

∑

j∈F
w′

j (26)

Let the coordinate vectors of node j in F be denoted
by x j = (x j, y j)

T . The length lk, j and the unit directional
vectors ek, j of the candidate bars, where the subscript
indicates the candidate bar that connects the node j to
node k, are calculated as

lk, j =
√

(xk − x j)2 + (yk − y j)2 for j ∈ F (27)

ek, j = 1

lk, j
(xk − x j, yk − y j)

T for j ∈ F (28)

If we specify unit volume for each candidate bar
as ak, j = 1/ lk, j ( j ∈ F), and assume constant Young’s
modulus as Ek, j = E ( j ∈ F), where ak, j and Ek, j are
the cross-sectional area and Young’s modulus for can-
didate bar connecting nodes k and j, the equilibrium
equation at node k is written as

∑

j∈F

E(eT
k, jw j)ek, j

l2
k, j

= 0 (29)

It should be noted that the displacement of the candi-
date node k is assumed to be wc to formulate (29).

In a similar manner as Strategy 1, the sum of the
absolute values of the potential strains multiplied by the
cross-sectional area ak, j = 1/ lk, j ( j ∈ F), and divided by
the number of candidate bars, to evaluate the efficiency
for adding a node and n f bars is calculated as

DF =
∑

j∈F

|eT
k, jwk, j|
l2
k, jn f

(30)

GSTRG5 is summarized as

(GSTRG5) Find n f , xk, F ⊂ {existing nodes}
which maximize DF

s.t.
∑

j∈F

E(eT
k, juk, j)ek, j

l2
k, j

= 0 (31)

4 Growing ground structure method (GGSM)

In this section, we introduce three algorithms of GGSM
that extend the GSM to include addition of bars
and nodes based on the five strategies introduced in
Section 3. Algorithms 1, 2, and 3 are used to solve P1,
P2, and P3 formulated in Section 2, respectively. PropV
and PropE used in the statement of the algorithms
represent the properties of the nodes and bars of the
truss, whose details are presented in Section 5. We use
the terms vertex and edge, instead of node and bar, and
degree in the algorithms, which are the terminologies in
the graph theory (West 2001). Algorithms 1 and 2 are
simultaneously summarized as follows:

4.1 Algorithms 1 and 2

I. Construct property graph G = (V ∪ PropV, E ∪
PropE) of the initial sparse ground structure.

II. Prepare data for optimization from G and per-
form optimization by GSM. The optimal cross-
sectional areas, nodal displacements, and nodal
coordinates are stored in PropV and PropE of G.
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III. Make a copy RG of G. Remove the edges with
zero cross-sectional area from RG by examining
PropE. Then, remove vertices with zero degree.

IV. Extract the candidate bars from RG. Then, find
the bar e to be added to G by applying GSTRG1
or GSTRG2 for RG. G ← G(V, E ∪ e), and go to
II. If there is no candidate bar, go to V.

V. Carry out structural analysis for G, assuming that
each bar has the unit volume, and store the nodal
displacements in PropV. Extract the candidate
bars from G and find the bar e to be added
to G by applying GSTRG1 or GSTRG2 for G.
G ← G(V, E ∪ e), and go to II. Terminate if there
is no candidate bar for Algorithm 1. Go to II
for Algorithm 2 if the number of nodes does not
reach the predefined maximum value. Otherwise,
terminate.

VI. Carry out structural analysis for G, assuming
that each bar has the unit volume, and store the
nodal displacement in PropV. Apply GSTRG5
for G to find the location of the new node v

and the n f bars e1, .., en f to be added to G.
G ← G(V ∪ v, E ∪ (e1, .., en f )), and go to II.

Algorithm 3 is summarized below.

4.2 Algorithm 3

I. Construct property graph G = (V ∪ PropV, E ∪
PropE) of the initial sparse ground structure. The
connectivity of G is stored in the tabu list as T ←
E(G).

II. Carry out optimization by GSM for G and find the
optimal objective value Obj1. The results of opti-
mization are stored in PropV and PropE. Make a
copy RG of G and remove the edges and vertices
from RG in a manner similar to Algorithms 1
and 2.

