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Abstract Michell’s problem of optimizing truss topology
for stress or compliance constraints under a single load
condition is solved analytically for plane trusses having a
square-shaped line support. Geometrical characteristics of
the Hencky nets giving the truss layout are expressed in
terms of Lommel functions. Analytically derived truss
volumes for the above problem are compared with those
of trusses supported along circles of equivalent area. Some
general implications of the results are also discussed.
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1 Introduction

The paper deals with plane Michell trusses transmitting
given point loads outside a given square-shaped line
support. The limit stresses in tension and compression
are set to be equal. The present study is an extension of
the results in papers by Lewiński et al. (1994a, b),
Rozvany (1998) and Lewiński and Rozvany (2007, 2008).

Optimality criteria for Michell trusses and methods for
deriving an exact solution were summarized by Lewiński
and Rozvany (2007).

Numerical solutions by a level set method for the
considered class of problems were obtained by Allaire and
Jouve (2006).

For the longest distance of a point load P from the
square support, for which the solution is derived in this
paper, the exact optimal truss layout is shown in Fig. 1.

2 General implications of the solutions presented

2.1 Admissible load directions and superposition principle

As in several other papers of the authors, the optimal
layouts in this paper are valid, if out of the two truss
members intersecting at that load, one is in tension and the
other one in compression. This can be verified by a simple
force diagram (see Fig. 2a, in which “+” indicates tension
and “−” denotes compression.

Moreover, the same layout is valid for any number of
simultaneous loads, if (1) they are oriented in accordance
with the above rule and (2) in any given member they all
cause forces of the same sign. Some admissible point loads
and distributed loads are shown in Fig. 2b.

2.2 Concentrated and distributed members in Michell
trusses

In Michell trusses for point loads, we usually have
concentrated and “distributed” members. Prager and
Rozvany (1977) called such structures “truss-like continua”.
For a single point load P, prismatic concentrated members
(of constant cross-sectional area) occur along the bound-
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aries of the layout in Fig. 1 (indicated by thicker lines).
However, no concentrated members occur, if only distrib-
uted loads act on the same structure.

“Distributed members” have an infinitesimal spacing and
infinitesimal cross-sectional area, but their density per unit
width is usually finite and varying. In Fig. 1, their density
takes on an infinite value only at the corners of the square
support, where an infinite number of distributed members
from a circular fan meet. Distributed members can also be
visualized as prismatic “fibers” (of constant cross-sectional
area), whose spacing varies along the structure.

2.3 Primal and dual method for calculating truss volumes

The density of the distributed members is integrable.
Integration gives the material volume of the distributed
members. To derive the total volume by the “primal”
method, the volume of concentrated members must be
added to this. This method is fairly laborious, it was
performed for another class of problems by Graczykowski
and Lewiński (2005, 2006, 2007).

As noted already by Michell (1904), the total truss
volume may also be calculated from the virtual work of the
external load(s), that is, from the product of the loads and
the “adjoint” displacement(s) at (and in the direction) of the

loads. Michell’s problem is actually “self-adjoint”, so that
real strains along nonvanishing members are proportional to
the adjoint strains along the same lines. For further
explanations, see the paper by Lewiński and Rozvany
(2007), Sections 2 through 5.

2.4 Multi-region Michell topologies

Most of the published Michell truss solutions have relatively
few “regions” (subsets of the design domain, for which the
adjoint strain fields and member geometry is described by a
single set of equations). This applies particularly to solutions
derived by the Hemp group (e.g., Hemp 1973). In the simple
illustrative example in Section 4, Lewiński and Rozvany
(2007), we had only two optimal regions.

The solution in Fig. 1 consists of 40 regions, namely (a)
14 (square or triangular) regions with orthogonal straight
trajectories (lines of principal strains), (b) 20 regions having
straight trajectories in one direction only, and (c) 6 regions
having only curved, orthogonal trajectories.

In Fig. 1, there are no members on the interior of the
square and triangular regions with straight trajectories, if we
consider only the load P as indicated. However, this is not
necessarily so if loads are applied elsewhere (for example
somewhere along the line segment PS in Fig. 1).

Fig. 1 The longest cantilever considered. Force P must be directed within the fans indicated
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2.5 Loads inside a square support

This class of problems was fully solved earlier, see
Rozvany and Gollub (1990) and Rozvany et al. (1997).
For this class of problems, at least one optimal layout
consists of one or two bars, although some others with the
same volume may have more. Moreover, the number of
optimal regions is usually four or less. Some very simple
illustrative solutions are shown in Fig. 3.

Figure 3a shows the optimal Michell layouts for vertical
point loads inside a square-shaped support. In the two side-
regions, the solution consists of two bars at ±45 degrees to
the vertical. In the central regions, the optimal layout
consists of a single vertical bar. For comparison, an optimal
truss layout is shown for a vertical load outside the square
support, which is similar to the ones in the two side-regions
inside, but the region boundary for its validity is at 1:1,
instead of 1:2.

Figure 3b shows the optimal Michell layout for a point
load along the diagonal of the square-shaped line support.
The above papers actually give analytical expressions for a
point load inside the square in any location and any
direction.

The second paper describes also a computer program for
deriving analytically the optimal Michell layout for a point
load inside any convex polygonal boundary.

2.6 Cognitive procedure for deriving exact optimal
topologies

As noted earlier (Lewiński and Rozvany 2007), the
derivation of a complex new optimal topology requires
two cognitive stages. First, the topology of the optimal
regions must be guessed correctly, which (in terms of
cognitive psychology) requires “intuition”, “creative think-
ing”, or “insight”, i.e., cannot be done by deductive
reasoning. Second, the exact geometry needs to be
determined quantitatively for the guessed region topology,
showing that the assumed solution does satisfy all optimal-
ity criteria. The second stage is a deductive procedure, but
extremely laborious, requiring advanced mathematical
treatment. The above procedure was illustrated on a simple
example in the above-cited paper, but the effort required for
more advanced examples is considerably greater.

The first “intuitive” stage of the above cognitive
procedure can be helped by discretized numerical solutions.
For example, in deriving the exact analytical solution for
the “MBB beam” in Lewiński et al. (1994b), for the region
topology Zhou’s numerical solutions with the SIMP
method have given a clue. However, the exact solutions
in the current paper are too complicated for guessing them
on the basis of a discretized layout by presently available
numerical methods and computer capabilities.

a

b

Fig. 2 Admissible simultaneous loads for the optimal layout in Fig. 1
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The region topology of the solution in Fig. 1 was
correctly guessed by the second author more than a decade
ago (Rozvany et al. (1995), conference presentation 1993;
diagram repeated in Fig. 4 of Lewiński and Rozvany 2007).

