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Abstract Particle swarm optimization (PSO) algorithms
have been proposed to solve optimization problems in
engineering design, which are usually constrained (possibly
highly constrained) and may require the use of mixed
variables such as continuous, integer, and discrete variables.
In this paper, a new algorithm called the ranking selection-
based PSO (RSPSO) is developed. In RSPSO, the objective
function and constraints are handled separately. For discrete
variables, they are partitioned into ordinary discrete and
categorical ones, and the latter is managed and searched
directly without the concept of velocity in the standard
PSO. In addition, a new ranking selection scheme is
incorporated into PSO to elaborately control the search
behavior of a swarm in different search phases and on
categorical variables. RSPSO is relatively simple and easy
to implement. Experiments on five engineering problems
and a benchmark function with equality constraints were
conducted. The results indicate that RSPSO is an effective
and widely applicable optimizer for optimization problems
in engineering design in comparison with the state-of-the-
art algorithms in the area.
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1 Introduction

Most engineering design optimization problems involve
constraints, and in some occasions, these constraints cannot
be expressed analytically in terms of design variables. In
addition, they often contain integer or discrete variables.
Without loss of generality, an optimization problem in
engineering design can be formulated into a mixed
variable-constrained optimization problem (MVCOP) as
follows:

Minimize f Xð Þ ð1Þ
Subject to:

gi Xð Þ � 0 i ¼ 1; 2; :::;m

hi Xð Þ ¼ 0 i ¼ 1; 2; :::; n
ð2Þ

where f (X) is the objective function, gi(X), hi(X), m, and n
are the inequality constraints, equality constraints, and their
numbers, respectively, and X is the vector consisting of the
design variables.

X ¼
X C

X I

XD

0
B@

1
CA

X C ¼ x1; :::; xnC½ �T � RnC

X I ¼ xnCþ1; :::; xnCþnI½ �T � ZnI

XD ¼ xnCþnIþ1; :::; xnCþnIþnD½ �T
xCli � xi � xCui ; i ¼ 1; 2; :::; nC

xIli � xi � xIui ; i ¼ nC þ 1; :::; nC þ nI

xi 2 Di; i ¼ nC þ nI þ 1; :::; nC þ nI þ nD

ð3Þ

where nC, nI, and nD are the numbers of the continuous,
integer, and discrete variables, respectively. xCli and xCui are
the lower and upper bounds of the continuous variable xi.
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xIli and xIui are the lower and upper bounds of the integer
variable xi. Di is the sequence from which the discrete
variable xi takes on values.

To solve constrained optimization problems (COPs), a
number of approaches have been proposed. Among them,
evolutionary algorithms (EAs) combined with different
constraint-handling techniques have attracted more attention
in recent years because of its superior advantages. In EAs,
objective or constraint functions are not required to be
differentiable, continuous, or even explicit. Moreover, EAs
have better global search ability over traditional mathematical
programming. The most popular constraint-handling techni-
ques utilized in EAs had been reviewed and classified into five
categories by Coello (2002): (1) penalty functions, (2) special
representations and operators, (3) repair algorithms, (4)
separate objective and constraints, and (5) hybrid methods.

During the past decade, a novel algorithm called particle
swarm optimization (PSO) was introduced by Kennedy and
Eberhart (1995), which was inspired by the social behavior
of animals such as birds flocking and fish schooling. Similar
to EAs, PSO is a population-based optimization algorithm
and can solve hard optimization problems, whereas it is
simpler, easier to implement with only a few parameters to
be tuned, and has a quicker convergence rate (Kennedy et al.
2001). Although the original PSO is usually applied to
unconstrained continuous optimization problems, it has also
been proposed to incorporate constraint-handling techniques
or mixed variable-handling methods into PSO for solving
constrained or mixed variable optimization problems. How-
ever, few investigations on this topic have been reported.

As to constraint handling in PSO, several techniques had
been attempted. Parsopoulos and Vrahatis (2002a) used a
nonstationary multistage assignment penalty function meth-
od to transform a constrained problem into an uncon-
strained one. In another undertaking by them (Parsopoulos
and Vrahatis 2005), penalty factors were used to account
for the number of constraints that are violated and the sum
of violated constraints. Sedlaczek and Eberhard (2006)
combined the standard PSO with an extended nonstationary
penalty function approach, called augmented Lagrange
multiplier method, for constraint handling. To avoid the
difficulty of setting penalty factors, He and Wang (2007b)
added a particle swarm to adapt factors automatically.
Methods based on preserving feasibility of solutions were
also employed by Hu and Eberhart (2002), He et al. (2004),
in which each particle keeps tracking only feasible
solutions. Pulido and Coello (2004) proposed a simple
mechanism to handle constraints with PSO, which was
based on the proximity of a particle to the feasible region.
Similar to their work, He and Wang (2007a) applied a
feasibility-based rule to deal with constraints. Lu and Chen
(2006) also introduced a method, which is essentially based
on the feasibility-based rule. Ray and Liew (2001) put

forward a swarm algorithm with a multilevel information-
sharing strategy to handle constraints.

To handle discrete variables in PSO, Venter and
Sobieszczanski-Sobieski (2004) treated discrete design
variables as continuous ones directly and applied round-off
to the discrete components of the final result. Parsopoulos
and Vrahatis (2002b) applied PSO to integer programming
by simply truncating real values to integers and claimed
that the method does not significantly affect the search
performance. The same method was used to deal with
integer variables by He et al. (2004), who directly optimized
the index of the discrete variable instead of the discrete value
itself. Kitayama et al. (2006) employed a penalty function
approach to handle the discrete design variables, in which
the discrete design variables were treated as continuous ones
by penalizing at intervals. To solve discrete optimization
problems, Kennedy and Eberhart (1997) introduced a
discrete binary version of PSO and redefined the meanings
of trajectory and velocity in terms of changes in probabilities
that a bit will be in one state or the other. Other methods for
solving discrete optimization problems with PSO have also
been proposed by Clerc (2000), Liao et al. (2005), Jin et al.
(2007), and so on.

Because of the parameters of PSO being problem
dependent, there is a need to tune them to improve suboptimal
solutions when a PSO algorithm is applied to a real-word
problem. Tuning the parameters can control the behavior of a
swarm, especially the convergence rate and diversity preser-
vation. For a constrained problem,when a particle is located in
the infeasible region, the primary objective of its search is to
enter the feasible region. In contrast with that, its ultimate
objective is to find the optimal solution after it has entered the
feasible region. In this sense, it is reasonable to employ
different parameter settings for controlling the search of
particles in different search phases. However, none of the
aforementioned PSO algorithms does so.

From the point of view of performance, the aforemen-
tioned PSO algorithms with different constraint or discrete
variable-handling techniques have some limitations: (1)
using the same parameter settings to guide the search of
particles in different search phases; (2) although penalty
function method is the most common constraint-handling
technique, it has a major drawback that it is difficult for
penalty factors to balance objective and penalty functions;
(3) as constraint-handling techniques, the methods based on
preserving feasibility of solutions require initial feasible
solutions. However, it is nondeterministic polynomial-time
hard to find feasible solutions of some problems; (4) the
applicability of the methods using the feasibility-based rule
is often seriously limited in highly constrained problems.
The valuable information from the objective function
values of infeasible solutions are usually neglected, which
usually lead to inferior solutions; (5) treating integer and
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discrete variables as continuous ones and then applying
round-off to the final results is a popular method used in
mixed variable problems (MVPs) but may result in a
solution far from the optimum or even infeasible; (6)
optimizing the index of a discrete variable instead of the
discrete value of the variable directly is another simple
method for handling discrete variables in MVPs. The
method is based on the assumption that the neighboring
values of a discrete variable tend to similarly contribute to
the fitness. However, that is not always the case. For
example, we may set steel=1, aluminum=2, etc., between
which just qualitative distinctions exist; (7) handling integer
and discrete variables through a penalty function is an
approach through which the accurate values of integer and
discrete variables cannot be reached; (8) methods redefin-
ing the meanings of velocity, etc. are more suitable for
discrete optimization because solutions have to be ma-
nipulated (similar to coding/decoding operation in genetic
algorithms) during optimizing in most cases, which make it
inconvenient to be applied to MVPs.

