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Abstract Parallel computing is an integral part of many
scientific disciplines. In this paper, we discuss issues
and difficulties arising when a state-of-the-art parallel
linear solver is applied to topology optimization prob-
lems. Within the topology optimization framework, we
cannot readjust domain decomposition to align with
material decomposition, which leads to the deteriora-
tion of performance of the substructuring solver. We
illustrate the difficulties with detailed condition num-
ber estimates and numerical studies. We also report
the practical performances of finite element tearing
and interconnection/dual–primal solver for topology
optimization problems and our attempts to improve it
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by applying additional scaling and/or preconditioning
strategies. The performance of the method is finally
illustrated with large-scale topology optimization prob-
lems coming from different optimal design fields: com-
pliance minimization, design of compliant mechanisms,
and design of elastic surface wave-guides.

Keywords Topology optimization ·
Parallel computing · Scalability · Domain
decomposition · Iterative solvers

1 Introduction

Topology optimization, or control in coefficients, has
become an increasingly popular methodology for sys-
tematically computing novel designs in many engineer-
ing disciplines owing to the flexible parametrization of
the design space that allows optimization algorithms to
efficiently explore it. Other advantages of using topol-
ogy optimization include the ease of integration with
existing computational codes in a variety of application
areas and the simplicity and efficiency of sensitivity
analyses. Since the pioneering paper by Bendsøe and
Kikuchi (1988), this computational approach has seen
tremendous development in academia and even some
adoption by industry. The number of research papers
on this topic is abundant and has been reviewed in a
recent monograph (Bendsøe and Sigmund 2003). There
are different schools of thought when it comes to han-
dling computational complexity associated with solving
the partial differential equations (PDEs) governing an
engineering system being optimized, many of which
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concentrate on constructing computational meshes in
an adaptive manner. However, some application ar-
eas require the use of uniform high-fidelity meshes to
capture the physics of the problem, including high-
frequency wave propagation problems, viscous flows
at high Reynolds numbers in complicated geometries,
and computational lattice-based methods, such as the
lattice Boltzmann method. Time-wise, repeatedly solv-
ing PDEs on such high-resolution computational grids
makes parallel computing a must and an integral part
of any optimal design procedure for such applications.

No one would argue that the computational power
has vastly increased since the publication of the first
paper on topology optimization (Bendsøe and Kikuchi
1988) or since the publication of the popular 99 line
Matlab educational code for topology optimization
(Sigmund 2001); see Figs. 1a,b. Computing power
has recently reached previously unimaginable number
of 360 · 1012 floating point operations per second (360
Tera-FLOP), and Peta-FLOP (1015 FLOP) computers
are expected by the end of 2010. Furthermore, the cost
of computer hardware has steadily decreased, and par-
allel computing systems have become widely available.

However, analysis of the publications in the area of
topology optimization shows that the community does

not yet fully utilize the available parallel computing
hardware, as opposed to the situation in, for example,
the computational fluid dynamics or numerical linear
algebra communities. Furthermore, sizes of optimal
design problems solved using topology optimization
techniques and parallel computing reported in the lit-
erature (Borrvall and Petersson 2001; Kim et al. 2004;
Mahdavi et al. 2006; Vemaganti and Lawrence 2005)
become smaller and smaller in the recent years, while
the number of processors used for parallel topology
optimization remains essentially constant (see Table 1).
The issues of efficient parallel computing for topol-
ogy optimization in fluid mechanics were raised and
to some extent addressed by Evgrafov et al. (2006)
by switching from the finite element formulations to
efficiently parallelizable finite difference-type methods.
In this paper we will be concerned with more classical
linear elasticity problems, both in statics and forced
vibrations (quasi-statics), for which the finite element
method (FEM) is the method of choice when it comes
to discretizing the governing PDEs. Our goal is to
analyze the performance of parallel solvers for design
optimization purposes and to identify difficulties one
faces when trying to solve large-scale topology opti-
mization problems.
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Fig. 1 a Distribution of the number of processors in world’s
top 500 supercomputers over the years, see http://www.top500.
org/stats. b Top clock frequency of Intel processors over the past
years, see http://www.intel.com/pressroom/kits/quickrefyr.htm.
We emphasize that the diagram is displayed for the purpose of

presenting the tendency only and does not take into account
factors making the processors even more powerful such as the in-
crease of cache sizes, bus sizes, queuing and pipelining strategies,
and so on. Processors from other manufacturers also demonstrate
steady growth in performance over the years

http://www.top500.org/stats
http://www.top500.org/stats
http://www.intel.com/pressroom/kits/quickrefyr.htm
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Table 1 Representative
sizes of some topology
optimization problems
solved in recent years