For this region topology, the exact optimal geometry was
derived by the first author, taking advantage of the fact that
the considered solution consists of only so-called “T-
regions” (see section 2 of Lewiński and Rozvany 2007).
In this type of regions, the two principal strains have
opposite signs but constant magnitude and form so-called
Hencky nets, which are well known from the theory of
plasticity. They can be derived by satisfying continuity of
the adjoint displacements along region boundaries and
kinematic support conditions. The derivations are so
extensive that much detail had to be left out of this paper
but can be obtained from the first author.

It is to be remarked that once a number of exact
analytical solutions have been derived for a certain class
of load and support conditions, it is possible to observe
some regular features of these solutions and to construct a

method for deriving systematically solutions for the entire
class of problems, even by computer. As mentioned, such a
program was developed for nonnumeric derivation of
optimal truss topologies for a point load inside any convex
polygonal line support (Rozvany et al. 1997). Investigation
of exact optimal grillages (beam systems) progressed much
further already some 20 years ago, making it possible to
derive the optimal topology in a closed analytical form
(even by computer) for almost any support and load
condition. For a brief overview, see the review article by
Rozvany et al. (1995).

3 Conventions adopted for referring to earlier
publications

For the sake of brevity the equation of number (N) of
Lewiński et al. (1994a) will be referred to as Eq. (a.N). We
shall frequently use mathematical results of section 2 of the
above-mentioned paper and of appendices to this paper and
to Graczykowski and Lewiński (2006, part I), without
specifically mentioning this. To make the paper possibly
compact, almost all details of the analytical derivations are
omitted. The results will be expressed in terms of the
functions: Gn (α, β ) and Fn (α, β ), see Eqs. (a.1, a.2), with
integer indices n. They will be called Chan’s functions
to honor H.S.Y. Chan’s (1963, 1964, 1967, 1975) publi-
cations, which paved the way for further progress. The
equation (N) [or Fig. M] of Part II or Part III, or of
Lewiński and Rozvany (2007, 2008) will be referred to
as Eq. (II.N) or Eq. (III.N) [Fig. II.M, Fig. III.M] for
brevity.

The following new functions will be used to shorten
notation:

Tn α; βð Þ ¼ Gn α; βð Þ þ Gnþ1 α; βð Þ
Hn α; βð Þ ¼ Fn α; βð Þ þ Fnþ1 α; βð Þ ð3:1Þ

The points like P, R, B, A, N will be printed as straight
fonts, while the mathematical symbols, like functions A (α,
β ), B (α, β ) will be printed in italic. The force P has
magnitude P and is applied at point P.

The notation used follows that of Hemp (1973), Chan
(1967), Lewiński et al. (1994a) and Lewiński and Rozvany
(2007, 2008).

4 Lamé coefficients for Hencky nets in optimal domains

The Hencky net for the exterior of the square E3RNC3 is
described in Fig. 4. The square dimensions are: RNj j ¼
a; RE3j j ¼ a; TRj j ¼ r; r ¼ a

ffiffiffi
2

p
=2 or a ¼ ffiffiffi

2
p

r.
In the first step, we shall find the Lamé coefficients A

and B in the regions depicted in Fig. 4. The regions RAN,

a

b

Fig. 3 Loads inside a square support
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RBA, NAC, ABDC, BB1D1D, RBB1E1, DD1OG1, RE1E2,
RE2E3 have been analyzed in Lewiński and Rozvany
(2007, 2008), and all the analytical formulae for A and B
were found there. Our aim here is to extend these results to
the further domains.

4.1 Domain B1D1HD
0
1

The Hencky net is based on two curves: B1D1 and B1D
0
1.

We introduce (α, β) coordinates within B1D1HD
0
1 such that

B1 has coordinates (0,0), B1D1 is the α-line with β=0, and
B1D

0
1 is the β-line with α=0.

The fibers along the β lines will be in compression. Since
both α and β lines are curved, we have here: �(α, β)=β−α
where the angle �, see Hemp (1973), is referred to the x-axes
of the (x,y) frame of origin at B1. Inclination of D1O shows
that φ ¼ �π=4 at D1. Thus a ¼ p=4 along D1H and b ¼
p=4 along D

0
1H, by symmetry with respect to the B1H axis.

The Lamé fields A (α, β), B(α, β) in the domain
B1D1HD

0
1 satisfy the equations (a.51, a.52). They will be

found by using Riemann’s formula (a.17). It has the
following form for A at (l, μ)

A l; μð Þ ¼ A 0; 0ð ÞG0 l; μð Þþ
þ
Z l

0
G0 l� α; μð Þ @A α; 0ð Þ

@α
dαþ

þ
Z μ

0
G0 l;μ� βð Þ @A 0; βð Þ

@β
dβ ð4:1Þ

where G0 (l, μ) is given by Eq. (a.1). Since @A 0;βð Þ= @β ¼
B 0;βð Þ we should recall the formulae for A (α, 0) and
B (0, β ) found in Lewiński and Rozvany (2007). We note
that A is continuous along B1D1 and B–along B1D

0
1. By

using the results from the paper above one obtains

A α; 0ð Þ
r

¼ 1þ T0
p
4
;α

� �
B 0; βð Þ

r
¼ 1þ T0

p
4
; β

� �

Fig. 4 Parameterization of the Hencky net

(4.2)
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where T0=Tn for n=0, see (3.1). We note that A 0; 0ð Þ ¼
2þ p

4

� �
r. Substitution of (4.2) into (4.1) and appropriate

integration gives

A l; mð Þ
r

¼ T0 mþ p
4
; l

� �
þ T0 m; lþ p

4

� �
ð4:3Þ

B l; mð Þ ¼ A m; lð Þ ð4:4Þ
It is easy to check that the formulae above satisfy the

field equations (a.51, a.52) and the boundary conditions
(4.2). It is much easier to guess the results (4.3, 4.4) than to
derive them.

4.2 Domain D
0
1HH

0
1O

0

The results (4.3, 4.4) will be extended into the domain
D

0
1HH

0
1O

0 through the line D
0
1H, where b ¼ p=4. We

introduce the coordinate system ðα̂;β̂ Þ within D
0
1HH

0
1O

0

such that the β̂ ¼ 0 line coincides with the b ¼ p=4 line and
there α̂ ¼ α. The β̂ lines (or α̂ ¼ const) are straight. Let
Aðα̂;β̂Þ; Bðα̂;β̂ Þ represent Lamé fields in the domain

considered. We see that B=1, provided that β̂ measures a
distance from the D

0
1H line, such that β̂ ¼ r along O0H0

1.
Since the β̂ lines are straight, we note that φ ¼ � α̂ with
respect to the (x,y) Cartesian coordinate system at origin at D

0
1.