The above review of the state-of-the-art PSO algorithms
for MVPs or/and COPs shows a need to develop a new
PSO algorithm. In this paper, we introduce a new PSO
algorithm for MVCOPs called the ranking selection-based
particle swarm optimizer (RSPSO). In RSPSO, the objective
function and constraints are handled separately; discrete
variables are partitioned into two types (ordinary discrete
and categorical variables), which are dealt with using
different methods, and a new ranking selection scheme is
incorporated into PSO to guide the search of particles.

The remainder of this paper is organized as follows.
Section 2 briefly introduces particle swarm optimizer.
Section 3 presents the RSPSO for MVCOPs. In Section 4,
five engineering design examples and a benchmark func-
tion with equality constraints were solved by RSPSO, and
the results are compared with the ones from some relational
literature. Section 5 is devoted to the discussion, and the
paper is concluded in Section 6.

2 Particle swarm optimizer

PSO is a stochastic, population-based optimization algo-
rithm, where the population is called a swarm and its in-
dividuals are called particles. In the standard PSO algorithm,
each particle not only has its position and velocity but can
also memorize the historical best position discovered so far
by it. The position of each particle in the search space
represents a candidate solution to an optimization problem.

In a standard PSO algorithm, the PSO is initialized with
a group of randomly positioned particles and then tries to
search for optima by updating the historical best position,
current position, and velocity of each particle iteratively

until a predefined stopping criterion is met. The updating
process most commonly used at the kth (k≥1) iteration can
be formalized as follows (Shi and Eberhart 1998).

Pbest 0ð Þ
i ¼ X 0ð Þ

i ð4Þ

V 0ð Þ
i;d ¼ rand 0;Vmax;d

� � ð5Þ

Pbest kð Þ
i ¼

Pbest k�1ð Þ
i ; if f Pbest k�1ð Þ

i

� �
� f X k�1ð Þ

i

� �
X k�1ð Þ
i ; if f Pbest k�1ð Þ

i

� �
> f X k�1ð Þ

i

� �
8<
:

ð6Þ

V kð Þ
i;d ¼ w� V k�1ð Þ

i;d þ C1 � rand1

� Pbest kð Þ
i;d � X k�1ð Þ

i;d

� �
þ C2 � rand2

� Gbest kð Þ
d � X k�1ð Þ

i;d

� �
ð7Þ

X kð Þ
i;d ¼ X k�1ð Þ

i;d þ V kð Þ
i;d ð8Þ

where Xi, Pbesti, Vi denote the position, historical best
position, and velocity, respectively, of the ith particle. rand
(0,Vmax,d) is a random number generated following a
uniform distribution between 0 and Vmax,d. Vmax is a vector
containing the maximum velocity for all dimensions. f()
means the fitness value of a corresponding position. N is
the swarm size, and w is the inertia weight. Vi,d is the
velocity on the dth dimension of the ith particle. C1 and C2

are the acceleration factors. rand1 and rand2 are two
random numbers and generated for each dimension of each
particle following a uniform distribution between 0 and 1.
Gbest is the best position discovered so far by the whole
swarm (in global version of PSO) or the neighbors of the
ith particle (in local version of PSO). If V kð Þ

i;d

��� ��� > Vmax;d

�� ��,
then set V kð Þ

i;d ¼ sign V kð Þ
i;d

� �
Vmax;d . Xi,d is the position of the

dth dimension of the ith particle.

3 Ranking selection-based particle swarm optimizer

3.1 Separation of objective function and constraints

In RSPSO, objective function and constraints are handled
separately. The sum of violated constraints can be calculated
as follows:

Φ Xð Þ ¼
Xm
i¼1

max 0; gi Xð Þf g þ
Xn
i¼1

hi Xð Þj j ð9Þ
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For infeasible solutions, their objective function values
and sums of violated constraints are used to check their
nondomination levels (the number 1 is assigned to the best
level, the number 2 to the second best level, and so on), and
then their nondomination levels and objective function
values (or sums of violated constraints) will together
determine their ranks. This strategy allows the valuable
information from the objective function values of infeasible
solutions to be utilized without requiring the use of penalty
factors.

3.2 Partitioning of discrete variables

To apply the standard PSO to MVCOPs directly, He et al.
(2004) relaxed discrete variables into continuous search
space. This method is successful for handling ordinary
discrete variables. However, it implies that the neighboring
values of a discrete variable should tend to similarly
contribute to the fitness, which is not always the case. For
example, a few variables may be qualitative in a practical
problem. To deal with them automatically, they are
arbitrarily assigned discrete numerical values. For example,
we may set steel=1, aluminum=2, copper=3 or copper=10,
aluminum=20, steel=30, etc., and no inherent order exists
between these values. Even for a discrete numerical variable,
in some cases, a high fitness value may reveal little or even
no information on whether the neighboring variable values
have similar or improved fitness. This happens when the
distances between the neighboring values of a discrete
variable are far with respect to the landscape of the fitness
function. To distinguish these from ordinary discrete
variables, we call this type of variable categorical.

For a given MVCOP, the discrete variables should be
identified and partitioned into two types: ordinary discrete
and categorical. The ordinary discrete and categorical
variables are denoted by XDO and XDC, respectively, i.e.

XD ¼ XDO

XDC

� �

XDO ¼ xnCþnIþ1; :::; xnCþnIþnDO½ �T

XDC ¼ xnCþnIþnDOþ1; :::; xnCþnIþnDOþnDC½ �T
xi 2 DOi; i ¼ nC þ nI þ 1; :::; nC þ nI þ nDO

xi 2 DCi; i ¼ nC þ nI þ nDOþ 1; :::; nC þ nI þ nDOþ nDC

ð10Þ

where nDO and nDC are the number of the ordinary
discrete and categorical variables, respectively, and nDO+
nDC=nD. DOi and DCi are the sequences from which the
ordinary discrete and categorical variables take on values,
respectively.

Based on the partition of discrete variables, a solution
X can be partitioned into four segments corresponding

to continuous, integer, ordinary discrete, and categorical
variables, respectively, i.e.,

Solution X¼ X C; X I; XDO; XDC
	 
T ð11Þ

This strategy makes it possible for different types of
discrete variables to be searched in different modes, and as
a result, the performance of RSPSO on problems with
categorical variables is enhanced.

3.3 Ranking selection

Ranking selection is a two-step process. First the list of
individuals is ranked, and next, the individuals are selected
with some form of probability distribution based on the
ranks of the individuals. Blickle and Thiele (1996)
performed a comparison of the selection schemes used in
EA and claimed that the optimization task and the type of
problem to be solved together dictate which scheme should
be employed. The existing selection schemes used in
genetic algorithms (GAs) are linear and exponential-
ranking selection. In this paper, we propose a new selection
scheme with a view to enhancing the performance of
RSPSO on MVCOPs.

3.3.1 Ranking and memorizing of historical positions

In RSPSO, two kinds of ranking operations to determine
the ranks of historical positions are introduced:

1. RankI: Rank feasible positions first according to the
ascending order of their objective function values,
followed by infeasible positions ranked according to
the ascending order of their nondomination levels. The
infeasible positions at the same nondomination level
are further ranked according to the ascending order of
the sums of violated constraints. Note that in RSPSO,
the rank 1 is assigned to the best individual, the rank 2
to the second best individual, and so on.

2. RankF: same as the RankI operation except that the
infeasible positions at the same nondomination level
are further ranked according to the ascending order of
their objective function values.

Generally, a large amount of historical positions will be
produced during the run of a PSO algorithm. However, we
have found that the computational effort required to
preserve many positions with higher (inferior) ranks is
much greater than the benefit obtained from them and that
the top N historical positions can provide a good guide for
the search of a swarm. A sequence PbestSeq is designed to
memorize the top N historical positions with lower (better)
ranks, and the elements in PbestSeq are denoted by Pbest,
i.e., PbestSeq={Pbesti|i=1,2,…,N}. Corresponding to two
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ranking operations (RankI and RankF), there are two
methods to update PbestSeq as follows.