Year Reference Max #DOFs Max #proc Spatial dim

2001 Sigmund (2001) 2.4 · 103 1 2D
2001 Borrvall and Petersson (2001) 6.63 · 105 32 3D
2004 Kim et al. (2004) 4.07 · 106 16 3D
2005 Vemaganti and Lawrence (2005) 1.15 · 105 32 2D
2006 Mahdavi et al. (2006) 2.56 · 104 32 2D
2006 Wang et al. (2007) 1.01 · 106 1 3D

For example, topology optimization is often em-
ployed at preliminary design stages (Duysinx and
Bruyneel 2002), whence there is no need to use high-
resolution finite element models. However, certain
physical phenomena require high fidelity simulations
to capture the physics of the problem. In fact, planar
optimal designs for wave propagation problems do
not require any postprocessing and can be manufac-
tured “as is” (Bendsøe 2006). We emphasize that the
word “planar” here refers to the design only, and in
particular, the case of surface waves requires full three-
dimensional (3D) high fidelity finite element modeling
(Rupp et al. 2006).

Furthermore, numerical scalability has not been
properly addressed in parallel topology optimization
papers. Generally, the computational science commu-
nity distinguishes between parallel and numerical scal-
abilities. Parallel scalability characterizes the ability
of an algorithm, its parallel implementation, and a
given parallel computer to demonstrate a speedup that
increases with the number of processors for a fixed
problem size. This is the kind of scalability that is
usually investigated in papers on parallel topology
optimization, but only on a limited number of proces-
sors, which does not allow one to reveal the true
amount of overhead related to inter-processor com-
munication. However, arguably, the objective of using
parallel computers for topology optimization purposes
is to make possible solution of large-scale 3D problems
rather than to solve fixed size problems faster, and here,
the notion of numerical scalability comes in handy.
A solution method is said to be numerically scalable
if its computational complexity grows asymptotically
linearly with the size of the problem. For example,
it is relatively simple to implement a finite element
assembly routine and a conjugate gradient (CG) iter-
ative solver on a distributed memory parallel computer
to achieve parallel scalability. However, if we start to
increase the finite element mesh resolution and hence
the problem size, more and more CG iterations will
be required to achieve a prescribed and fixed accu-
racy. Thus, while we achieve numerical scalability per
CG step, the whole solution procedure will not be

numerically scalable. In particular, the domain decom-
position algorithms cannot be numerically scalable, i.e.,
have a rate of convergence that is independent of the
number of subregions, unless a coarse space component
is included (Klawonn et al. 2002). Therefore, extrap-
olating the number of iterations required to solve the
finite element system using a CG algorithm as reported
in Mahdavi et al. (2006), Vemaganti and Lawrence
(2005), Wang et al. (2007) onto a larger number of par-
allel processors might be meaningless. In some works
(Mahdavi et al. 2006), the computational performance
is illustrated only on 2D problems; however, completely
different preconditioning strategies must be used to
keep iterative solvers numerically scalable in 2D and
3D, again, limiting practical applicability of such results.

At last, we would like to demonstrate that simply
having a state-of-the-art, both parallel and numerically
scalable linear solver is not sufficient to efficiently solve
topology optimization problems on a parallel com-
puter. As we will show, this is owing to the unusual scal-
ing of resulting linear systems, especially those resulting
from solid–void optimal design problems in linearized
elasticity with simple isotropic material with penaliza-
tion (SIMP; Bendsøe and Sigmund 2003; Rozvany et al.
1992). The reason for such a behavior is that the domain
decompositions used within topology optimization can-
not be aligned with material distributions and that the
latter are not clearly defined and change after every
optimization step.

For the purpose of this paper, we have chosen a
state-of-the-art linear finite element tearing and inter-
connection/dual primal solver (FETI-DP; Farhat et al.
2001) specifically designed to solve large-scale systems
arising from 2D/3D high fidelity finite element models
on modern distributed memory parallel computers. The
FETI-DP algorithm belongs to the class of domain
decomposition methods, the best known and perhaps
the most promising parallel linear solvers revolving
around the concept of graph partitioning (Saad 2003).
Variants of FETI methods are widely adopted by the
scientific computing community (see, e.g., Proceedings
of the International Conferences on Domain Decom-
position Methods) and the industry (a variant of FETI
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has been implemented as a part of Parallel Performance
for ANSYS products (O’Neal and Murgie 2001)). Their
success can be attributed, similarly to the popularity
of the interior point methods in optimization, both to
the excellent performance in many practical situations
and to the existence of the theoretical upper bound
asserting the numerical scalability of the methods,
which holds at least in the case of various elliptic PDE
problems (Klawonn et al. 2002; Mandel and Tezaur
2001). However, this bound is not very practical for
topology optimization applications, as we will discuss in
Section 4, and the difficulty stems from the heterogene-
ity of PDE coefficients within the subdomains, resulting
from the control in coefficients structure of topology
optimization problems and changing with every opti-
mization iteration. Furthermore, the practical perfor-
mance of the method also deteriorates, showing that
the upper bound on the number of iterations is not
just a pessimistic estimate. Therefore, one has either
to realign subdomain boundaries with material bound-
aries after each optimization iteration, which is not
practical and defeats the whole purpose of topology
optimization, or to modify the preconditioning strat-
egy taking into account the heterogeneity within the
subdomains. We find that variations of the Jacobi-type
preconditioners that improve the condition number of
the systems of linear equations resulting from the FEM
discretization of the elasticity equations (Mahdavi et al.
2006; Vemaganti and Lawrence 2005; Wang et al. 2007)
only marginally improve the performance of FETI-DP
in the topology optimization context. We study the
performance of FETI-DP for topology optimization
problems with 2D and 3D examples and report our
computational experiences.