Thus
@A α̂;

^
β

� �
@
^
β

¼ 1, hence A α̂; β̂
� �

¼ β̂ þ f1 α̂ð Þ and

f1 α̂Þ ¼ A α̂; β̂ ¼ 0
� ��

. We recall that A is continuous

along D
0
1H, which implies f1 bað Þ ¼ A ba; p4� �

, where A is
given by (4.3). We eventually find

A α̂; β̂
� �

¼ β̂ þ r T0 p
2 ; α̂

� �þ T0 p
4 ; α̂þ p

4

� �� �
B α̂; β̂
� �

¼ 1
ð4:5Þ

4.3 Domain D1HH1O

The Hencky net is symmetric with respect to B1H line, which

implies the following formulae for A α̂; β̂
� �

; B α̂; β̂
� �

within the domain D1HH1O, parameterized by the coordi-

nate system α̂;β̂
� �

, as shown in Fig. 4

A α̂; β̂
� �

¼ 1

B α̂; β̂
� �

¼ α̂þ r T0 p
2 ; β̂

� �
þ T0 p

4 ; β̂ þ p
4

� �h i ð4:6Þ

We note that β̂ ¼ β along D1H, where α=0 and α̂ ¼ 0.
Along OH1, where α̂ ¼ r we have B ¼ B r; β̂

� �
, with B(·,·)

given by (4.6). The net within OH¶¶1H¶¶G1 is constructed by
symmetry with respect to the OS axis, hence the details can
be omitted.

4.4 Domain OH1SH
0 0
1

We introduce the parametric lines (α, β), both curved, such
that �=β−α with respect to the (x,y) frame of origin at
O. Along OH1 ba ¼ r and now α=0. Along OH

0 0
1 we

have β=0. We note that a ¼ p=4 at H1, hence b ¼ p=4
along H1S and a ¼ p=4 along H

0 0
1S. By symmetry with

respect to OS we write the formula for A along OH
0 0
1

A α; 0ð Þ
r

¼ 1þ T0
π

2
; α

� �
þ T0

π

4
;αþ π

4

� �
ð4:7Þ

The field B along OH1 is given by B (0, β)=A(β, 0) with
A(β, 0) given by (4.7). We recall that @A 0;bð Þ

@b ¼ B 0; bð Þ and
use (4.1). Now the integration is much more complex than
previously. We use the available integration formulae of
Lewiński et al. (1994a) and from the Appendix of the present
paper. In particular, the formulae (A.5–A.7) are applied
for S=G, n=0, n=1. Rather lengthy derivation gives

A 1; μð Þ ¼ T0 μþ π
4 ; 1þ π

4

� �þ T0 μ; 1þ π
2

� �þ
þT0 μþ π

2 ; 1
� �

B 1; μð Þ ¼ A μ; 1ð Þ
ð4:8Þ

One can verify that A, B satisfy (a.51) and the boundary
conditions along β=0 and α=0. This confirms (4.8), since
such fields A, B are uniquely determined.

4.5 Domain H1SS1J1

We introduce the parameterization ea;eb� �
such that eb ¼ 0

is equivalent to b ¼ p=4, the eb lines are straight such that
φ ¼ �eα with respect to (x,y) frame of origin at H1. The

boundary line J1S1 is given by eb ¼ r. Thus B ea;eb� �
¼ 1.

We use:
@A ea;eb� �

@eb ¼ 1 and recall the boundary condition:

A ea; 0ð Þ ¼ A ea; b ¼ p=4Þð , where the latter function A(·,·) is
defined by (4.8). This yields

A eα; eβ� �
¼ eβ þ r T0 π

2 ; eαþ π
4

� �þ�
þT0 π

4 ; eαþ π
2

� �þ T0 3
4 π; eα� ��

;

B eα; eβ� �
¼ 1

ð4:9Þ

The Lamé fields within other domains of Fig. 4 can be
constructed by symmetry or refer to Cartesian frames, as in
HH1J1H

0
1, for instance.

5 Virtual displacement fields

The virtual displacement fields (u,v) within RAN, RBA,
NAC, ABDC, BB1D1D, BB1E1R, RE1E2, E2E3R have been
constructed in Lewiński and Rozvany (2007). One should
put γ ¼ π=2 and θ ¼ π=4 into all reported results.
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The virtual displacements (u,v) within B1D
0
1D

0E1 can be
constructed by antisymmetric reflection with respect to the
B1H axis. Thus, the first new problem concerns:

5.1 Domain B1D1HD
0
1

This domain is parameterized by (α, β) and by (x,y) with
origin at B1. To find u (α, β) and v (α, β) we follow the
idea proposed in Sec. 3 of Lewiński et al. (1994a). We
construct the auxiliary fields u0 (α, β), v0 (α, β) satisfying

@2u0

@a@b
� u0 ¼ 0;

@2v0

@a@b
� v0 ¼ 0 ð5:1Þ

and the boundary conditions along the β=0 and α=0 lines:

u0 α; 0ð Þ ¼ u α; 0ð Þ � 2αB α; 0ð Þ
u0 0; βð Þ ¼ u 0; βð Þ
v0 α; 0ð Þ ¼ v α; 0ð Þ
v0 0; βð Þ ¼ v 0; βð Þ þ 2βB 0; βð Þ

ð5:2Þ

The value v0 (l, μ) is given by Riemann’s formula (4.1) or

v0 1; μð Þ ¼ v0 0; 0ð ÞG0 1; μð Þþ
þR 1

0 G0 1� α; μð Þ @v0 α; 0ð Þ
@α dαþ

þR μ
0 G0 1; μ� βð Þ @v0 0; βð Þ

@β dβ

ð5:3Þ

and the formula for u0 (l, μ) is similar. Upon finding (u0, v0)
we construct (u,v) by Eqs (a.66):

u0 α; βð Þ ¼ u α; βð Þ � 2αA α; βð Þ
v0 α; βð Þ ¼ v α; βð Þ þ 2βB α; βð Þ ð5:4Þ

By antisymmetry of (u,v) along B1H axis it is sufficient
to find v0 (α, β) and then predict: u0 (α, β)=−v0 (β, α).

We have also: u(α, β)=−v (β, α)
Thus to find v0 (l, μ) within B1D1HD

0
1, one should write

down the boundary conditions along B1D1 and B1D
0
1.