1. Method I:

PbestSeq kð Þ ¼
Rankl P 1ð Þ� �

; k ¼ 1

Rankl PbestSeq k�1ð ÞUP kð Þ
� �

1 : N½ �; k > 1

(

ð12aÞ
2. Method F:

PbestSeq kð Þ ¼
RankF P 1ð Þ� �

; k ¼ 1

RankF PbestSeq k�1ð ÞUP kð Þ
� �

1 : N½ �; k > 1

(

ð12bÞ

where P(k) is the current positions of particles in a swarm at
the kth iteration.

According to (12a, b), if only Q positions among the top
N historical positions have entered the feasible region, then
PbestSeq[1:Q] will track the descending of the objective
function value and PbestSeq[Q+1:N] not only objective
function value but also the constraint violation. Method I
slightly biases PbestSeq[Q+1:N]’s track on the descending
of the constraint violation and method F slightly on the
descending of the objective function value. Figure 1
illustrates the evolving procedure of PbestSeq in highly
constrained problems.

As described in Section 3.4.1, a swarm will learn only
from its PbestSeq. The strategy of updating PbestSeq
makes the search of a swarm through the infeasible region
to aim at entering the feasible region while exploring the
regions with smaller objective function values (where the
sums of violated constraints may be larger or smaller),
which can help some particles enter the feasible region
from the infeasible regions with smaller objective function

values. As a result, the obtained solutions (especially for a
problem that has a very small feasible region or is highly
constrained) may be improved.

In addition, the historical positions in PbestSeq are
assigned different ranks. The rank of a feasible position is
always lower (better) than any infeasible positions. Among
two infeasible positions, the one with a lower nondomina-
tion level always has a lower (better) rank than another;
among two infeasible positions at the same nondomination
level, method I and method F assign a lower (better) rank to
the position with smaller objective function value and a
smaller sum of violated constraints, respectively. The
difference between the ranks of the historical positions in
PbestSeq makes it possible to further bias the search of a
swarm in the most promising regions, which may enhance
the efficiency of the search and the quality of the solutions
obtained.

3.3.2 Ranking of permissible values

In RSPSO, every permissible value of each categorical
variable memorizes its historical best value (HBV), which
is the objective function value or the sum of violated
constraints that had been experienced by it. Motivated by
Deb (2000), the following rules (denoted by rule 1) are
applied to update the HBV of any permissible value
(assume that the value currently experienced by a
permissible value, which is either the objective function
value or the sum of violated constraints, is always denoted
by VC):

1. If a permissible value has not a HBV, then its VC is
memorized as its HBV.

2. If the existing HBV of a permissible value and its VC
are all the objective function values, then the smaller is
memorized as its HBV.

Fig. 1 Illustration of evolving procedure of PbestSeq in highly constrained problems (N=5)
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3. If the existing HBV of a permissible value is the
objective function value and its VC is the sum of
violated constraints, then its HBV remains unchanged.

4. If the existing HBV of a permissible value is the sum
of violated constraints and its VC is the objective
function value, then the VC is memorized as its new
HBV.

5. If the existing HBV of a permissible value and its VC
are all the sums of violated constraints, then the smaller
is memorized as its HBV.

When all permissible values of a categorical variable
have their HBVs, they will be ranked as follows: rank
permissible values with HBVs that are the objective
function values first according to the ascending order of
their HBVs, followed by the permissible values with HBVs
that are the sums of violated constraints ranked according to
the ascending order of their HBVs. This kind of ranking
operation and the result of performing it on DCi are denoted
by RankV and DCVi, respectively, i.e.,

DCV i ¼ RankV DCið Þ ð13Þ

RankV operation assigns rank to the permissible values
of each categorical variable as follows: The rank of a
permissible value that experienced a feasible solution is
always lower (better) than any permissible value that has
not experienced any feasible solution; among two per-
missible values that have (or not) experienced feasible
solutions, the smaller HBVof which is, the lower (better) its
rank. Note that rank 1 is assigned to the best one, rank 2 to
the second best one, and so on.

As described in Section 3.4.2, when every permissible
value of a categorical variable has been visited, the
corresponding component of particles will take values from
the ranked sequence of permissible values of that variable.
The RankV operation assigns lower ranks to the more
promising permissible values, which make it possible to
further bias the search of a swarm on these more
promising permissible values and consequently enhance
the efficiency of the search and the quality of the solutions
obtained.

3.3.3 Selection

In RSPSO, the selection scheme is used to control the
probability of each element in a sequence being selected
and if necessary, bias the search of a swarm in the more
promising regions or on the more promising permissible
values, thereby enhancing the efficiency of the search and
the quality of the solutions obtained.

To do that, a parameter called the utilization-regulated
parameter is introduced, which governs the selection

pressure on the elements in a sequence. The selection
scheme we propose can be expressed as follows.

g ¼ ceil ceil M � rand1ð Þ log ERð Þ
log 0:5ð Þ

� �
� rand2

� �
; 0 < ER � 1

ifg ¼ 0; then set g ¼ 1

ð14Þ

where ER is the utilization-regulated parameter. M is the
total number of elements in a sequence. ceil() is a ceiling
operator, which returns the smallest integer that is larger
than or equal to the specified value. g is the index of the
element that will be selected from the sequence.

The value of ER represents the expected ratio of the
number of the elements to be selected to M. When ER=1,
the probability of each element in a sequence being selected
is the same.

P g ¼ if g ¼ 1

M
; i ¼ 1; 2; 3:::M ð15Þ

When ER<1, the probability of the ith element in a
sequence being selected is

P g ¼ if g ¼
XN
k¼i

k1=s � k � 1ð Þ1=s
M 1=s � k

; i ¼ 1; 2; 3:::M ð16Þ

where s=log(ER)/log(0.5).
Figure 2 illustrates the probability of some elements

being selected when M=40.
If we let ER=1, each element will have the same

probability to be selected, which will help prevent the
premature convergence of a swarm and obtain good
solutions. However, it may lead to very slow convergence
rates on some problems because of low selection pressure
on the better elements; If we let ER≈0, then only the best
element will almost exclusively be used, which may result
in premature convergence. Clearly, it is preferable to set
dissimilar ER values for different optimization problems to
balance convergence rates and premature convergence. This
is similar to the tuning of selection pressure in GAs and
essentially a new selection scheme.

When (14) is applied to PbestSeq, M=N, but ER may
take different values in different search phases. We simply
divide the search of a swarm on a constrained problem into
two phases: (1) all or some of top N historical positions are
located in the infeasible region; (2) all of them are located
in the feasible region. The ERs used in the former and
latter cases are denoted by ERI and ERO, respectively.
Adopting different ER values in different search phases
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help control the search behavior of a swarm, especially the
convergence rate and the diversity preservation in each search
phases. As a result, the obtained solutions may be improved.

When (14) is applied to the sequence of permissible
values of a categorical variable, M is the total number of the
permissible values. The ER used for categorical variables is
denoted by ERD. As described in Section 3.4.2, categorical
variables will be optimized in a mode different from
continuous, integer, and ordinary discrete variables; adopt-
ing a special ER value for it is inevitable.

3.4 Updating of position and velocity of particle

As described in Section 3.2, a solution X can be partitioned
into four segments XC, X I, X DO, and XDC. In RSPSO, X C,
X I, and X DC are searched directly. For XDO, similar to He et
al. (2004), the index of each ordinary discrete variable is
searched as an integer variable instead of its discrete values
directly. Therefore, the position of a particle will be

Position P¼ X C;X I;PI;XDC
	 
T ð17Þ

where P I is a vector comprising the integer variables, which
represent the indices of the discrete values of the variables in
XDO. When evaluating the objective or constraints function, P I

should be replaced with the corresponding permissible values.