All numerical tests presented in this paper are
performed on a 64-bit Linux cluster composed of
32 computational nodes, interconnected with an
InfiniBand-based network. Each computational node
has four AMD Opteron 846 HE processors (featuring
a 2-GHz clock speed and 1 MB of L2 cache) and 8 GB
of memory.

The organization of this paper is as follows. In
Section 2, we touch briefly on the formulation of the
topology optimization problems. In Section 3, we pro-
vide a minimalistic description of the FETI-DP algo-
rithm to keep this paper self-contained. In Section 4,
we discuss a refined version of the numerical scalability
estimate for FETI-DP, which explicitly accounts for the
heterogeneity of the subdomains. In Section 5, addi-
tional Jacobi-type preconditioning strategies and their
effect on the performance of FETI-DP are discussed.
Section 6 is dedicated to solving large-scale topology
optimization problems to illustrate the capabilities of

the presented computational methodology. Both defi-
nite (for which the theoretical scalability is expected)
and indefinite systems are solved. We finish the paper
with a brief discussion and possible further research
directions.

2 Topology optimization problems

In many practical applications (linearized elasticity, lin-
ear wave propagation, and Stokes flows), a topology
optimization problem may be stated as follows. Let
� ∈ R

d be a bounded regular domain. In this domain,
we consider the following variational problem:

minimize
(ρ,u)∈L∞(�)×H1(�)

F (ρ, u),

subject to 〈A (ρ)u, v〉 = 〈 f, v〉, ∀v ∈ H1
0(�)

(ρ, u) ∈ Z . (1)

In this study, the variable ρ ∈ L∞(�) plays a rôle of
the design being optimized, and it describes a distrib-
ution of some material within �; usually we can scale
ρ so that 0 ≤ ρ ≤ 1, a.e. The variable u ∈ H1(�), on
the other hand, describes a state of the mechanical
system under the consideration, corresponding to a
given design ρ. The bilinear form 〈A (ρ)u, v〉 is usually
regular enough for the design-to-state mapping ρ ⇒
{ u ∈ H1(�) | 〈A (ρ)u, v〉 = 〈 f, v〉, ∀ v ∈ H1

0(�) } to be
single-valued for every feasible design ρ. The set of sim-
ple constraints Z ⊂ L∞(�) × H1(�) is assumed to be
sufficiently restrictive (e.g., in linear elasticity problems,
it is often assumed that ‖ρ‖BV(�) ≤ C, known as the
perimeter constraint; Petersson 1999) to guarantee the
closedness of the design-to-state mapping in a suitable
topology. Similarly, the performance functional F :
L∞(�) × H1(�) → R is assumed to be coercive and
lower semi-continuous in a suitable topology so that
Weierstrass’ theorem (see, e.g., Rockafellar and Wets
1998) is applicable to problem (1).

For computational purposes, the problem (1) is dis-
cretized using a FEM, resulting in the following non-
linear programming problem:

minimize
(ρ,u)∈Rm×Rn

F (ρ, u),

subject to K(ρ)u = f,

(ρ, u) ∈ Z , (2)

where the matrix K : R
m → R

n×n is assumed to be non-
singular and to enjoy the following property:

K(ρ) = K0 +
m∑

i=1

Ki(ρi). (3)
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For example, in the case of linearized elasticity with
SIMP (Bendsøe and Sigmund 2003), the equation (3)
takes an especially simple form:

K(ρ) = K0 +
m∑

i=1

ρ
γ

i Ki, (4)

where in typical applications, we have Ki � 0, 10−3 �
ρi ≤ 1 and γ ≈ 3.0.

Most often, the problem (2) is transformed into a so-
called nested formulation:

minimize
ρ∈Rm

F (ρ,K−1(ρ)f),

subject to (ρ,K−1(ρ)f) ∈ Z ,

(5)

which requires solving a linear system with the matrix
K(ρ) to evaluate the values of the objective function
and the constraints, as well as their gradients (see
Bendsøe and Sigmund 2003). We employ FETI-DP for
this purpose.