By using the results of Lewiński and Rozvany (2007,
2008) one finds

v0 α; 0ð Þ
r

¼ �1� 1þ π
2

� �
G0 α;

π
4

� �
� π

2
G1 α;

π
4

� �
v0 0; βð Þ

r
¼ �1� π

2
� G0 β;

π
4

� �
ð5:5Þ

Note that v0 0; 0ð Þ ¼ �2� p=2. We substitute these
results into (5.3), use appropriate differentiation and

integration rules reported in Lewiński et al. (1994a) and
Graczykowski and Lewiński (2006) to arrive at

v0 1;μð Þ
r ¼ � 1þ π

2

� �
G0 1; μþ π

4

� �þ
�G0 μ; 1þ π

4

� �� π
2 G1 1; μþ π

4

� � ð5:6Þ

To find v (l, μ) we should use (5.4)2 and expression
(4.4) for B (l, μ). Moreover, u(l, μ) =−v(μ, l). The rigid
rotation reads

w a; bð Þ ¼ w 0; 0ð Þ � 2 a þ bð Þ ð5:7Þ
where w 0; 0ð Þ ¼ w B1ð Þ ¼ �1� p=2, see section 7 in
Lewiński and Rozvany (2007).

5.2 Domain D
0
1HH1O0

Construction of the virtual displacements in this region is
based upon different ideas than in the previous case. We
should follow the lines of reasoning proposed by Chan
(1963) and revisited in Sec. II.7. We start with rigid
rotation. It is given here by

w ba;bb� �
¼ w D

0
1

� �
� 2ba ð5:8Þ

where, by (5.7), w D
0
1

� � ¼ �1� p. To find (u, v) we apply
Eqs. (II.24)

@u

@bb ¼ �w ba;bb� �
;

@v

@bb ¼ �1 ð5:9Þ

with w ba;bb� �
given by (5.8). Integration gives

u bα; bβ� �
¼ 1þ πþ 2bαð Þbβ þ f2 bαð Þ;

v bα; bβ� �
¼ �bβ þ f1 bαð Þ

ð5:10Þ

where

f1 bað Þ ¼ v ba; 0ð Þ; f2 bað Þ ¼ u ba; 0ð Þ ð5:11Þ
The values of u ba; 0ð Þ; v ba; 0ð Þ, along D

0
1H can be found by

continuity along this line, using (5.6), (5.4). This gives

u bα; bβ� �
r

¼ 1þ πþ 2bαð Þbβ
r

þ
þ 1þ π

2
þ 2bα� �

G0 bαþ π
4
;
π
4

� �
þ

þ 1þ 2bαð ÞG0 bα; π
2

� �
þ 2bαG1

π
2
; bα� �

þ
þ 2bαþ π

2

� �
G1

π
4
; bαþ π

4

� �
v bα; bβ� �

r
¼ �

bβ
r
� G0 bα; π

2

� �
� πG0 bα; π

2

� �
þ

� 1þ π
2

� �
G0

π
4
; bαþ π

4

� �
þ

�πG1 bα; π
2

� �
� π

2
G1 bαþ π

4
;
π
4

� �
(5.12)
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5.3 Domain D1HH1O

This domain is parameterized by (ba; bb), see Fig. 4, such
that ba ¼ r along OH1, where bb varies from 0 on D1O to π/4
on HH1. Since the virtual displacement fields are antisym-
metric with respect to B1H, the results (5.12) are trans-
formed to the form

u bα; bβ� �
r

¼ bα
r
þ G0

bβ; π
2

� �
þ πG0

bβ; π
2

� �
þ

þ 1þ π
2

� �
G0

π
4
; bβ þ π

4

� �
þ

þπG1
bβ; π

2

� �
þ π

2
G1

bβ þ π
4
;
π
4

� �
v bα; bβ� �

r
¼ �

�
1þ πþ 2bβ�bα

r
þ

� 1þ π
2
þ 2bβ� �

G0
bβ þ π

4
;
π
4

� �
þ

� 1þ 2bβ� �
G0

bβ; π
2

� �
� 2bβG1

π
2
; bβ� �

þ

� 2bβ þ π
2

� �
G1

π
4
; bβ þ π

4

� �

ð5:13Þ

The rigid rotation is expressed by

w ba; bb� �
¼ �1� p � 2bb ð5:14Þ

and ω =−1−π at D1. Note that behavior of ω is symmetric
due to antisymmetry of the problem.

5.4 Domain HH1J1H
0
1

Let this domain be parameterized by (x,y) frame with origin
at H such that y=0 along HH1 and x=0 along HH

0
1, see

Fig. 4. Displacements (u, v) along (x,y) are expressed by
(II.9) or by

u ¼ xþ C1yþ D1; v ¼ �y� C1x� D1 ð5:15Þ

where

C1 ¼ 1þ 3
2 π

D1
r ¼ 2þ 3

2 π
� �

G0
π
4 ;

π
2

� �þ π
2 G1

π
2 ;

π
4

� �þ
þπG1

π
4 ;

π
2

� � ð5:16Þ

The field (u,v) is compatible with results (5.12, 5.13)
along HH

0
1 and HH1. The field ω is constant: w ¼ �1� 3

2 p.

5.5 Domain OH1SH
0 0
1

We use the Hencky net (α, β) such that α=0 along OH1,
α=π/4 along H

0 0
1S; b ¼ 0, β=0 along OH

0 0
1 and β=π/4

along H1S. Here φ= β−α, corresponding to (x,y) frame of
origin at point O, see Fig. 4. Since ω(O)=−1− π, we have

w a; bð Þ ¼ �1� p � 2 a þ bð Þ ð5:17Þ
Knowing (u, v) and (A, B) along OH1 and OH

0 0
1 we can

find v0 along these lines

v0 α; 0ð Þ
r

¼ �1� 1þ πð ÞG0 α;
π
2

� �
þ

� 1þ π
2

� �
G0

π
4
;αþ π

4

� �
þ

�πG1 α;
π
2

� �
� π

2
G1 αþ π

4
;
π
4

� �
v0 0;βð Þ

r
¼ � 1þ πð Þ � 1þ π

2

� �
G0 β þ π

4
;
π
4

� �
þ

�G0 β;
π
2

� �
� π

2
G1

π
4
;β þ π

4

� �
ð5:18Þ

hence

v0 0; 0ð Þ
r

¼ �2� π� 1þ π
2

� �
G0

π
4
;
π
4

� �
þ

� π
2
G1

π
4
;
π
4

� �
ð5:19Þ

To find v(1, μ) at arbitrary point (1, μ) of the domain
OH1SH00

1 we apply the formula (5.3). We insert (5.18), use
the differentiation rules (a.4) and the available integration
rules, like e.g. (A7) to obtain v0(α, β) = −u0(β, α),where

u0 α;βð Þ
r

¼ 1þ πð ÞG0 β;αþ π
2

� �
þ

þ 1þ π
2

� �
G0 αþ π

4
;β þ π

4

� �
þ

þ πG1 β; αþ π
2

� �
þ

þ π
2
G1 β þ π

4
;αþ π

4

� �
þ G0 α;β þ π

4

� �
ð5:20Þ

The fields (u, v) are given by (5.4), by the formulae
above and by (4.8). They satisfy the required antisymmetry
relation: u(α, β) =−v (β, α).