III. Extract the candidate bars from RG and find
the bar e to be added to G with E(RG) ∪ e /∈ T
by applying GSTRG3 for RG. Terminate if all
the connectivities are in T . Construct G2 ←
RG(V, E ∪ e).

IV. Carry out optimization by GSM for G2 and find
the optimal objective value Obj2. The results of
optimization are stored in PropV and PropE of
G2. The connectivities of RG and G2 are stored
in the tabu list as T ← E(RG), E(G2)

V. If Obj1 > Obj2, G ← G2, and go to II. If Obj1 =
Obj2, G2 ← G, and go to VI. If Obj1 < Obj2, go
to VI.

VI. Find the bar e with E(G2)\e /∈ T to be removed
from the existing edges of G2 applying GSTRG4

for G2. Store the connectivity of G2(V, E\e) in
the tabu list as T ← E(G2)\e. Terminate if all
the connectivities defined by E(G2)\e are in T ;
otherwise, G ← G2(V, E\e), and go to II.

5 Implementation using C++ template libraries

C++ Standard Template Library and Boost Graph
Library (BGL) are used to implement the proposed
algorithms (Boost 2007; Meyers 2002; Siek et al. 2002).
They provide a wide variety of data structures. Hence,
the reformulation used intensively in the algorithms can
easily be implemented. In this section, the major parts
of program using BGL are introduced.

5.1 Construction of property graph

BGL realizes the property graph, in which the ver-
tices and edges of a directed graph can have multiple
properties.

We set up six properties for vertex and three prop-
erties for edges. The tags of properties and the type
of data are declared in the definition of the graph type
graph-t as below. The meaning of each property can be
understood by its name. The sixth property for vertex
is the identifier, which distinguishes free nodes, fixed
nodes, and loaded nodes. The graph G is defined as the
object of graph-t.

typedef adjacency_list<listS,listS,
directedS,
property<vertex_node_no_t,int,
property<vertex_xcoord_t,double,
property<vertex_ycoord_t,double,
property<vertex_xdisp_t,double,
property<vertex_ydisp_t,double,
property<vertex_load_t ,int >>>>>>,

property<edge_ith_t,int,
property<edge_jth_t,int,
property<edge_area_t,double> >>>
graph-t;

graph-t G;

5.2 Definition of property maps and iterators

To associate the properties to graph G, property
map should be defined. PropV and PropE used in
Algorithms 1–3 correspond to the property maps. Only
two property maps are defined as examples below.
Vertex iterators and edge iterators are used to traverse
all the vertices and edges of a graph. With these iter-
ators, we can manage, read, and write the properties.
The iterators are defined and the properties are written
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to file indicated by file-out, the object of the ofstream
class, in the following.

property_map
<graph-t,vertex_node_no_t>::type

G_v1_map=get(vertex_nodeid,G);
property_map <graph-t,edge_ith_t>::type

G_e1_map=get(edge_ith,G);
graph_traits<graph-t>::
vertex_iterator vi,vd;

graph_traits<graph-t>::
edge_iterator ei,ed;

for(tie(vi,vd)=vertices(G);vi!=vd;++vi){
file-out>> G_v1_map[*vi]

>> G_v2_map[*vi]
>> G_v3_map[*vi]
>> G_v4_map[*vi]
>> G_v5_map[*vi]
>> G_v6_map[*vi];}

for(tie(ei,ed)=edges(G);ei!=ed;++ei){
file-out>> G_e1_map[*ei]

>> G_e2_map[*ei]
>> G_e3_map[*ei] ;}

5.3 Removal of edges with zero cross-sectional area

In algorithms in Section 4, the bars with zero cross-
sectional area are removed. We can implement this
process using the edge iterators and remove edge func-
tion defined in BGL as follows:

graph_t RG(G);
EDGE: tie(ei,ed)=edges(RG);
while(ei != ed)
{if(G_e3_map[*ei]<1.0E-10)
{remove_edge(*ei,RG);goto EDGE;} ei++;}

6 Numerical examples

Six numerical examples, Examples 1–6, are solved to
demonstrate the performance of the GGSM. Examples
1 and 2 correspond to P1. Examples 3 and 4 are classi-
fied to P2, and Examples 5 and 6 to P3. We use SNOPT
Ver. 7 (Gill et al. 1997), based on sequential quadratic
programming, for solving LP and NLP problems. For
Examples 5 and 6, design sensitivity coefficients are
calculated analytically (Pedersen 1972).