3 FETI-DP method

In the present and in the following sections, we discuss
the formulation of and the condition number estimate
for FETI-DP algorithm for elliptic problems. We do
this in two spatial dimensions following Mandel and
Tezaur (2001) to simplify the presentation, although the
generalization for 3D problems is possible as shown in
Klawonn et al. (2002), as well as indefinite problems as
addressed in Farhat et al. (2005).

Let � be a regular domain in R
2, where an elliptic

definite system of PDEs is considered. We decompose
the domain into Ns nonoverlapping regular subdomains
�1, �2, . . . , �Ns , also known as substructures, where
each subdomain is a union of a number of shape regular
finite elements of size h. We let Hs = diam(�s), s =
1, . . . , Ns, and assume that H1 ≈ H2 ≈ · · · ≈ HNs ≈ H.
Let us be a vector of degrees of freedom (DOFs) for
the subdomain �s corresponding to a chosen finite
element discretization. Similarly, let Ks and f s be the
local stiffness matrix and the load vector associated
with the subdomain �s. The edges of the subdomains
will be denoted by �st := ∂�s ∩ ∂�t, and corners are the
endpoints of edges.

The subdomain vectors are then partitioned as

us = [
(us

i )
T , (us

r)
T , (us

c)
T]T

,

where us
i are the values of the DOFs in the subdomain

interior, us
c the values of the DOFs at the corners of

the subdomain, and us
r are the remaining values of the

DOFS, i.e., those located on the edges of the subdo-

mains between the corners. The subdomain matrices
are partitioned accordingly,

Ks =
⎛

⎝
Ks

ii K
s
ir K

s
ic

Ks
ri K

s
rr K

s
rc

Ks
ci K

s
cr K

s
cc

⎞

⎠ .

We also define the block-vectors and matrices:

u =
⎛

⎜⎝
u1

...

uNs

⎞

⎟⎠ , K =
⎛

⎜⎝
K1 . . . 0
...

. . .
...

0 . . . KNs

⎞

⎟⎠ , and f =
⎛

⎜⎝
f 1

...

f Ns

⎞

⎟⎠ .

Similarly,

ui =
⎛

⎜⎝
u1

i
...

uNs
i

⎞

⎟⎠ , uc =
⎛

⎜⎝
u1

c
...

uNs
c

⎞

⎟⎠ , and ur =
⎛

⎜⎝
u1

r
...

uNs
r

⎞

⎟⎠ .

The DOFs from both sides of each edge �st should
coincide,

us
r|�st − ut

r|�st = 0. (6)

In (6), each pair of subdomains {s, t} is taken only once,
with the order (s, t) chosen arbitrarily. We write the
constraint (6) as
(
B1

r . . . BNs
r

)
ur = Brur = 0. (7)

Let Lc be a matrix with {0, 1} entries implementing
the global-to-local map at the subdomain corners. That
is the equation

uc = Lcug
c , Lc =

⎛

⎜⎝
L1

c
...

LNs
c

⎞

⎟⎠ ,

determines the common values of the DOFs at the
subdomain corners from a global vector ug

c .
In this notation, we are interested in solving the

problem:

minimize
u

1

2
uTKu − f Tu,

subject to Brur = 0, and uc = Lcug
c , for some ug

c .

Equivalently, we are interested in finding a stationary
point for the Lagrangian

L (ui, ur, ug
c , λ) = 1

2
vTKv − f Tv + λTBrur, (8)

where

v =
⎛

⎜⎝
v1

...

vNs

⎞

⎟⎠ , and vs =
⎛

⎝
us

i
us

r
Ls

cug
c

⎞

⎠ .
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Eliminating us
i , us

r, ug
c from the stationarity conditions

for (8), we obtain a dual system of the type:

Fλ = g. (9)

For example, knowing ug
c and λ, we can solve the

following subdomain problem in parallel to obtain
ui, ur:

(
Ks

ii K
s
ir

Ks
ri K

s
rr

)(
us

i
us

r

)
=

(
f s
i − Ks

icL
s
cug

c

f s
r − Bs

r
T
λ − Ks

rcL
s
cug

c

)
,

and ug
c is computed from λ as

K∗
ccug

c = FT
Irc

λ − f ∗
c ,

where the above problem is known as the coarse prob-
lem. This problem is global in the sense that it concerns
the global vector ug

c , and to assemble K∗
cc and FT

Irc
λ − f ∗

c ,
we need contributions from all subdomains [see (10)
below]. However, it is small enough (unless millions of
subdomains are used) so that it may be solved using
direct solvers on every node in a parallel computer.
Let us define the matrices and vectors involved in the
coarse problem:

FIrr =
Ns∑

s=1

(
0 Bs

r

) (
Ks

ii K
s
ir

Ks
ri K

s
rr

)−1 (
0
Bs

r
T

)
,

FIrc =
Ns∑

s=1

(
0 Bs

r

) (
Ks

ii K
s
ir

Ks
ri K

s
rr

)−1 (
Ks

ic
Ks

rc

)
Ls

c,

K∗
cc = Kcc −

Ns∑

s=1

Ls
c

T
(
Ks

ic
T Ks

rc
T
) (

Ks
ii K

s
ir

Ks
ri K

s
rr

)−1 (
Ks

ic
Ks

rc

)
Ls

c,

dr =
Ns∑

s=1

(
0 Bs

r

) (
Ks

ii K
s
ir

Ks
ri K

s
rr

)−1 (
f s
i

f s
r

)
,

f∗c = fc−
Ns∑

s=1

Ls
c

T
(
Ks

ic
T Ks

rc
T
)(

Ks
ii K

s
ir

Ks
ri K

s
rr

)−1 (
f s
i

f s
r

)
. (10)

Notice that all calculations involve inverses of the sub-
domain matrices Ks, s = 1, . . . , Ns; if we keep the size
of the subdomains small, we may apply direct solvers
in parallel to compute a factorization of these matrices
and efficiently solve the related systems. The fact that
many computations are completely decoupled to the
subdomain level contributes to the parallel scalability
of FETI-DP. In the notations of (10), the matrix F
and the vector g defining the dual problem (9) may be
written as:

F = FIrr + FIrc(K
∗
cc)

−1FT
Irc

,

g = dr − FIrc(K
∗
cc)

−1f∗c .

The dual, or interface, problem is solved using a CG
(for elliptic definite problems) or other iterative solver,
which means that the matrix F is never explicitly com-
puted. What makes FETI-DP numerically scalable is
the availability of an efficient preconditioner for (9):

M = BrSrrB
T
r , (11)

where

Srr =
⎛

⎜⎝
S1

rr . . . 0
...

. . .
...

0 . . . SNs
rr

⎞

⎟⎠ ,

and

Ss
rr = Ks

rr − Ks
ri(K

s
ii)

−1Ks
ir.

Thus, in FETI-DP, we solve the system (9) with a
preconditioned iterative solver (CG for elasticity prob-
lems, generalized minimal residual for wave propaga-
tion problems, etc.) with a preconditioner (11). The
algorithm terminates successfully when the norms of
the dual residual

rd = ‖Fλ − g‖,
and the primal residual

rp = ‖Ku − f‖,
are within the prescribed tolerance. For details and
the numerical implementation, the interested reader is
referred to Farhat et al. (2001, 2005), Klawonn et al.
(2001), Mandel and Tezaur (2002).

4 Conditional number estimates

FETI-DP is just one of the many possible methods
based on general ideas of domain decomposition and
Schur complements. What makes it attractive is the ex-
istence of theoretical estimates on the condition num-
ber of the preconditioned interface problem (9) thereby
asserting its numerical scalability. In particular,Mandel
and Tezaur (2001, Theorems 4.4, 4.5, 5.2) have estab-
lished the following result:

Theorem 1 For the second order elliptic positive definite
problem

−
2∑

i, j=1

∂

∂xi

(
ρ(x)

∂u(x)

∂x j

)
= g in �,

u = 0 on ∂�, (12)
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where ρ : � → R is a measurable function such that 0 <

ρ0 ≤ ρ ≤ ρ1 < +∞, a.e. in �, it holds that

cond(MF) ≤ Cne[1 + log(H/h)]2, (13)

where ne is the maximal number of edges on any subdo-
main, and C is independent from h, H (but, generally,
depends on ρ).

One of the basic moments in the proof is the equiv-
alence of the Sobolev seminorms |IP1us| 1

2 ,2,∂�s with the
seminorm |us|Ss , see (Bramble et al. 1986, Lemma 3.1),
where IP1us is the function from the restriction of the
finite element space V P1

h (�) onto �s, defined by the
vector of DOFs us,

|u|21
2 ,2,�

=
∫∫

�

|u(x) − u(y)|2
|x − y|2 dx dy,

|u|A=‖A1/2u‖, for a positive semidefinite

matrix A, and

(us)TSsus = min{ (vs)TKsvs | vs
c = us

c and vs
r = us

r }.