5.6 Domain H1SS1J1

This domain is parameterized by (ea;eb) with origin at H1

and by the Cartesian frame (x, y) with the same origin. Here
φ eα; eβ� �

¼ �eα, because the eb lines are straight. The (u, v)
fields are constructed the same way as in the domain
D1HH1O′. We note that

w ea;eb� �
¼ �1� 3

2
p � 2ea ð5:21Þ

which is compatible with (5.17). Then we derive

u eα; eβ� �
¼ 1þ 3

2 πþ 2eα� �eβ þ u0 eα; π4� �þ
þ2eαA eα; π4� �

v eα; eβ� �
¼ �eβ þ v0 eα; π4� �� π

2 B eα; π4� � ð5:22Þ
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where u0 eα;π=4ð Þ; A eα;π=4ð Þ; v0 eα;π=4ð Þ; B eα;π=4ð Þ are
values of the functions u0 (α, β), A(α, β), v0(α, β), B(α, β)
corresponding to the domain OH1SH00

1. Along the line SS1
we have

u
π
4
; eβ� �

¼ 1þ 2πð Þeβ þ u0
π
4
;
π
4

� �
þ π

2
A

π
4
;
π
4

� �
v

π

4
; eβ� �

¼ �eβ þ v0
π

4
;
π

4

� �
� π

2
B

π

4
;
π

4

� � ð5:23Þ

with u0, v0, A, B referring to the OH1SH
0 0
1 domain.

5.7 Domain SS1ZS
0 0
1

The domain is parameterized by Cartesian frame (x, y) of
origin at S, such that Z=Z(r, r). The displacements (u, v) are
directed along (x, y) and are given by

u ¼ xþ C1yþ D1; v ¼ �y� C1x� D1 ð5:24Þ

where

C1 ¼ 1þ 2p; D1 ¼ u0
p
4
;
p
4

� �
þ p

2
A

p
4
;
p
4

� �
ð5:25Þ

Here u0, A refer to the OH1SH
0 0
1 domain. The rigid

rotation is constant

w ¼ �1� 2p ð5:26Þ
We note that u(x, y)=−v(y, x) due to antisymmetry.

6 Geometry of the Hencky net

Before deriving the volumes of Michell structures for the
considered class of problems, we shall discuss the descrip-
tion of parametric lines α=const and β=const, including
coordinates of nodal points, like D1, H, ..., Z.

We have introduced the local Cartesian frames (x, y) in
each region. For theoretical aims, it is sufficient to define
the parametric lines α and β within these local frames. To
develop a computer program for drawing of these lines, all
the formulae should be referred to one global Cartesian
system, e.g., to the (x, y) frame with its origin at A. The
parametric lines are expressed in terms of Fn(α, β)
functions, see (a.2), which are certain integrals of
Gn(α, β) functions, see (a.16). Computation of the values
of Fn(α, β) are much more time consuming than compu-
tation of Gn(α, β), expressed by rapidly convergent series.

The parametric lines (α, β) within E3E2E1B1D1OG1B
0
1

E
0
1E

0
2C3 are constructed in Lewiński and Rozvany (2007).

Our aim is to extend these results to the domain
C

0
1G

0
1O

0H
0
1J1S1ZS

0 0
1J

0 0
1H

0 0 0
1 O

0 0 0
C

0 0 0
1 C

0
2, see Fig. 4.

The coordinates x(α, β), y(α, β) within ABDC domain
are expressed by (II.47), (II.48). We note that (x1, y1)

coordinates of point A are (0, 0). The (x1, y1) coordinates of
points ea;eb� �

of the domain BDD1B1 are given by (58) of
the paper mentioned above. The same (x1, y1) point has the
coordinates (x, y) given by x=x1, y+r=y1; B1 is the origin
of the (x, y) frame, see Fig. 4.

6.1 Domain B1D1HD
0
1

The coordinates x(α, β), y(α, β), where B1 is the origin of the
(x, y) system considered, are expressed by x a; bð Þ; y a; bð Þ
according to (II.52) or (a.58). Just the fields x; yð Þ are our
convenient unknowns, since they are governed by a relatively
easy set of equations (a.55) and satisfy equations of form
(5.1). By using the results (II.58) one can find the boundary
values of x along the lines B1D

0
1 and B1D1

x α;0ð Þ
r ¼ sinα� cosαþ H0 α; π4

� �
y 0;βð Þ

r ¼ sin β � cosβ þ H0 β; π4
� � ð6:1Þ

where H0 is defined by (3.1)2. We remember that

@x 0; bð Þ
@b

¼ y 0; bð Þ

Thus, the Riemann formula reads

x 1; μð Þ ¼ x 0; 0ð ÞG0 1;μð Þþ
þR 1

0 G0 1� α; μð Þ @x α;0ð Þ
@α dαþ

þR μ
0 G0 μ� β; 1ð Þy 0;βð Þdβ

ð6:2Þ

substitution of (6.1) and appropriate integration gives

x 1;μð Þ
r ¼ sin 1� μð Þ � cos 1� μð Þþ

þH0 1;μþ π
4

� �þ H1 μ; 1þ π
4

� � ð6:3Þ

and y l;mð Þ ¼ x m; lð Þ. Here, H0, H1 are defined by (3.1). To
derive (6.3), one should make use of identities (a.4–a.14) and
of integration rules of the Appendix. The functions x(1, μ),
y(1, μ) can now be found by (II.52).

Having found x(α, β), y(α, β) we can draw the boundary
lines: D1H (where a ¼ p=4) and D

0
1H (where b ¼ p=4) and

obtain position of point H. The Hencky net found in
B1D1HD

0
1 can be extended into the adjacent domains

D
0
1HH

0
1O

0 and D1OH1H. One notes that

B1Hj j ¼ �1þ H0
p
4
;
p
2

� �
þ H1

p
4
;
p
2

� �h i
a

or B1Hj j � 4:2195a. Moreover,

D1D
0
1

		 		 ¼ ffiffiffi
2

p
H0

p
4
;
p
4

� �
þ H1 0;

p
2

� �h i
a

or D1D
0
1

		 		 ¼ 3:28375a.
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This domain is parameterized by ba;bb� �
such that ba ¼ 0

corresponds to the line D1H. Let us take a point M p
4 ; b
� �

,
where p

4 ; b
� �

refer to the parameterization of B1D1HD
0
1.