3.4.1 X C, X I, PI segment

To effectively control the search behavior of a swarm, the
X C, X I, PI segment of all particles learn only from the
PbestSeq, i.e, each particle will not know the historical best
position found by itself so far. In RSPSO, two learning
strategies different from the standard PSO are proposed:

1. Instead of learning from its own historical best position,
each dimension (in X C, X I, PI segment) of each particle
learns from a position, which is nearest to it on the
corresponding dimension among those belonging to the
PbestSeq and being better than it in the objective
function value (if it is feasible) or in either of the
objective function value and the sum of violated
constraints (if it is infeasible).

2. Instead of learning from the “best” position among
the historical best positions of its neighbors, each
dimension (in X C, X I, PI segment) of each particle
learns from a position randomly selected from the
PbestSeq.

In addition, an operation INTR is introduced to deal with
integer components of particles:

INTR rð Þ ¼ floor rð Þ; if rand > r�floor rð Þ
ceil rð Þ; otherwise

�
ð18Þ
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Fig. 2 Probability of some
elements being selected (M=40)
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where floor() is a floor operator, which returns the
largest integer that is less than or equal to the specified
value r. r is the real number to be evaluated. rand is a
number randomly generated following a uniform distri-
bution between 0 and 1. The INTR operation can enhance
the local search ability of individuals in comparison

with a determinant method such as ceiling and floor
operator.

Based on the introduced selection scheme, learning
strategies, and INTR operation, the updating of the velocity
and position of the X C, X I, PI segment of the ith particle
can be expressed as follows:

V kþ1ð Þ
i;d ¼

w� V kð Þ
i;d þ C1 � rand1 � Pbest kð Þ

n;d � P kð Þ
i;d

� �
þ C2 � rand2 � Pbest kð Þ

g;d � Pk
i;d

� �
;

if 1 � d � nC

INTR w� V kð Þ
i;d þ C1 � rand1 � Pbest kð Þ

n;d � P kð Þ
i;d

� �
þ C2 � rand2 � Pbest kð Þ

g;d � P kð Þ
i;d

� �� �
;

if nC þ 1 � d � nC þ nI þ nDO

8>>><
>>>:

ð19Þ

P kþ1ð Þ
i;d ¼ P kð Þ

i;d þ V kþ1ð Þ
i;d ð20Þ

where, Pbestn,d is the dth dimension of a position Pbestn,
which is the nearest to the ith particle on the dth dimension
among those belonging to the PbestSeq and being better
than the ith particle in the objective fuction value (if the ith
particle is feasible) or in either of the objective function
value and the sum of violated constraints (if the ith particle
is infeasible). If no position in the PbestSeq can be a Pbestn
for the ith particle, the second item in the right hand side of
(19) should be set to zero. Pbestg is randomly selected from
the PbestSeq according to the following formula:

g ¼ ceil ceil N � rand1ð Þ log ERð Þ
log 0:5ð Þ

� �
� rand2

� �
; 0 < ER � 1;

if g ¼ 0; then set g ¼ 1

ER ¼ ERO; if all Pbests in the PbestSeq are feasible

ERI ; otherwise

�
ð21Þ

3.4.2 XDC segment

For a categorical variable, its value will be randomly selected
from the sequence of its permissible values until every
permissible value of it has been visited at least once, i.e.,

g ¼ ceil Nd � randð Þ; if g ¼ 0 then set g ¼ 1 ð22Þ

P kð Þ
i;d ¼ DCd;g ð23Þ

where nC þ nI þ nDOþ 1 � d � nC þ nI þ nDOþ nDC.
g is the index of the selected value in DCd. Nd is the total
number of the values in DCd.

When every permissible value of a categorical variable
has been visited at least once, the corresponding sequence
will be ranked according to (13), and then the value of this
categorical variable will be randomly selected from the
ranked sequence as follows:

g ¼ ceil ceil Nd � rand1ð Þlog ERDð Þ
log 0:5ð Þ

� �
� rand2

� �
;

0 < ERD � 1; if g ¼ 0; then set g ¼ 1
ð24Þ

P kð Þ
i;d ¼ DCVd;g ð25Þ

where DCVd,g is the gth element in the DCVd.
Expressions (22) to (25) is the selection mechanism

employed in updating of the X DC segment of a particle,
and it can be seen that the concept of velocity in the
standard PSO is not utilized anymore. The X DC segment
of a particle accurately reflects the permissible values. Figure 3
illustrates the search procedure of RSPSO on a problem with
only two variables C and D (C∈[Cl, Cu] is a continuous
variable, D is a categorical variable with M permissible
values).

From Fig. 3, it can be seen that the search space of a
problem with categorical variables consists of disjoint
regions. When RSPSO with ERD<1 was applied to these
kinds of problems, the swarm always biases its search on
the more promising disjoint regions corresponding to the
permissible values with lower (better) ranks. As a result,
the search efficiency is enhanced. At the same time, the
particles randomly escape from these regions and explore
other disjoint regions corresponding to the permissible
values with higher ranks, which help prevent entrapment in
one or more local optima.
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3.5 Algorithm framework

We incorporate the individual components described in
detail above into a framework as follows.

Set N, maximum FFEs, Method to update PbestSeq, ER0, ERI, ERD, w, C1, C2 

Randomly initialize P and set V=0    /*initialize the positions and velocity of particles*/ 

maximum iteration number= maximum FFEs/N 

for k=1: maximum iteration number 

Evaluate f i i(X ) and Φ(X ), i=1,2,...,N    /* (1)(9) */  

Update the PbestSeq          /*(12a) or (12b)*/ 

for d= nC+nI+nDO +1: nC+nI+nDO+nDC 

     Update HBVs of all values in DCd with rule 1 . 

if each value in DCd has been visited at least once 

    DCVd =RankV(DCd)    /*(13)*/ 

end  

end  

for i=1:N 

for d=1: nC+nI+nDO 

Generate g      /*(21) */ 

                Use the gth element of the PbestSeq to calculate velocity Vi,d  /*(19)*/  

Update Pi,d   /*(20) */ 

           end  

           for d= nC+nI+nDO +1: nC+nI+nDO+nDC 

                if each value in DCd has not been visited at least once 

                      Update Pi,d with the value randomly selected from DCd  /*(22) (23)*/ 

else 

Generate g /*(24) */ 

Pi,d= DCVd,g    /*(25) */ 

end  

end  

end 

end  

 

4 Numerical examples

In this section, five engineering design problems are used to
investigate the performances of RSPSO. These problems
are taken from the literature (Rao 1996) with exception of
the welded beam design—case 2 (Deb and Goyal 1996)—and
the four-stage gear train design (Pomrehn and Papalambros
1995a). To demonstrate the effectiveness and efficiency of
RSPSO solving highly constrained optimization problems,
two experiments on a well-studied benchmark function with
equality constrains, which is one of the most difficult problems
among the benchmark function suite (Runarsson and Yao
2000), were also conducted. The engineering problems and
function are not described in this paper because of space
limitation. If necessary, see the referenced literature.

Before optimizing a problem involving discrete varia-
bles, we identified and partitioned its discrete variables into
ordinary discrete and categorical variables. To evaluate the
performance of RSPSO on problems with categorical
variables, the wire diameter d(x1) in the spring design
(example 1) was treated as not only an ordinary discrete but
also a categorical variable, although the difference between
its neighboring values is small with respect to the landscape
of the fitness function. The types of variables in the
experiments are listed in Table 1.

As an intelligent optimization algorithm, the parameter
settings of RSPSO are problem dependent and should be
tuned for every given problem. Among the parameters of
RSPSO, ERO, ERI, and ERD are the primary tunable
parameters. To simplify the tuning, ERO, ERI, and ERD
took on values only from the set {0.1, 0.25, 0.5, 0.75, 1.0}.
Similar to the standard PSO, C1,2 are also important
parameters of RSPSO. In our experience, RSPSO with

Fig. 3 Illustration of search procedure of RSPSO on a problem with only two variables (ERD<1, 1<k<j<M)
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C1,2=2.0 performs well on most problems and withC1,2=1.0
on some hard problems. Therefore, when tuning them, first
C1,2=2.0 was tried, and if the results were not acceptable,
then C1,2=1.0 was tested. As to maximum fitness function
evaluations (FFEs), it was set based on the relational
literature and the complexity of the given problem. The rest
(N, Method to update PbestSeq, and w) were kept
unchanged in all the examples for their relatively less
influence on the performance of RSPSO. The tuned
parameter settings for the experiments are listed in Table 1.