In the following six examples, the structural parame-
ters are given without units for simple presentation of
the results. For all the examples, the structural dimen-
sions are based on 1.0 × 1.0 unit. For Examples 1–4, we
use Young’s modulus Ei = 1.0 × 104 for all bars, and
the upper bound V on total structural volume is 10.0.

The nodal load is P1 = (0.0, −100.0)T . The number and
locations of nodal loads are different for each example.
For Algorithm 2 applied to Examples 3 and 4, n f in
GSTRG5 are limited to be 3 through 6 because it is not
probable that n f is optimized to be larger numbers. For
Examples 5 and 6, Young’s modulus is Ei = 1.0 × 102

for all bars, and the two allowable stresses σI = ±5.0
and σI I = ±20.0 are used. The specific external nodal
load is P2 = (1.0, −5.0)T . The number and locations
of P2 are specified in each problem setting. For
Examples 5 and 6, the continuation method summa-
rized in Section 3 is also applied. We specified the
values for parameters in the method as: εmin = 1.0−4,
s0,i = 2.0, (i = 1, ...m), where s0,i is ith component of s0.
The objective function values for the six examples are
indicated using the same notation �, and the bar con-
necting nodes i and j is indicated by i– j for simplicity.

6.1 Example 1: 12-bar truss P1

Figure 3 shows six-node truss for which we apply
Algorithm 1, where the densest truss has 12 bars. We set
the locations of nodes at all of the vertices of 2 × 1 grids.
The single-load case is assumed with P1 values applied

1.0

P1P1

Fig. 3 Fully connected ground structure of six-node truss and its
optimal solution for Example 1
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at nodes 3 and 5 simultaneously, as shown in Fig. 3.
Application of GSM for the 12-bar truss generates
statically determinate six-bar truss with the objective
function value � = 12.10 as illustrated in Fig. 3, which
is the global optimal truss. Note that the term global
optimal truss is used for P1 to indicate the optimality
of connectivity of bars for a given number of nodes
located at fixed positions. In other words, the term is
used to indicate the single or multiple trusses with the
minimum objective value among the trusses obtained
by applying GSM for any ground structures that can
be constructed from a set of fixed nodes. It should be
noted that there may exist multiple optimal trusses for
P1, while it is unlikely for P2 or P3.

The optimization results by Algorithm 1 with
GSTRG1 are illustrated in Fig. 4. We use eight-bar and
nine-bar trusses as the initial ground structures. For
eight-bar truss, ground structure grows to a nine-bar
truss by adding single bar, which can generate global
optimal truss as shown in Fig. 4. Therefore, the growing
process finds the optimal ground structure by adding a

8-bar truss

9-bar truss

Φ = 14.40

Φ = 12.10

Φ = 14.40

Φ = 12.10

Fig. 4 Optimization results by Algorithm 1 (GSTRG1) for
Example 1

Error (GSTRG2 does not work.)

8-bar truss

8-bar truss

Φ = 14.40

Φ = 12.10

Φ = 14.40

Fig. 5 Optimization results by Algorithm 1 (GSTRG2) for
Example 1

bar, although there are three more candidate bars to be
added. It should be noted that, for P1, the term optimal
ground structure is used to indicate the ground structure
modified, or grown, by Algorithm 1, which can generate
the global optimal truss by applying GSM. If we start
from a nine-bar truss, the ground structure grows to a
10-bar truss that can obtain the optimal ground struc-
ture as shown in Fig. 4, although there are two more
candidate bars to be added. Hence, Algorithm 1 with
GSTRG1 has been demonstrated to be effective. Other
initial ground structures have also been optimized by
Algorithm 1 to examine its performance. Almost all the
structures follow the shortest paths to be the optimal
ground structures.