The coordinates x p
4 ; b
� �

, y p
4 ; b
� �

found above refer to (x, y)
with origin at B1. The unit vector

e bð Þ ¼ cos b � p
4

� �
; sin b � p

4

� �h i
ð6:4Þ

of components referring to (x, y) with origin at B1 is
orthogonal to the line D1H at point M and directed towards
the domain D1OH1H. Let

rM bð Þ ¼ x
p
4
; b

� �
; y

p
4
; b

� �h i
; rM ¼ B1M



!
and

r ba;bb� �
¼ rM bb� �

þ bae bb� �
ð6:5Þ

The function r ba;bb� �
parameterizes the lines bb ¼ const

and ba ¼ const within the domain considered. For ba ¼ r,
we obtain the parameterization of the line OH1 and the (x, y)
coordinates of point H1. The coordinates of the Hencky net
in D

0
1HH

0
1O

0 are found by symmetry rules with respect to
B1H.

6.2 Domain OH1SH
0 0
1

The Hencky net is referred to the Cartesian system (x, y),
with origin at O. We are looking for x a; bð Þ, y a; bð Þ, which
fixes x(α, β), y(α, β) by (II.48). It is sufficient to find
x a; bð Þ since y b;að Þ ¼ x b;að Þ. To find x a; bð Þ we should
have the values x a; 0ð Þ (the line OH

0 0
1) and x 0; bð Þ along

OH1. We must correlate the coordinates (x, y) with origin at
B1 with the coordinates (x, y) with origin at B1 with the
coordinates (x, y) with respect to O, of the same point. Let
us start with fixing the coordinates (x0, y0) of point O

x0
r
¼ 3

2

ffiffiffi
2

p
� 1þ

ffiffiffi
2

p
x;

y0
r
¼ �1�

ffiffiffi
2

p

2
ð6:6Þ

where x ¼ H1
p
4 ;

p
4

� �
, in the (x, y) frame with origin at B1.

Let (x1, y1) be (x, y) coordinates with origin at B1 of a
certain point. Its (x, y) coordinates with respect to the (x, y)
frame of origin at O are given by

x ¼
ffiffi
2

p
2 x1 � x0ð Þ � y1 � y0ð Þ½ �

y ¼
ffiffi
2

p
2 x1 � x0ð Þ þ y1 � y0ð Þ½ � ð6:7Þ

The formulae above determine the coordinates of points
lying along OH1 and OH1

0 0
. This gives the formulae for

x; yð Þ coordinates of these points.

The line OH1
0 0

x α; 0ð Þ
r

¼ � 1þ ξð Þ cosαþ 2þ ξð Þ sinαþ
þH0 α;

π
2

� �
þ H1

π
4
;αþ π

4

� �
y α; 0ð Þ

r
¼ 1� 2þ ξð Þ cosα� 1þ ξð Þ sinαþ
þH0

π
4
;αþ π

4

� �
þ H1 α;

π
2

� �
ð6:8Þ

The line OH1

x 0;βð Þ
r

¼ 1� 2þ ξð Þ cos β � 1þ ξð Þ sinβþ
þH0

π
4 ;β þ π

4

� �þ H1 β; π2
� �

y 0;βð Þ
r

¼ � 1þ ξð Þ cos β þ 2þ ξð Þ sin βþ
þH0 β; π2

� �þ H1
π
4 ;β þ π

4

� �
ð6:9Þ

Here (α, β) are defined within OH
0 0
1SH1. One can prove

that at point O x 0; 0ð Þ ¼ 0; y 0; 0ð Þ ¼ 0.
To find x at a point (1, μ) we use (6.2). Substitution of

(6.8), (6.9) gives

x 1;μð Þ
r

¼ 2þ ξð Þ sin 1� μð Þ � 1þ ξð Þ cos 1� μð Þþ
þH0 1;μþ π

2

� �
þ H1 μ; 1þ π

2

� �
þ

þH1 μþ π
4
; 1þ π

4

� �
y 1;μð Þ ¼ x μ; 1ð Þ

The functions x(λ, μ), y(λ, μ) are then given by (a.58).
Derivation of (6.10) is lengthy. It requires multiple using
of properties (a.4–a.16), of the integration rule (A.7) for
Sn=Fn and of other integration rules reported in Lewiński
et al. (1994a), Graczykowski and Lewiński (2006, 2007)
and in the Appendix of the present paper.

Let us compute the distance |OS|. We note that
x q; qð Þ ¼ x q; qð Þ, hence OSj j ¼ ffiffiffi

2
p

x p
4 ;

p
4

� �
or

OSj j
r ¼ ffiffiffi

2
p �1� H1

π
4 ;

π
4

� �þ H0
π
4 ;

3
4 π

� �þ�
þH1

π
4 ;

3
4 π

� �þ H1
π
2 ;

π
2

� �� ð6:11Þ

or |OS|=10.57186a. Since AOj j ¼ ffiffiffi
2

p
1þ xð Þr, we find

ASj j
r ¼ ffiffiffi

2
p

H0
π
4 ;

3
4 π

� �þ H1
π
4 ;

3
4 π

� �� þ
þH1

π
2 ;

π
2

� � � ð6:12Þ

or |AS|=12.89382a. We compute yet H1H
0 0
1

		 		
H1H

0 0
1

		 		 ¼ ffiffiffi
2

p þ 2H0
π
4 ;

π
2

� �þ 2H1
π
4 ;

3
4 π

� �þ�
þ 2H1

π
4 ;

π
2

� ��
r

Or H1H
0 0
1

		 		 ¼ 8:381482a. Hence J1J
0 0
1 ¼ 9:7957a.

(6.10)
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6.3 Domains H1SS1J1, H
0 0
1SS

0 0
1J

0 0
1; SS1ZS

0 0
1

Let us take a point M of coordinates a; p
4

� �
defined as in the

previous domain. Point M lies on the H1S curve, see Fig. 4.
Its (x, y) coordinates are given by x a; p

4

� �
and y a; p

4

� �
,

defined as before. Thus if rM ¼ OM


!