All the experiments were performed in MATLAB. To
demonstrate the robustness of RSPSO, 30 independent runs
were performed for each experiment.

4.1 Example 1: spring design

This problem was first tackled by Sandgren (1990). Other
approaches applied to this problem include a combined
genetic adaptive search algorithms (Deb and Goyal 1997), a
differential evolution algorithm (Lampinen and Zelinka
1999), and an improved PSO (He et al. 2004).

The best solutions found by the approaches mentioned
above and RSPSO are showed in Table 2, and their

statistical results are listed in Table 3. The results in the
last row of Tables 2 and 3 are the ones when the wire
diameter d(x1) was treated as a categorical variable.

From Tables 2 and 3, it can be seen that RSPSO obtained
the same optimum as Lampinen and Zelinka (1999) and He
et al. (2004). However, the mean result and standard
deviation obtained by the former are smaller than those by
He et al. (2004), although the FFEs consumed by them are
the same (15,000). More FFEs (26,000) was adopted by
Lampinen and Zelinka (1999).

When the wire diameter d(x1) was treated as a categorical
variable, which takes value from 42 permissible values, the
same optimum was still found by RSPSO. Furthermore, the
mean result, standard deviation, and the worst solution are
just slightly inferior to those when the wire diameter d(x1)
was treated as an ordinary discrete variable.

4.2 Example 2: welded beam design—case 1

The approaches applied to this problem include a geometric
programming (Ragsdell and Phillips 1976), a binary-coded
GA combined with a traditional penalty function (Deb

Table 1 Types of variables and parameter settings for experiments

Experiment Cont. var. Int./ Ord. var. Cat. var. N Max. FFEs Meth. ERO ERI ERD w C1 C2

Spring design (1) 1 2 0 20 15,000 I 0.5 1 N/Ac d 2.0 2.0
Spring design (2)a 1 1 1 20 15,000 I 0.25 1 0.25 d 2.0 2.0
Welded beam design—case 1 4 0 0 20 30,000 I 0.25 1 N/A d 2.0 2.0
Welded beam design—case 2 1 3 2 20 15,000 I 0.25 1 0.25 d 2.0 2.0
Pressure vessel design 2 2 0 20 30,000 I 0.5 1 N/A d 2.0 2.0
Four-stage gear train design 0 22 0 20 80,000 I 1 0.10 N/A d 1.0 1.0
g13 (1) 5 0 0 20 350,000 I 1 1 N/A d 1.0 1.0
g13 (2)b 5 0 0 20 80,000 I 0.5 1 N/A d 1.0 1.0

a The wire diameter d(x1) was treated as a categorical variable
b The equality constraints were transformed into inequality ones with a tolerance value 1E-6
cN/A Not applicable
d The parameter w is set to be a random number and generated following the uniform distribution between 0.4 and 0.9

Table 2 Best solution found by different algorithms for spring design

Algorithm d(x1)
a D(x2)

a N(x3)
a f (X)a

Sandgren (1990) 0.283 1.180701 10 2.7995
Deb and Goyal (1997) 0.283 1.226 9 2.665
Lampinen and Zelinka
(1999)

0.283 1.223041010 9 2.65856

He et al. (2004) 0.283 1.223041010 9 2.65856
RSPSO (1) 0.283 1.223041010 9 2.65856
RSPSO (2)b 0.283 1.223041010 9 2.65856

a d(x1) The wire diameter, D(x2), the mean coil diameter, N(x3) the
number of active coils, f(X) the volume of the spring
b The wire diameter d(x1) was treated as a categorical variable

Table 3 Statistical results of different algorithms for spring design

Algorithm Max.
FFEs

Best Mean Std. Worst

Sandgren (1990) N/A 2.7995 NAb NA NA
Deb and Goyal
(1997)

NA 2.665 NA NA NA

Lampinen and
Zelinka (1999)

26,000 2.65856 NA NA NA

He et al. (2004) 15,000 2.65856 2.738024 0.107061 NA
RSPSO (1) 15,000 2.65856 2.728872 0.090461 2.95416
RSPSO (2)a 15,000 2.65856 2.799263 0.119812 3.06085

a The wire diameter d(x1) was treated as a categorical variable
bNA Not available
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1991), a society and civilization algorithm (Ray and Liew
2003), and a improved PSO (He et al. 2004).

The best solutions found by the approaches mentioned
above and RSPSO are showed in Table 4, and their
statistical results are listed in Table 5.

From Tables 4 and 5, we can see that the best solution,
mean result, standard deviation, and worst solution
obtained by RSPSO are better than those by Ray and Liew
(2003) and He et al. (2004), although the FFEs used by the
former is 30,000 and the latter 40,000 and 30,000,
respectively.

4.3 Example 3: welded beam design—case 2

This problem is taken from Deb and Goyal (1996), where
an adaptive genetic search algorithm was applied to solve
it. The best solution found by Deb and Goyal (1996) and
RSPSO are listed in Table 6, and their statistical results are
shown in Table 7. From Tables 6 and 7, we can see that the
best solution found by RSPSO is better than that by Deb
and Goyal (1996). Moreover, the standard deviation
obtained by RSPSO is small, and the mean result is very
close to the optimum, although two categorical variables
(material and configuration) exist.

4.4 Example 4: pressure vessel design

The approaches applied to this problem include a branch
and bound technique (Sandgren 1990), an augmented
Lagrange multiplier-based method (Kannan and Kramer
1994), a combined genetic search algorithm (Deb 1997),
mixed variable evolutionary programming (Cao and Wu
1999), a GA-based technique employing coevolution to

adapt penalty factors (Coello 2000), a GA using a
dominance-based tournament selection scheme (Coello
and Mezura-Montes 2001), an improved PSO (He et al.
2004), a hybrid PSO with a feasibility-based rule (He and
Wang 2007a), and a coevolutionary PSO (He and Wang
2007b).

The best solutions found by the approaches mentioned
above and RSPSO are showed in Table 8, and their
statistical results are listed in Table 9.

From Tables 8 and 9, it can be seen that RSPSO found
the same optimum as He et al. (2004) and He and Wang
(2007a), but the mean result, standard deviation, and worst
solution obtained by the former are much better than those
by the latter. Moreover, the FFEs consumed by RSPSO are
the same as that by He et al. (2004) and much less than
81,000 (adopted by He and Wang 2007a).

4.5 Example 5: four-stage gear train design

This problem has 22 discrete design variables (8 integer and
14 ordinary discrete variables) and 86 inequality con-
straints. Its solution space contains more than 4×1026

points, which is very large. However, its feasible region is
very small. We did a random sampling test of 106evalua-
tions, and no feasible solution was found. This is a hard
nonlinear optimization problem.

The approaches applied to this problem include: a search
space reduction method based on infeasibility and non-
optimality tests (Pomrehn and Papalambros 1995b), a
method based on constraint decomposition and designer
interaction (Khorshid and Seireg 1999), a hybrid approach
combining a heuristic search and a GA (Dolen et al. 2005).
The method of Dolen et al. handled the constraints through

Table 4 Best solution found by different algorithms for welded beam design—case 1

Algorithm h(x1)
a l(x2)

a t(x3)
a b(x4)

a f(X)a

Ragsdell and Phillips (1976) 0.2455 6.1960 8.2730 0.2455 2.385937
Deb (1991) 0.2489 6.1730 8.1789 0.2533 2.433116
Ray and Liew (2003) 0.244438276 6.237967234 8.288576143 0.244566182 2.3854347
He et al. (2004) 0.24436898 6.21751974 8.29147139 0.24436898 2.3809565827
RSPSO 0.24436898 6.21751971 8.29147140 0.24436898 2.3809565817

a h(x1) The thickness of the welded joint, l(x2) the length of the welded joint, t(x3) the width of the beam, b(x4) the thickness of the beam, f(X) the
cost of fabrication

Table 5 Statistical results of different algorithms for welded beam design—case 1

Algorithm Max. FFEs Best Mean Std. Worst

Ragsdell and Phillips (1976) N/A 2.385937 NA NA NA
Deb (1991) 4,500 2.433116 NA NA NA
Ray and Liew (2003) 40,000 2.3854347 3.2551371 0.9590780 6.3996785
He et al. (2004) 30,000 2.3809565827 2.381932 0.005239371 NA
RSPSO 30,000 2.3809565817 2.380959 1.13689e−005 2.3810190
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a penalty function approach. Most importantly, in this
method, they gradually rectified the most frequently
violated constraints and eliminated some variables (i.e.,
modified the mathematical model) based on the times of
each constraint being violated in every 100 runs and the
analysis on the mathematical models. This method is
essentially a search space reduction method.