We also used GSTRG2 for Algorithm 1 for eight-bar
truss, and GSTRG2 has been proven to be effective,
as shown in Fig. 5. However, GSTRG2 sometimes fails
if the truss optimized by GSM is judged as unstable,
as shown in Fig. 5, because GSTRG2 needs structural
analysis. Hence, to ensure the stability of the optimiza-
tion by GGSM, we use GSTRG1 in Examples 2, 3, and
4 for the addition of a bar.

6.2 Example 2: 47-bar truss P1

Figure 6 shows 12-node truss for which we apply
Algorithm 1, where the densest truss has 47 bars with-
out the overlapping bars. The term overlapping bars
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is used to indicate the bars that can be substituted by
combining other bars. We excluded overlapping bars
from the ground structure because they are not prefer-
able from the construction point of view. We set the
locations of nodes at all vertices of a 3 × 2 grid. The
single-load case is assumed with P1 values applied at
nodes 4, 7, and 10 simultaneously, as shown in Fig. 6.
Application of GSM for the 47-bar truss generates a
statically determinate 10-bar truss, which is a global
optimal truss with the objective function value � =
36.10, as illustrated in Fig. 6.

The optimization results by Algorithm 1 with
GSTRG1 are illustrated in Fig. 7 starting from the 21-
bar truss as the initial ground structure. The ground
structure grows to a 24-bar truss, or optimal ground
structure, after sequentially adding three bars, 8–10,
1–8, and 3–8, which can generate an eight-bar truss with
the objective function value � = 36.10, that is also the
global optimal truss. Then, after addition of bars 3–4,
3–10, 1–5, and 3–5 one by one, the GGSM can find
a different optimal ground structure that can gener-
ate global optimal trusses with the objective function
value � = 36.10. After adding seven bars in total, the
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1.0 1.0 1.0

P1P1P1

Fig. 6 Fully connected ground structure of 12-node truss and its
optimal solution for Example 2
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Fig. 7 Optimization results by Algorithm 1 (GSTRG1) for
Example 2

ground structure grows to a denser optimal truss that
can generate the 10-bar truss that is exactly the same for
the result obtained from the 47-bar ground structure.
It should be noted that the Algorithm 1 has found six
different optimal ground structures.

6.3 Example 3: 24-bar truss P2

Figure 8 shows an eight-node truss for which we apply
Algorithm 2, where the densest truss has 24 bars with
several overlapping bars. We include the overlapping
bars, which can change their location due to change
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7.7654
1.8453 1.0000
2.7461 0.4949

4
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Fig. 8 Fully connected ground structure of eight-node truss and
its optimal solution for Example 3

of the position of the nodes with variable coordinates
in optimization, e.g., bars 2–6, 4–8, and 6–8 shown in
Fig. 8. However, the overlapping bars whose end nodes
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Fig. 9 Optimization result by Algorithm 1 (GSTRG1) for
Example 3

Add three bars connecting new node 7 and  2, 4, 8(7) .

Coordinate of new node is [0.364,0.179].

1

2
3

4

5

68

7

1

2

3
5

6

7

12(11)

11(10)

8
9

10

       5-7
       6-7

       7-9(8)

       5-8
       3-8

       6-8

       3-7
Add bars 1-7

Add four bars connecting new node 8 and  1, 2, 4, 9(8) .
Coordinate of new node is [0.834,0.428].

       8-10(9)
Add bars 7-8

       9-11(10)
       5-9
       4-9

       6-9
       3-9

Add three bars connecting new node 9 and  1, 7, 10(9) .

Coordinate of new node is [0.834,0.428].

       2-9
Add bars 8-9

2 0.9492 0.6570
1.0738 0.9094
2.0864 1.0000

4
6

1.7525 0.4742
0.7736 0.4576

7
8

1.3665 0.1998
0.9854 0.5785

9
10

xNode y

1

2

3

4

5

6

7

9(8)

8(7)

1

2

3

4

5

6

7

10(9)

9(8)

8

1

2

3

4

5

6

7

11(10)

10(9)

8

9

       10-12(11)
       6-10
       5-10
       4-10       7-10

       3-10

Add three bars connecting new node 9 and  1, 9, 11(10) .