, the

rM að Þ ¼ x a;
p
4

� �
; y a;

p
4

� �h i

where (x, y) have the origin at O. The unit vector of
components

e að Þ ¼ cos
p
4
� a

� �
; sin

p
4
� a

� �h i
ð6:13Þ

referred to the same (x, y) frame is orthogonal to H1S line at
point M, directed towards the H1SS1J1 domain. Let us
introduce the mapping

r ea;eb� �
¼ rM eað Þ þ ebe eað Þ ð6:14Þ

It determines the ea;eb� �
parametric lines within the

domain considered. The vector r ea; 0ð Þ indicates the points
along J1S1 and, in particular, gives the coordinates of point S1.

The net within H
0 0
1SS

0 0
1J

0 0
1 can be found by symmetry with

respect to OS.
The domain SS1ZS

0 0
1 is quadratic of side r. Thus, the

distance between A0 and Z equals

A0Zj j
a

¼ 3

2
þ H0

π
4
;
3

4
π

� �
þ

þH1
π
4
;
3

4
π

� �
þ H1

π
2
;
π
2

� �
ð6:15Þ

or |A0Z|=14.39382a.

7 Optimal truss volumes for special cases

The Hencky nets derived in this paper represent a class of
Michell cantilevers transmitting a given point load to the
edge E3RNC3, provided that this point load causes
antisymmetric stress distribution, i.e., averaged stress distri-
bution or distribution of force fields, see Graczykowski and
Lewiński (2007, Part III).

The cases of application of the force within O0B1

OK1O
0 0 0
C

0 0 0
1 C

0
1G

0
1, were discussed in Lewiński and Rozvany

(2007). We shall consider now new solutions for the case of
the point load applied outside the above-mentioned region.

7.1 Vertical point load between B1 and H

Assume that the load P of magnitude P is applied at point P
within B1D1HD

0
1, lying between B1 and H, see Fig. 5. Let

(αP, βP) be (α, β) coordinates of point P, as defined within
B1D1HD

0
1; 0 � aP � p

4. Assume for simplicity that P is
directed perpendicular to B1H.

Let the virtual displacement uP of point P be orthogonal
to B1P, or collinear with P:

uP ¼
ffiffiffi
2

p

2
u aP;aPð Þ � v aP;aPð Þð Þ ð7:1Þ

or uP ¼ ffiffiffi
2

p
u aP;aPð Þ. By using the results (5.4), (5.6),

(4.3), (4.4) we arrive at

u α;αð Þ
r

¼ 2þ π
2
þ 4α

� �
G0 α;αþ π

4

� �
þ

þ π
2
þ 2α

� �
G1 α;αþ π

4

� �
þ

þ 2αG1 αþ π
4
;α

� �
ð7:2Þ

The volume V of the lightest cantilever is given by, see
(a.157)

V ¼ 1

s0
P � v Pð Þ ð7:3Þ

Fig. 5 Case of P between B1 and H
Fig. 6 Case of P=J1. The ratio of the transverse to the longitudinal
dimension is close to the golden section ratio and equals 0.615
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where v(P) is the virtual displacement vector at point P.
Since P and v(P) are collinear we have V ¼ PuP=σ0 or
V ¼ Pa=s0ÞV aPð Þ�

, where V að Þ is expressed by the r.h.s
of (7.2). The optimal cantilever is shown in Fig. 5. If the
force P is applied at B1 the volume of the optimal structure
equals V 0ð Þ ¼ 2þ p=2. For the case of P=H we find V ¼
V p

4

� �
or

V π
4

� � ¼ 2þ 3
2 π

� �
G0

π
4 ;

π
2

� �þ
þ πG1

π
4 ;

π
2

� �þ π
2 G1

π
2 ;

π
4

� � ð7:4Þ

hence V p
4

� � ¼ 26:59927:

7.2 Vertical point load at J1

Assume that P is applied at J1, perpendicularly to B1J1. The
virtual displacements at J1 are given by (5.15) or
u J1ð Þ ¼ 1þ C1ð Þr þ D1, with C1, D1 given by (5.16). The
volume of the optimal structure equals V ¼ Pa=σ0ð ÞV with
V ¼ u J1ð Þ=r or
V ¼ 2þ 3

2 π
� �

1þ G0
π
4 ;

π
2

� �� �þ π
2 G1

π
2 ;

π
4

� �þ
þ πG1

π
4 ;

π
2

� � ð7:5Þ

or V ¼ 33:31166. The optimal structure is shown in Fig. 6.
All edges of the square are used to support this

cantilever.

7.3 Vertical point load between O and S

Let point P lie between O and S and have coordinates
(αP, βP) within the (α, β) system. We note that the volume
of Michell’s structure equals V ¼ Pa=σ0ð ÞV αPð Þ with

Fig. 7 Cases of P at S, Z and Z1

Fig. 8 Graph of V for the case of P between R and J1
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V að Þ ¼ u a;að Þ=r for the case of P being orthogonal to the
OS line. By using (5.20) and (4.8) one finds

V αð Þ ¼G0 α;αþ π
4

� �
þ

þ 1þ πþ 4αð ÞG0 α;αþ π
2

� �
þ

þ 1þ π
2
þ 2α

� �
G0 αþ π

4
;αþ π

4

� �
þ

þ πþ 2αð ÞG1 α;αþ π
2

� �
þ

þ π
2
þ 2α

� �
G1 αþ π

4
;αþ π

4

� �
þ

þ2αG1 αþ π

2
;α

� �

ð7:6Þ

For the case of P=S we have a ¼ p
4 and V ¼ 84:6279.

The optimal cantilever is supported on E3RNC3, the section
E3C3 being not used, see Fig. 7.

7.4 Vertical point load at Z and Z1

Let P be orthogonal to OZ and be applied at Z. The virtual
displacement u at Z is given by (5.23). The volume of the
optimal cantilever is V ¼ Pa=s0ÞV

�
, where V ¼ u Zð Þ=r

or

V ¼ 2 1þ πð Þ þ G0
π
4 ;

π
2

� �þ 1þ 2πð ÞG0
π
4 ;

3
4 π

� �þ
þ 1þ πð ÞG0

π
2 ;

π
2

� �þ 3
2 πG1

π
4 ;

3
4 π

� �þ
þ πG1

π
2 ;

π
2

� �þ π
2 G1

3
4 π;

π
4

� � ð7:7Þ

hence V ¼ 92:911089:
We see that the interior of the support on E3C3 is not

used. If the force is applied in the middle of SZ or at Z1,
then the supporting bars start from the middle of E3C3, see
Fig. 7. The results of sections 7.1–7.4 are shown graph-
ically in Figs. 8 and 9.