From the proof of (Theorem 5.2 Mandel and Tezaur
2001) and (Lemma 3.1 Bramble et al. 1986), it follows
that the constant c appearing in the Theorem 1 actually
depends on the constants estimating the equivalence of
the seminorms, which are:

c1[ess sup
x∈�s

ρ(x)]−1|us|2Ss

≤ |IP1us|21
2 ,2,∂�s ≤ c2[ess inf

x∈�s

ρ(x)]−1|us|2Ss ,

where c1, c2 are positive constant independent of h, H,
ρ. Therefore, it holds that

cond(MF) ≤ c̃ne[1 + log(H/h)]2 max
1≤s≤Ns

ess supx∈�s
ρ(x)

ess infx∈�s ρ(x)
,

(14)

where c̃ is a generic constant independent of h, H,
ρ. Similar reasoning can be applied to other elliptic
definite problems appearing in linearized elasticity
(Klawonn et al. 2002; Mandel and Tezaur 2001);
computational experience shows that the method is
comparably scalable for forced vibrations problems
(Farhat et al. 2005).

Let us now discuss the implications of the refined
estimate (14) in the context of topology optimization
(2) with SIMP (4). During the progress of the op-
timization algorithm, the last factor in the estimate

(14) changes from 1.0 for the “standard” homogeneous
initial design to (ρ/ρ)γ , where ρ and ρ are the densities
corresponding to the stiff and the soft materials, and γ

is a SIMP factor. In typical applications, we set ρ = 1.0,
ρ ≈ 10−3, and γ ≈ 3.0; therefore, if the upper estimate
(14) is not too pessimistic, we should expect significant
degeneration of the rate of convergence of FETI-DP
as the optimization algorithm progresses (see Fig. 3b).
Perhaps even more discouraging, while the estimate
(14) still formally asserts the linear complexity whence
the numerical scalability of FETI-DP, the proportion-
ality coefficient of (ρ/ρ)γ ≈ 109 for typical structural
topology optimization problems makes this estimate
less than practical.

In the following sections, we report the practical
performance of FETI-DP for topology optimization
problems and our attempts to improve it by applying
additional scaling and/or preconditioning strategies.

5 Additional scaling for FETI-DP

To remedy the uncontrollable growth of the condi-
tion number of the dual problem in FETI-DP (and
hence the number of CG iterations needed to solve
it) within the topology optimization context as given
by the estimate (14), we study a few different strate-
gies. We test symmetric Jacobi-type preconditioning,
rescaling of the primal residual (which is equiva-
lent to non-symmetric Jacobi-type preconditioning),
and scaling of the augmentation matrix (see below).
These modifications however do not improve the per-
formance of FETI-DP enough to use it for topol-
ogy optimization problems with stiff/void materials
and SIMP, but we feel it is important to report our
computational experience to the structural optimi-
zation community.

In addition to various scalings, we also implement a
couple of convergence monitors, which are not specific
to FETI-DP and are intended to improve the robust-
ness of the whole optimization algorithm should the
iterative solver fail to reduce the residual of the direct
or adjoint systems to a prescribed accuracy at some
optimization iteration. First of all, all iterative solvers
are applied to the interface problem and, whence, are
intended to make the dual residual as small as pos-
sible. Unfortunately, for poorly scaled problems such
as the classical compliance minimization problems with
SIMP and stiff/void materials, the primal residual may
increase during the course of the iterations. As a
result, should the algorithm be terminated prema-
turely, the primal solution corresponding to the last
iteration may not be the best one. Thus, during the
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FETI-DP iterations, we keep track of the best pri-
mal solution observed so far and, upon termination,
return this solution. We also terminate the algorithm
prematurely should the primal residual exceed the
best observed primal residual by a prescribed factor
(usually ∼ 102).

5.1 Benchmarks

To illustrate the performance of FETI-DP for topology
optimization applications, we use a “standard” bench-
mark, the so-called Messerschmitt–Bölkow–Blohm
(MBB)-beam (Bendsøe and Sigmund 2003) and its 3D
analogue. These examples are presented here for the
reader’s convenience.

In both 2D Fig. 2a and 3D Fig. 2d cases, we are
interested in maximizing the stiffness of the struc-
ture or, equivalently, in minimizing the compliance of
the solid measured as f Tu, with f being the FEM-
discretized vector of the external forces and u the nodal

displacements, respectively. In both cases, we use filters
to achieve mesh independency (Bourdin 2001), the
maximum available volume of material is 30% of the
control volume, SIMP exponent is γ = 3.0, and each
design variable is bounded as 0.05 ≤ ρi ≤ 1, unless
specifically mentioned otherwise.