Add another node

Coordinate of new node is [0.521,1.288].

       2-10
Add bars 8-10

4

Φ = 63.12

Φ = 62.78

Φ = 60.67

Φ = 60.64

Fig. 10 Optimization result by Algorithm 2 (GSTRG1) for
Example 3
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cannot move are excluded. We set the initial locations
of nodes at all of the vertices of 3 × 1 grid. The single-
load case is assumed with P1 values applied at nodes
1, 3 and 5 simultaneously, as indicated in Fig. 8. Ap-
plication of the simultaneous topology and geometry
optimization for the 24-bar truss generates the statically
determinate 12-bar truss, which may not be global op-
timal truss with the objective function value � = 64.75
as illustrated in Fig. 8, where the nodal coordinates of
free nodes are also shown. For P2, the optimality is
discussed with respect to the locations of nodes and the
connectivity of the bar of a truss with specific numbers
of free and fixed nodes. It is well-known that the global
optimal truss with respect to the nodal coordinates is
difficult to be found for P2. Hence, we do not use the
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Fig. 11 Fully connected ground structure of 12-node truss and its
optimal solution for Example 4
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Fig. 12 Optimization results by Algorithm 1 (GSTRG1) for
Example 4

term global optimal for Examples 3 and 4. Application
of Algorithm 1 for this eight-node truss with the initial
12-bar sparse ground structure generates the statically
determinate 12-bar truss with � = 63.12 after adding
12 bars, which is illustrated in Fig. 9, where truss with
� = 62.19 is found after adding the 10th bar. Hence, the
solution obtained from the densest ground structure is
a local optimal solution.

The results of simultaneous topology and geometry
optimization by Algorithm 2 are summarized in Fig. 10
with the 12-bar sparse truss as the initial ground struc-
ture. The total number of nodes is limited to 13, namely
five nodes are added after the number of bars has
reached 24. The objective function value reduces to
� = 60.67 after the addition of two nodes. However,
after that, the � values have not been reduced so
greatly. Finally, the objective function value decreases
to � = 60.17, as shown in Fig. 10, after the addition
of five nodes in all. The effect of GSTRG5 is not
so great. Moreover, it is seen from Fig. 10 that the
effectiveness of the addition of nodes decreases as the
number of nodes increases. It should be noted that
the melting nodes have not occurred at any stage in the
optimization, although the number of nodes has been
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Fig. 13 Optimization results by Algorithm 2 (GSTRG1) for
Example 4

increased and the node indicated by 6 in Fig. 10 has
been located at the upper limit of the y-coordinate of
the design domain.

6.4 Example 4: 60-bar truss P2

Figure 11 shows a 12-node truss for which we apply
Algorithms 1 and 2, where the densest truss has 60 bars
with several overlapping bars. The overlapping bars
that cannot change the locations in the optimization
are not included. We set the initial locations of nodes
at all vertices of a 3 × 2 grid. The single load case
is assumed with P1 values applied at nodes 1, 4 and
7, simultaneously as indicated in Fig. 11. Application
of the simultaneous topology and geometry optimiza-
tion for the 60-bar truss generates a statically determi-
nate 16-bar truss, which may be a local optimal truss
with � = 31.87, as illustrated in Fig. 11. The melting
nodes occurred with coincidence of nodes 3 and 6.
Application of Algorithm 1 for this 12-node truss with
the initial 21-bar sparse ground structure generates a

statically determinate 18-bar truss with � = 31.41, as
shown in Fig. 12. The melting nodes did not occur for
this optimization. Hence, the solution obtained using
GSM with the densest truss is not global optimal truss.
The simultaneous topology and geometry optimization
results by Algorithm 2 are summarized in Fig. 13 with
the initial 21-bar sparse ground structure. The total
number of nodes is limited to 15, namely, three nodes
are added after the number of bars has reached 60.
Then, the objective function value is reduced to � =
31.33 after adding a node. After that, two nodes are
added; however, the objective function value has not
improved with the formation of the melting nodes one
by one. The benefit of applying strategy 5 for this
example is less significant than for Example 3. It should
be noted that there has been no node that is located at
the limits of the design domain. There may be the satu-
ration for the number of nodes, or degrees of freedom,
for this problem, as pointed out in Mckeown (1998),
where the addition of nodes at a later stage does not
improve the solution.