7.5 Comparison with volumes of the cantilevers supported
on a circle

The lightest cantilever supported on a circle has been found
by Michell (1904). If the radius of the circle equals b, then
the volume of the optimal cantilever corresponding to the
force P orthogonal to its symmetry axis equals

Vc ¼ Pa

s0
2
L

a
ln

L

a

a

b

� �� �
ð7:8Þ

where L is the distance of point P to the center of the circle.
Let us now approximate the previous results by canti-

levers supported on an equivalent circle of center at T. We
choose the radius b of the equivalent circle in two manners,
by assuming

1. the area of the circle of radius b equals the area of the
square a×a. Then a ¼ ffiffiffi

π
p

b and Vc ¼ Pa=s0ÞVc1

�

a

b

Fig. 9 Graph of V for P between: a A and O b O and Z

Table 1 Volumes of Michell’s cantilevers supported on the a×a square and on the circles of radii b such that a=b ¼ ffiffiffi
π

p
; π2

Point P A B1 D O H J1 S Z

ξ ¼ L=a 1.0 1.7071 2.322 3.322 5.9266 6.9266 13.8938 14.8938
V 1.0 3.5708 6.074 11.2155 26.5993 33.3117 84.6279 92.9112
Vc1; a ¼ p

1
2b 1.1447 3.7801 6.5703 11.7794 27.8765 34.7401 89.0261 97.5040

100% V � Vc1

� �
V −14.47% −5.86% −8.17% −5.03% −4.80% −4.29% −5.20% −4.94%

Vc2; a ¼ πb=2 0.903 3.3677 6.0094 10.9769 26.4448 33.0629 85.6699 93.9062
100% V � Vc2

� �
V −9.68% −5.69% −1.06% 2.13% 0.58% 0.75% −1.23% −1.07%

The force is applied at points A, B, D, O, H, J1, S, Z in a locally antisymmetric manner
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Fig. 10 Optimal topology for a regular hexagonal support

Fig. 11 Optimal topology for an irregular polygonal support
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2. the perimeter of the circle of radius b equals the
perimeter of the square a×a.

Then a ¼ pb
2 and Vc ¼ Pa=s0ÞVc2

�
Thus, we have

Vc1 ¼ 2x ln
ffiffiffi
p

p
x

� �
; Vc2 ¼ 2x ln

px
2

� �
ð7:9Þ

where x ¼ L=a; L ¼ TPj j, T being the center of the circle
and of the square.

We note that Vc1 overestimates the value V , see Table 1.
The volume Vc2 assumes values close to V and only
slightly smaller than V , if the point P lies on the diagonal of
the supporting square. Note that the smaller b the greater
Vc. Since the circle (2) is greater than the circle (1), we have
Vc1 > Vc2 in all cases. However, only for two cases: P=H
and P=J1 the estimates Vc2 < V < Vc1 hold good. The
choice of the circle inscribed in the square b ¼ a=2ð Þ leads
to a further overestimate of V.

7.6 Brief outline of a proof that the optimal Michell
topology for a regular polygonal support tends to that
for a circular support when the number of sides
of the polygon approaches infinity

The solution for a circular support can be found in Hemp
(1973, Section 7.3). Assume that A1, A2, ..., An are vertices
of the polygon support, lying on the given circle. Let Bn be
vertices of right-angle triangles of equal sides AnBnj j ¼
Anþ1Bnj j such that Bn lie outside the polygon and

ff BnAnAnþ1ð Þ ¼ p
4
; ff BnAnþ1Anð Þ ¼ p

4
ð7:10Þ

An example of such triangles can be seen in Fig. 10. If n
tends to infinity then ff BnAnþ1Bnþ1ð Þ ! π=2, which means
that the fan regions (see again Fig. 10) between
Bn; Anþ1; Bnþ1 disappear. Moreover, since the side length
of the polygonal support approaches zero, the side length of
the triangles and of the empty square regions, as well as the
width of the regions with unidirectional fibers (cf. Fig. 10)
will also approach zero. The lines α=const, β=const
become tangent to BnAn; BnAnþ1 and with the circle they
enclose an angle p=4.

Due to rotational symmetry of the problem for n tending
to infinity, the Lamé fields A and B cannot depend on β−α;
they depend only on α+β, i.e., A ¼ f a þ bð Þ. Application
of Eq. (a.52) leads to the solution composed of logarithmic
spirals, see section 4.6 in Hemp (1973), which results in the
known Michell solution for the exterior of the circle.

8 Concluding remarks: further extensions

Using the procedure demonstrated in this paper, optimal
Michell topologies can also be derived readily for

1. square supports and loads at a greater distance than the
one in Fig. 1,

2. any convex polygonal support.

For a regular hexagonal support, for example, the
optimal region topology is shown in Fig. 10. The optimal
geometry of the regions on the left side of Fig. 10 can be
taken from Fig. 5 of the paper by Lewiński and Rozvany
(2007). The exact geometry would have to be derived only
for regions “a” through “d” in Fig. 10, by the method
already used previously.

The reader may pose the question, how to handle
nonregular convex polygonal supports? The answer is
relatively simple.

Unequal angles between sides is not a problem, this only
causes circular fans of differing angular width in the
solution. To see this, we may compare Figs. 1 and 10. If
the sides of the polygonal support are of unequal lengths,
then the triangular regions become of unequal size, and the
square regions for regular polygons become rectangular for
irregular ones. The above features of Michell layouts for
nonregular polygonal supports are illustrated with the
optimal region topology in Fig. 11, for which the optimal
geometry has not been derived yet.
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Appendix

By applying the Laplace transform method, see (a.28, a.29),
one can find

Z 1

0
G0 1� α;μð ÞG1 θ;αð Þdα ¼
G0 λ;μþ θð Þ � G0 1;μð Þ

ðA:1Þ

Z l

0
G0 l� a;mð ÞFn a; qð Þda ¼ Fnþ1 l;mþ qð Þ ðA:2Þ

where θ is arbitrary and n ≥ 0.
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Due to symmetry of convolution in (a.16), one findsZ l

0
G0 l� a;mð Þ cos a da ¼ F1 l;mð Þ ðA:3Þ

Z l

0
G0 l� a;mð Þ sin a da ¼ F2 l;mð Þ ðA:4Þ

Let Sn stand for Gn or Fn. Let

N1 ¼
Z l

0
G0 l� a;mð ÞSn�1 a þ q; qð Þda ðA:5Þ

N2 ¼
Z m

0
G0 m� b; lð ÞSnþ1 q; b þ qð Þdb ðA:6Þ

Then for arbitrary integer n and q 2 R one obtains

N1 þ N2 ¼ Sn lþ q;mþ qð Þ � Sn q; qð ÞG0 l;mð Þ ðA:7Þ
by using (a.23). The results for N1 and N2, separately, are
unknown.
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