In the following subsections, we will refer to “opti-
mal” domain decompositions, which will be understood
as those keeping the subdomains geometrically regular
and “minimizing” the length of the interface between
the subdomains thus making the size of the dual prob-
lem smaller, see Fig. 2c. We use the method of moving
asymptotes (MMA) (Svanberg 1987) as the optimiza-
tion algorithm, the starting point being a homogeneous
distribution of density throughout the control volume,
in accordance with the standard practice in structural
and multidisciplinary optimization. We note that the
behavior of the underlying linear solver, which is of
main interest to us, does not depend on the use of a
particular optimization algorithm; however, separable

3

1

f

sy
m

m
et

ry

a b

3 .5

1

symmetry

sy
m

m

c d
Fig. 2 Benchmarks for FETI-DP solver applied to topology
optimization problems. a Setup for the 2D MBB-beam problem.
b “Optimal” 2D MBB-beam; this solution has been obtained
by running MMA with a direct solver and is intentionally not

fully convergent for the purpose of studying the performance of
FETI-DP on such material distributions. c “Optimal” 2D domain
decomposition. d Setup for the 3D MBB-beam problem
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convex approximation presents several advantages for
large-scale optimization, such as its modest memory
requirements (Svanberg 2002) and the ease of paral-
lelization.

In 2D, we also study the performance of FETI-DP
on “nearly optimal” designs, see Fig. 2b. Depending on
the settings on the lower density limit ρ and filter para-
meters, one may obtain differing designs. We also study
the behavior of FETI-DP on completely “black–white”
(solid–void) designs, which we obtain from Fig. 2b via
the simplest possible postprocessing procedure; that
is, we let density variables whose values fall below a
chosen threshold to be ρ and set the rest to be ρ.

We set the precision for FETI-DP; that is, the stop-
ping criteria for CG solver, to be 10−7 for the purposes
of this paper. This implies that, if successfully stopped,
FETI-DP exits with primal and dual solutions making
the relative error in terms of primal and dual resid-
uals, respectively, below 10−7. What is the required
precision for a given topology optimization problem
is a question deserving discussion. First of all, having
small primal and dual residuals does not guarantee
that the relative error in calculating the displacements
is equally small (i.e., ‖u − u∗‖/‖u∗‖ ≤ 10−7, where u
is the solution produced by FETI-DP and u∗ is the
exact solution to the system). This distinction is even
more important for ill-scaled problems such as topology
optimization problems with SIMP. Namely, we can
say that we calculate Ku rather precisely; therefore,
if one is interested in the compliance of the struc-
ture, 1/2utKu, or similar “energy-type” integral func-
tionals, small error in the primal residual will result
in a small error in the computed functional. This is
the case for classical compliance minimization prob-
lems or, to lesser extent, in wave-guiding applications
where the elastic energy integral is computed over
certain parts of the domain only. On the other hand,
if an optimization problem contains objectives or con-
straints that are local, such as the individual nodal dis-
placements, or stresses, perhaps, even smaller residual
norms will be required. We illustrate this difference
in Section 6.

Apart from the difference between the local and
the global constraints, the required precision in the
optimal solution (measured in terms of the residual of
KKT conditions, for example) will also determine the
required accuracy of the linear solves.

5.2 Symmetric Jacobi-type preconditioning

Ill-conditioning appearing as a result of highly hetero-
geneous elastic properties is well understood. Com-
putational experience suggests that simple Jacobi

preconditioning is rather efficient for such systems
(Mahdavi et al. 2006; Vemaganti and Lawrence 2005;
Wang et al. 2007) [as opposed to the situation arising
in nearly incompressible hydrodynamics (Lee et al.
2002)].

Thus, instead of using the original stiffness matrix
in the problem (2), we solve the following prescaled
equation:

[
D(ρ)K(ρ)D(ρ)

] [
D−1(ρ)u

]
= [

D(ρ) f
]
,

where

K(ρ) =
⎛

⎜⎝
k11(ρ) . . . k1n(ρ)

...
. . .

...

kn1(ρ) . . . knn(ρ)

⎞

⎟⎠ , and

D(ρ) =
⎛

⎜⎝
k−1/2

11 (ρ) . . . 0
...

. . .
...

0 . . . k−1/2
nn (ρ)

⎞

⎟⎠ . (15)

One of the issues with the preconditioner D(ρ) is
that it requires the knowledge of the coefficients kii(ρ),
i = 1, . . . , n, before the preconditioning of K(ρ) and f
may be performed. Arguably, it would be much easier
to precondition the matrix and the right-hand side of
the system on an elemental level, i.e., before the system
matrix Ks is assembled on each subdomain.