6.5 Example 5: eight-bar truss P3

Figure 14a shows a five-node truss for which we apply
Algorithm 3, where the densest truss has eight bars
without overlapping bars. The two load cases are as-
sumed with P2 values applied at nodes 3 and 5 sepa-
rately, as indicated in Fig. 14a.
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b
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c

2P2

1.0

1.0 1.0

P

Φ = 8.315 Φ = 7.100

Fig. 14 Fully connected truss and other sparse trusses and
their optimal solution for Example 5 (connectivities of ground
structure and optimal truss are same for the sparse trusses).
a Algorithm 3 applied for a five-node truss. b GSM applied for
the densest eight-bar truss. c Six-bar truss
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Fig. 15 Optimization results by Algorithm 3 for Example 5.
a–c Statically determinate initial ground structure without bar
2–3. d Starting from the statically determinate truss with bar 2–3

The allowable stress for the bar 2–3 is σI I , and that
for other bars is σI . Application of GSM for the dens-
est eight-bar truss generates a statically indeterminate

Table 1 The optimization results by the continuation method for
Example 5

γ ε0 � Iterations

Case 1 0.7 20.0 8.315 35
Case 2 0.5 20.0 8.315 18
Case 3 0.3 20.0 7.100 11
Case 4 0.3 10.0 8.315 10
Case 5 0.3 5.0 8.315 9

seven-bar truss with � = 8.315, as indicated in Fig. 14b.
The same result is obtained by the ε-relaxation ap-
proach with ε = 1.0−2. However, the singular optimum
solution for this example is a six-bar truss with � =
7.100, as shown in Fig. 14c, which was obtained by enu-
merating all the possible topologies. For P3, the term
optimal ground structure is used to indicate the struc-
ture that can generate a singular optimum solution for
Examples 5 and 6. The topology optimization results
by Algorithm 3 are summarized in Fig. 15. GSTRG4
with ζa = 0.1 are used in Algorithm 3. We obtain the
singular optimum solution and the optimal ground
structure when the initial ground structure is statically
determinate without bar 2–3, as shown in Fig. 15a–c. It
should be noted that the topology of optimal ground
structure and that of the optimized truss, or the singu-
lar optimum solution, are the same at the final stage.
Hence, it can be said that the ground structures are suc-
cessfully optimized without functionless bars. However,
the singular optimum solution cannot be obtained if we
start from the statically determinate truss with the bar
2–3 as shown in Fig. 15d.

a

b d

c

1

2

2 2

3

4

5

6

7

1.0

1.0 1.0 1.0
PP

Φ = 13.505

Φ = 13.400Φ = 13.936

Fig. 16 Fully connected truss and other sparse trusses and
their optimal solution for Example 5 (connectivities of ground
structure and optimal truss are same for the sparse trusses).
a Algorithm 3 applied for a seven-node truss. b Application of
GSM for the densest 16-bar truss. c Application of GSM for the
11-bar truss. d 10-bar truss



392 T. Hagishita, M. Ohsaki

For this example, P3 formulated in Section 3 needs
to be solved four to five times in Algorithm 3 to obtain
the singular optimum solution as shown in Fig. 15a–c.
We applied the continuation method presented in
Section 3 five times with the different values of ε0

and γ to evaluate the efficiency of Algorithm 3. The
optimization results for the five cases are summarized
in Table 1.