The statistical results obtained by the approaches
mentioned above and RSPSO are showed in Table 10.

For RSPSO, 29 out of the 30 runs got feasible solutions
(3 out of the 29 runs reached feasible solutions before
10,000 FFEs). The average of the FFEs when the 29 runs
first reached feasible solutions is 22,088, and the average of
the volumes (the objective function values) when the 29
runs first reached feasible solutions is 56.72. The variable
values of the best solution found by RSPSO are: 21, 45, 16,
35, 21, 42, 21, 44, 38.1, 76.2, 50.8, 38.1, 76.2, 76.2, 76.2,
38.1, 63.5, 76.2, 3.175, 3.175, 3.175, and 3.175. Note that
the order of the variables is according to the literature
(Dolen et al. 2005).

From Table 10 and the average of the FFEs when the 29
successful runs first reached feasible solutions, it can be
seen that the result obtained by RSPSO is highly compet-
itive with the method of Dolen et al. However, RSPSO is
much easier to implement than the method of Dolen et al.
RSPSO just regards the problem as a “black box” and does
not require understanding it, although the understanding
may be helpful. In contrast with this, to gradually rectify
the most frequently violated constraints and eliminate some
variables, the latter requires recording the times of each
constraint violated in every 100 runs and thoroughly
analyzing the mathematical models. In general, its efficien-
cy is relatively lower and seriously depends on the designer.
Moreover, it is relatively difficult for this method to be
directly applied to other problems.

It should be pointed out that the maximum FFEs
employed in this experiment is a tradeoff between the
literature (Dolen et al. 2005) and the complexity of this
problem, and a larger maximum FFEs is more suitable for
the larger scale and difficulty of this problem. If a larger
maximum FFEs and a larger ER value were together
employed, RSPSO would obtain better results.

4.6 Example 6: g13 function

This problem had been solved by following approaches: a
stochastic ranking-based evolution strategy (Runarsson and
Yao 2000), a GA with a feasibility-based rule (Deb 2000),
inverted-shrinkable Pareto archived evolution strategy
method (Aguirre et al. 2004), a PSO incorporated with a
turbulence operator and a decision-making scheme (Pulido
and Coello 2004), a simple multimembered evolution strat-
egy (Mezura-Montes and Coello 2005), a derivative-free
filter-simulated annealing method (Hedar and Fukushima
2004), an improved stochastic ranking method (Runarsson
and Yao 2005), and a dynamic-objective PSO (Lu and Chen
2006).

The results obtained by the approaches mentioned above
and RSPSO are showed in Table 11. It is worth mentioning
that the equality constraints were satisfied only approxi-
mately in all the approaches except RSPSO. For RSPSO,
25 out of the 30 runs got accurately feasible solutions (here,
“accurately feasible” means that all the equality constraints
are satisfied within MATLAB’s precision bounds, not
approximately like other approaches).The statistical results
of these accurately feasible solutions are listed in the row
labeled “RSPSO (1)” of Table 11. However, to compare
RSPSO with other approaches, we also conducted an
experiment where the equality constraints were converted
into inequalities with a small tolerance value 1E−6, which
is more stringent than others such as 1E−3 (Deb 2000, Lu
and Chen 2006), 1E−4 (Runarsson and Yao 2000), and
3E−5 (Mezura-Montes and Coello 2005). In 29 out of the
30 runs, the sums of violated constraints are within the
tolerance, and their statistical results are located in the row
labeled “RSPSO (2)” of Table 11.

From Table 11, it can be seen that the mean result,
standard deviation, and worst solution obtained by RSPSO
are the best among the algorithms. Regardless of the
original or transformed problem, RSPSO performed well,

Table 6 Best solution found by different algorithms for welded beam design—case 2

Algorithm h(x1)
a l(x2)

a t(x3)
a b(x4)

a Material Configuration f(X)a

Deb and Goyal (1996) 0.1875 1.6849 8.25 0.25 Steel Four sided 1.9422
RSPSO 0.1875 1.6842 8.25 0.25 Steel Four sided 1.9421

a h(x1) The thickness of the welded joint, l(x2) the length of the welded joint, t(x3) the width of the beam, b(x4) the thickness of the beam, f(X) the
cost of fabrication

Table 7 Statistical results of different algorithms for welded beam
design—case 2

Algorithm Max.
FFEs

Best Mean Std. Worst

Deb and Goyal
(1996)

NA 1.9422 NA NA NA

RSPSO 15,000 1.9421 1.9515 0.021412 1.9986
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Table 8 Best solution found by different algorithms for pressure vessel design

Algorithm Ts (x1)
a Th (x2)

a R(x3)
a L(x4)

a f(x)a

Sandgren (1990) 1.1250 0.6250 48.9700 106.7200 7,982.5000
Kannan and Kramer (1994) 1.1250 0.6250 58.2910 43.6900 7,198.0428
Deb (1997) 0.9345 0.5000 48.3290 112.6790 6,410.3811
Cao and Wu (1999) 1.000 0.625 51.1958 90.7821 7,108.6160
Coello (2000) 0.8125 0.4375 40.3239 200.0000 6,288.7445
Coello and Mezura-Montes (2001) 0.8125 0.4375 40.097398 176.654047 6,059.94634
He et al. (2004) 0.81250000 0.43750000 42.09844560 176.63659584 6,059.7143
He and Wang (2007a) 0.8125 0.4375 42.0984 176.6366 6,059.7143
He and Wang (2007b) 0.8125 0.4375 42.0913 176.7465 6,061.0777
RSPSO 0.81250000 0.43750000 42.09844560 176.63659584 6,059.7143

a Ts (x1) The thickness of the shell, Th (x2) the thickness of the head, R(x3) the inner radius, L(x4) the length of the cylindrical section of the vessel,
f(X) the cost of fabrication

Table 9 Statistical results of different algorithms for pressure vessel design

Algorithm Max. FFEs Best Mean Std. Worst

Sandgren (1990) N/A 7,982.5000 NA NA NA
Kannan and Kramer (1994) N/A 7,198.0428 NA NA NA
Deb (1997) NA 6,410.3811 NA NA NA
Cao and Wu (1999) NA 7,108.6160 NA NA NA
Coello (2000) 900,000 6,288.7445 6,293.8432 7.4133 6,308.1497
Coello and Mezura-Montes (2001) 80,000 6,059.94634 6,177.253268 130.929702 6,469.322010
He et al. (2004) 30,000 6,059.7143 6,289.92881 305.78 NA
He and Wang (2007a) 81,000 6,059.7143 6,099.9323 86.2022 6,288.6770
He and Wang (2007b) 200,000 6,061.0777 6,147.1332 86.4545 6,363.8041
RSPSO 30,000 6,059.7143 6,066.2032 13.3035 6,100.31956

Table 10 Statistical results of different algorithms for four-stage gear train design

Algorithm Var. Num. Max. FFEs Runs Succ. runs Best Mean Std. Worst

Pomrehn and Papalambros (1995b) 22 N/A NA NA 91.87 NA NA NA
Khorshid and Seireg (1999) 22 N/A NA NA 38.13 NA NA NA
Dolen et al. (2005) 22 10,000 100 0 – – – –

17 10,000 100 14 41.89 46.09 NA NA
17 10,000 100 21 41.82 46.19 NA NA
14 10,000 100 32 37.47 43.30 NA NA
14 10,000 100 60 35.40 39.78 NA NA

RSPSO 22 10,000 30 3 44.58 55.37 12.13 68.50
80,000 29 38.11 51.84 10.42 76.08
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and the best solution found by it is very close to the global
optimum, 0.0539498.

5 Discussions

Because of the diversity of real-world optimization prob-
lems and the fact that their optima are usually unknown, it
is necessary to tune the parameters of PSO algorithms to
find or approach the optima as close as possible. In RSPSO,
there are nine tunable parameters (eight for a problem
without categorical variables), among which, N, Method to
update PbestSeq, ERI, and w were kept unchanged for all
examples except the four-stage gear train design (ERI=
0.10); C1 and C2 also took the same values in all examples

except g13 and the four-stage gear train design. The
experiments indicate, for most engineering problems, that
RSPSO may perform well when setting the Method to
update PbestSeq, ERI, w, C1, and C2 to method I, 1.0, a
random number between 0.4 and 0.9, 2.0, and 2.0,
respectively. On the other hand, Method to update PbestSeq
has only two choices (method I and method F); N,
maximum FFEs, w, C1, and C2 differ little from the ones
used in other PSO algorithms.

Among the parameters of RSPSO, ERO, ERI, and ERD
are the primary tunable parameters to control the conver-
gence rate/diversity preservation of a swarm. The lower the
ER value, the faster the convergence and vice versa; for a
smaller N, a relatively lower ER value will result in the
rapid loss of diversity during optimizing and vice versa.

Table 11 Statistical results of different algorithms for g13 function

Algorithm Max. FFEs Tol. Best Mean Std. Worst

Runarsson and Yao (2000) 350,000 1E−4 0.053957 0.067543 3.1E−2 0.216915
Deb (2000) 350,050 1E−3 0.053950 0.241289a NA 0.507761
Aguirre et al. (2004) 350,000 NA 0.05517 0.28184 1.8E−1 0.5471
Pulido and Coello (2004) 340,000 NA 0.068665 1.716426 NA 13.669500
Hedar and Fukushima (2004) 120,268b 1E−6 0.0539498 0.2977204 1.9E−1 0.4388511
Mezura-Montes and Coello (2005) 250,000 3E−5 0.053986 0.166385 1.8E−1 0.486294
Runarsson and Yao (2005) 350,000 NA 0.053942 0.096276 1.2E−1 0.438803
Lu and Chen (2006) 50,000 1E−3 0.0538666 0.6811235 4.0E−1 2.0428924
RSPSO (1) 350,000 MAT. pre.d 0.053987 0.056468 4.2E−3 0.071313
RSPSO (2)c 80,000 1E−6 0.053951 0.057657 4.1E−3 0.069198

aMedian
b 120,268 is the average objective function evaluations; the average constraints function evaluations is 42,268
c The equality constraints were transformed into inequality ones with a tolerance value 1E−6
dMATLAB’ default precision (double precision floating point according to IEEE Standard 754)
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To illustrate the relationship between the level of the ER
value and the convergence rate/diversity preservation of a
swarm, the experiment g13 (2) was performed with
different ERI values (the settings of other parameters are
the same as reported in the last column in Table 1). Thirty
runs were performed under every ERI value. Figure 4
shows the number of runs that successfully reached the
solution within the tolerance, the mean of objective
function value of the feasible solutions obtained by RSPSO,
as well as the best and worst ones. From Fig. 4, it can be
seen that when ERI≤0.3, many runs could not reach the
solution within the tolerance and the quality of feasible
solutions is inferior because of premature convergence;
when ERI≥0.9, almost all the runs successfully reached the
solution within the required tolerance, and the quality of
feasible solutions is greatly improved, which indicate that
the a good balance between the convergence rate and
diversity preservation has been achieved.

Theoretically, the quality of the solutions obtained by
RSPSO for a given optimization problem vs ER value
should be one of the following three kinds of functions:

– Monotonically decreasing function, if the ER value
balancing convergence rate and diversity preservation
is approximately zero

– Monotonically increasing function, if the ER value
balancing convergence rate and diversity preservation
is approximately or equal to 1

– Concave function, otherwise

The above functions feature very simple properties,
which is the most crucial merit of the ER parameter. The
simplicity makes it easy to seek an appropriate range of an
ER value for a given problem. In our experience, for most
engineering problems, tests on five ER values (0.10, 0.25,
0.50, 0.75, and 1.00) are sufficient for setting an ER value,
as demonstrated by the examples. Although the tuning of
ER (including ERO, ERI, and ERD) is not difficult, it may
be interesting to conduct the studies of self-adaptive ER in
the future because finding in these may further enhance the
performance of RSPSO.

It should be pointed out that when RSPSO is applied to
an optimization problem, the cost of tuning the parameters
depends on the experience of the operator, the type and
representation of the problem to be solved, the under-
standing of the results obtained by trial runs (to tune the
parameters), the start point of the parameters, and the task
restrictions (such as the schedule, hardware, and soft-
ware). For example, example 5 (four-stage gear train
design) consumed only 12 trial runs (six sets of parameter
values in all) because of the experience on the other
experiments, although it is the most difficult problem
among the examples (it is a larger-scale and not well-
studied problem with a very small feasible region). Note

that in our experiments, a trial run may be incomplete;
that is, once a set parameter values was judged to be
helpless or not suitable based on the observation of the
convergence over iteration, the trail run might be terminated
immediately.

6 Conclusions

This paper presents a RSPSO to solve MVCOPs in
engineering design. In this new approach, the objective
function and constraints are handled separately, and feasible
historical positions are ranked according to their objective
function values. For infeasible historical positions, they are
ranked according to their nondomination levels and
objective function values (or sums of violated constraints)
and are always assigned higher (inferior) ranks than feasible
positions. The top N historical positions with lower (better)
ranks are preserved in the PbestSeq. Discrete variables are
partitioned into ordinary discrete and categorical variables.
When all permissible values of a categorical variable have
been visited, they are ranked according to their HBVs. The
velocity and position of XC, XI, PI segment of a particle
learn only from the historical positions stored in the
PbestSeq and its XDC segment directly takes values from
the sequences of permissible values of the corresponding
categorical variables. To control the behavior of a swarm in
different search phases and on categorical variables, a new
selection scheme is proposed, in which the tunable
parameter ER determines the probability of every element
in the PbestSeq or the sequences of permissible values of a
categorical variable being selected.

The separation of objectives function and constraints
avoids the use of penalty factors, which are hard to be
quantified. Compared with the algorithms based on pre-
serving feasibility of solutions, RSPSO does not require
initial feasible solutions. Making RSPSO even more
attractive is that it can effectively solve highly constrained
problems for which the algorithms using feasibility-based
rule are seriously limited. As an extreme case, RSPSO can
tackle problems with equality constraints without requiring
the transformation of equality ones into inequalities that
almost all other approaches require. Integer and discrete
variables take on only permissible values without any
approximation when evaluating fitness function. Categori-
cal variables can be managed and searched directly. In
contrast with this, traditional algorithms usually solve a
problem with a fixed combination of all categorical
variables at each run. From the point of view of technique,
RSPSO is relatively simple and easy to implement.

The effectiveness, robustness, efficiency, and applicabil-
ity to various problems of RSPSO have been demonstrated
by five engineering design problems and a benchmark
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function (highly constrained), three of which involve mixed
variables. All the numerical examples indicate that RSPSO
is an effective and widely applicable optimizer for optimi-
zation problems in engineering design when compared with
the state-of-the-art algorithms in this area.