It is seen from the table that case 3 gives the sin-
gular optimum solution; however, the relaxed NLP, or
(P3ε), needs to be solved 11 times. In addition, in other
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Fig. 17 Optimization results by Algorithm 3 for Example 6 (a–d)

Table 2 The optimization results by the continuation method for
Example 6

γ ε0 � Iterations

Case 1 0.7 20.0 13.505 35
Case 2 0.5 20.0 13.505 18
Case 3 0.3 20.0 13.505 11
Case 4 0.3 10.0 13.505 10
Case 5 0.3 5.0 13.505 9

cases, they need many iterations, 9 to 35 iterations, to
find a nearly optimal solution with � = 8.315. Hence,
Algorithm 3 is more effective than the continuation
method for this example.

6.6 Example 6: 16-bar truss P3

Figure 16a shows a seven-node truss for which we apply
Algorithm 3, where the densest truss has 16 bars with-
out overlapping bars. The two load cases are assumed
with P2 values applied at nodes 5 and 7 separately, as
shown in Fig. 16a. The allowable stress for bars 2–3 and
4–5 is σI I , and that for other bars is σI . Application of
GSM for the densest 16-bar truss generates a statically
indeterminate 11-bar truss with � = 13.936 as indicated
in Fig. 16b. Further application of GSM for the 11-
bar truss generates a 11-bar truss with � = 13.505 as
illustrated in Fig. 16c. The same result is obtained by
the ε-relaxation approach with ε = 1.0−2. However, the
singular optimum solution for this example is a 10-bar
truss with � = 13.400, as shown in Fig. 16d, which was
obtained by enumerating all the possible topologies.
The topology optimization results by Algorithm 3 are
summarized in Fig. 17a–d. GSTRG4 with ζa = 0.1 is
used in Algorithm 3. As is seen, we cannot obtain
the singular optimum solution starting from the stat-
ically determinate initial ground structure. However,
the nearly optimal solution with � = 13.505 can be
obtained starting from four arbitrarily chosen statically
determinate trusses. Generally, it takes more iterations
to reach the nearly optimal solution if we start from an
irregular truss.

For this example, P3 formulated in Section 3 needs
to be solved three to nine times in Algorithm 3 to
obtain the near optimum solution with � = 13.505
as shown in Fig. 17a–d. We applied the continuation
method presented in Section 3 five times with the dif-
ferent values for ε0 and γ to evaluate the efficiency of
Algorithm 3. The optimization results for the five cases
are summarized in Table 2.

It is seen from the table that all the cases give the
nearly optimal solution with � = 13.505; however, the
relaxed NLP, or (P3ε), needs to be solved several times,
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9 to 35 times, to find the nearly optimal solution. Hence,
Algorithm 3 is more effective to find a nearly optimal
solution than the continuation method for this example.

7 Conclusions

Five strategies have been presented for addition and/or
removal of bars and nodes for truss topology opti-
mization problems under static loads. Based on these
strategies, we proposed three algorithms of GGSM
to optimize the ground structure as an extension of
the GSM that utilizes only removal of the bars. The
expansion and reduction of the ground structure are
realized by the reformulation effectively implemented
by C++ standard template library and BGL.

Numerical examples have been solved by GGSM.
The effectiveness of GGSM is demonstrated for the
topology optimization problems without singular opti-
mum solutions. Next, singular optimum solutions have
been found for a small truss. However, for a larger
problem, GGSM could not find the singular optimum
solution. GGSM should be modified to include other
effective strategies to tackle this problem.

The advantages of applying GGSM are summarized
as follows:

1. The processes of optimizing the ground structure
can easily be seen with successive addition or re-
moval of bars and nodes.

2. Multiple optimal solutions can be found for compli-
ance minimization problem.

3. Optimal topology can be found from a sparse initial
ground structure. This way, we can reduce the cost
for constructing fully connected ground structure to
find the global optimal solution.

4. Better solution can be found by modification of
the connectivity in the ground structure, and the
objective value can further be reduced with the
addition of nodes.

5. Singular optimum solution, or nearly optimal so-
lution, can be found for problems with stress con-
straints under multiple loading conditions.

6. Topology of optimized ground structure is identical
to that of optimal truss at the final stage for prob-
lems with stress constraints under multiple loading
conditions.
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