References

Aguirre AH et al (2004) Handling constraints using multiobjective
optimization concepts. Int J Numer Meth Eng 59(15):1989–2017

Blickle T, Thiele L (1996) A comparison of selection schemes used in
evolutionary algorithms. Available at: http://citeseer.ist.psu.edu/
500714.html

Cao YJ, Wu QH (1999) A mixed variable evolutionary programming
for optimisation of mechanical design. Eng Intell Syst Electr Eng
Comm 7(2):77–82

Clerc M (2000) Discrete particle swarm optimization: a fuzzy
combinatorial black box. Available at: http://clerc.maurice.free.fr/
pso/Fuzzy_Discrete_PSO/Fuzzy_DPSO.htm

Coello CAC (2000) Use of a self-adaptive penalty approach for
engineering optimization problems. Comput Ind 41:113–127

Coello CAC (2002) Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: a survey of the
state of the art. Comput Meth Appl Mech Eng 191:1245–1287

Coello CAC, Mezura-Montes E (2001) Use of dominance-based
tournament selection to handle constraints in genetic algorithms.
In: Dagli C, Buczak AL, Ghosh J, Embrechts MJ, Ersoy O,
Kercel S (eds) Proceedings of the Intelligent Engineering
Systems through Artificial Neural Networks. vol. 11. ASME,
St. Louis, MO, pp 177–182

Deb K (1991) Optimal design of a welded beam via genetic
algorithms. AIAA J 29(11):2013–2015

Deb K (1997) Geneas: a robust optimal design technique for
mechanical component design. In: Dasgupta D, Michalewicz Z
(eds) Evolutionary algorithms in engineering applications.
Springer, Berlin, pp 497–451

Deb K (2000) An efficient constraint handling method for genetic
algorithms. Comput Methods Appl Mech Eng 186:311–338

Deb K, Goyal M (1996) A combined genetic adaptive search
(GeneAS) for engineering design. Comput Sci Inf 26(4):30–45

Deb K, Goyal M (1997) Optimizing engineering designs using a
combined genetic search. In: Seventh International Conference
on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA,
pp 521–528

Dolen M et al (2005) Discrete parameter-nonlinear constrained
optimization of a gear train using genetic algorithms. Int J
Comput Appl Tech 24(2):110–121

He Q, Wang L (2007a) A hybrid particle swarm optimization with a
feasibility-based rule for constrained optimization. Appl Math
Comput 86:1407–1422

He Q, Wang L (2007b) An effective co-evolutionary particle swarm
optimization for constrained engineering design problems. Eng
Appl Artif Intell 20:89–99

He S et al (2004) An improved particle swarm optimizer for mechanical
design optimization problems. Eng Optim 36(5):585–605

Hedar A, Fukushima M (2004) Derivative-free filter simulated
annealing method for constrained continuous global optimization.
Dept Appl Math Phys, Kyoto Univ, Kyoto, Japan, Technical
Report 2004-007

Hu XH, Eberhart RC (2002) Solving constrained nonlinear optimiza-
tion problems with particle swarm optimization. In: Proceedings

of the Sixth World Multiconference on Systematics, Cybernetics
and Informatics, Orlando, FL, pp 203–206

Jin YX et al (2007) New discrete method for particle swarm optimization
and its application in transmission network expansion planning.
Electr Power Syst Res 77:227–233

Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier
based method for mixed integer discrete continuous optimization
and its applications to mechanical design. ASME J Mech Des
116(2):405–411

Kennedy J et al (2001) Swarm intelligence. Morgan Kaufmann, San
Mateo, CA

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE
International Conference on Neural Networks, IEEE, Piscataway,
NJ, Perth, Australia 4:1942–1948

Kennedy J, Eberhart R (1997) A discrete binary version of the particle
swarm algorithm. In: Proceedings of the world multiconference
on systemics, cybernetics and informatics, Caracas, Venezuela,
pp 4104–4109

Khorshid E, Seireg A (1999) Discrete nonlinear optimization by
constraint decomposition and designer interaction. Int J Comput
Appl Tech 12(2–5):233–244

Kitayama S et al (2006) Penalty function approach for the mixed
discrete nonlinear problems by particle swarm optimization.
Struct Multidisc Optim 32:191–202

Lampinen J, Zelinka I (1999) Mixed integer-discrete-continuous
optimization by differential evolution. In: Proceedings of the 5th
International Conference on Soft Computing, Iizuka, Fukuoka,
Japan, pp 71–76

Liao CJ et al (2005) A discrete version of particle swarm optimization for
flowshop scheduling problems. Comput Oper Res 34:3099–3111

Lu HY, Chen WQ (2006) Dynamic-objective particle swarm optimi-
zation for constrained optimization problems. J Comb Optim 12:
409–419

Mezura-Montes E, Coello CAC (2005) A simple multimembered
evolution strategy to solve constrained optimization problems.
IEEE Trans Evol Comput 9(1):1–17

Parsopoulos KE, Vrahatis MN (2002a) Particle swarm optimization
method for constrained optimization problems. In: Proceedings
of the 2nd Euro-International Symposium on Computational
Intelligence, IOS, Kosice, SK, pp 214–220

Parsopoulos KE, Vrahatis MN (2002b) Recent approaches to global
optimization problems through Particle Swarm Optimization. Nat
Comput 1:235–306

Parsopoulos KE, Vrahatis MN (2005) Unified particle swarm
optimization for solving constrained engineering optimization
problems. In: International Conference on Natural Computation,
Springer, Berlin, pp 582–591

Pomrehn LP, Papalambros PY (1995a) Discrete optimal formulation
with application to gear train design. ASME J Mech Des 117
(3):419–424

Pomrehn LP, Papalambros PY (1995b) Infeasibility and non-optimality
tests for solution space reduction in discrete optimal design.
ASME J Mech Des 117(3):425–432

Pulido GT, Coello CAC (2004) A constraint-handling mechanism
for particle swarm optimization. In: Proceedings of the 2004
Congress on Evolutionary Computation, IEEE, Piscataway, NJ,
pp 1396–1403

Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded
structures using geometric programming. ASME J Eng Ind 98
(3):1021–1025

Rao SS (1996) Engineering optimization: theory and practice, 3rd edn.
Wiley, New York

Ray T, Liew KM (2001) A swarm with an effective information
sharing mechanism for unconstrained and constrained single

146 J. Wang, Z. Yin

http://citeseer.ist.psu.edu/500714.html
http://citeseer.ist.psu.edu/500714.html
http://clerc.maurice.free.fr/pso/Fuzzy_Discrete_PSO/Fuzzy_DPSO.htm
http://clerc.maurice.free.fr/pso/Fuzzy_Discrete_PSO/Fuzzy_DPSO.htm


objective optimization problems. In: Proceedings of the 2001
Congress on Evolutionary Computation, IEEE, Piscataway, NJ,
pp 75–80

Ray T, Liew KM (2003) Society and civilization: an optimization
algorithm based on the simulation of social behavior. IEEE Trans
Evol Comput 7(4):386–396

Runarsson TP, Yao X (2000) Stochastic ranking for constrained
evolutionary optimization. IEEE Trans Evol Comput 4(3):284–
294

Runarsson TP, Yao X (2005) Search biases in constrained evolution-
ary optimization. IEEE Trans Syst Man Cybern C Appl Rev 35
(2):233–243

Sandgren E (1990) Nonlinear integer and discrete programming in
mechanical design optimization. ASME J Mech Des 112(2):223–
229

Sedlaczek K, Eberhard P (2006) Using augmented Lagrangian particle
swarm optimization for constrained problems in engineering.
Struct Multidisc Optim 32:277–286

Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In:
Proceedings of the1998 IEEE Congress on Evolutionary Com-
putation. IEEE, Piscataway, NJ, pp 69–73

Venter G, Sobieszczanski-Sobieski J (2004) Multidisciplinary optimi-
zation of a transport aircraft wing using particle swarm
optimization. Struct Multidisc Optim 26:121–131

Ranking selection-based particle swarm optimizer 147


	A ranking selection-based particle swarm optimizer for engineering design optimization problems
	Abstract
	Introduction
	Particle swarm optimizer
	Ranking selection-based particle swarm optimizer
	Separation of objective function and constraints
	Partitioning of discrete variables
	Ranking selection
	Ranking and memorizing of historical positions
	Ranking of permissible values
	Selection

	Updating of position and velocity of particle
	XC, XI, PI segment
	XDC segment

	Algorithm framework

	Numerical examples
	Example 1: spring design
	Example 2: welded beam design—case 1
	Example 3: welded beam design—case 2
	Example 4: pressure vessel design
	Example 5: four-stage gear train design
	Example 6: g13 function

	Discussions
	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