Fortunately, we know the structure of the matrix
K(ρ) very well. For example, in the case of the lin-
earized elasticity, we know that the “problematic”
DOFs are actually those completely surrounded by the
“soft” or “nearly void” elements. Therefore, we may
redefine the diagonal elements of the preconditioner
D(ρ) as dii(ρ) = C‖ρadj

i ‖−γ /2, where ρ
adj
i is a (short) vec-

tor containing densities of the finite elements adjacent
to the node associated with ith degree of freedom, and
γ is the SIMP penalization factor. Thus, at the assem-
bly stage, we only have to communicate the necessary
design variables ρ to all subdomains, but the integra-
tion and the scaling/preconditioning is performed only
at the elemental level, whence completely in parallel.
Furthermore, it is easy to verify that dii(ρ) ∼ k−1/2

ii (ρ)

as kii(ρ) ≈ 0, which is the critical case for us.
The effect of the symmetric Jacobi preconditioning

on the number of CG iterations is shown in Fig. 3.
For this study, we use the 2D MBB-beam problem as
discussed in Section 5.1. Thus, in this case, we deal with
a material properties ratio for stiff and soft materials
of “only” (in topology optimization terms) 8.0 · 103.
Lower bounds on the material density result in much
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worse performance (in many cases, the algorithm failed
to reduce the residuals to a given tolerance). In Fig. 3a,
we display an averaged number of CG iterations over
300 MMA (Svanberg 1987) iterations as a function
of α defining the diagonal preconditioner via dii(ρ) ∼
‖ρadj

i ‖−α . One may see that (at least for this particular
problem and given lower density limit) the minimum is
not attained at the point α = γ /2 = 1.5 as we expected
from the asymptotics of the diagonal stiffness matrix
elements kii(ρ), but rather around α = 3.0. This dis-
crepancy is due to the fact that our lower limit ρ is rela-
tively far from zero for the asymptotic analysis to hold.
We have selected α = 2.0 for our further numerical
experiments, which is closer to the asymptotical value

1.5 and in fact performs better on certain problems than
α = 3.0.

The limit 300 on the number of optimization itera-
tions is chosen quite arbitrarily, but for the benchmarks
in question, we obtain very heterogeneous designs af-
ter, say, 50 iterations. Therefore, we believe that aver-
aging over 300 MMA iterations gives quite a good idea
of the performance of FETI-DP within the topology
optimization context.

Figure 3b provides more insight into the behavior of
FETI-DP as the optimization algorithm advances. In
this study, we display the number of CG iterations it
takes for FETI-DP to converge as the design evolves
from the homogeneous material (standard initial guess)
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toward the completely heterogeneous “optimal” design
for non-preconditioned (α = 0.0) and preconditioned
(α = 2.0) strategies. One may see the steady increase
in the number of CG iterations as the heterogeneity
of the subdomains increases and a slight improvement
in the performance owing to the additional precondi-
tioning. While an improvement, it is far from keeping
the number of iterations nearly constant throughout the
optimization run.

5.3 Scalability studies

The next question we want to answer is whether the
algorithm practically delivers the constant number of

iterations provided we keep the ratio H/h constant [see
(13)] in the context of topology optimization, that is,
whether it demonstrates numerical scalability in prac-
tice. We performed this study, similarly to the previous
one, on a 2D and 3D MBB beams, taking an average
number of CG iterations over 300 MMA iterations. We
kept increasing the number of DOFs and the number of
subdomains by the same factor, starting from the mesh
180 × 60 on 32 subdomains in 2D and 10 × 20 × 60
on 32 subdomains in 3D, with the symmetric Jacobi-
type additional preconditioner corresponding to α =
2.0. The results are displayed in Fig. 4. One can see
that the number of CG iterations most certainly does
not remain constant, but at least grows much slower
than the number of DOFs or the number of subdomains
(approximately as #CG iter ∼ 0.08#DOFs in 2D and
#CG iter ∼ 0.09#DOFs in 3D).

A related question is how well the algorithm per-
forms on an increasing number of parallel processors
while keeping the problem size, the number of sub-
domains, and other parameters constant, that is, the
parallel scalability. Ideally, the total computing time
should be proportional to the inverse of the number
of processors, but as some of the time is spent in
the communication phase, this ideal behavior is never
matched by most practical algorithms. In Fig. 5, we
report the time it takes FETI-DP to solve a linear
system corresponding to the “optimal” 2D MBB-beam
solution (i.e., no optimization) on a 1,020 × 340 regular
mesh divided into 1, 024 subdomains. We see that the
algorithm speeds up fairly well until the communication
time starts to take a significant percentage of the total
computational time, which is expected.

Fig. 6 a–c Material-based and d optimal decompositions of the domain
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Fig. 7 Study of the unsymmetric Jacobi-type preconditioning:
Norm of the difference between the “exact” solution (obtained
using the sparse direct solver) and an inexact FETI-DP solution

(obtained to the tolerance 10−3) for the “optimal” 2D MBB-
beam Fig. 2b and “optimal” domain decomposition Fig. 2c

5.4 Material-based domain decomposition

The numerical scalability of FETI-DP can be main-
tained even for highly heterogeneous elastic problems
independently from the difference in elastic properties
between “stiff” and “soft” materials as long as they are
decomposed into different subdomains (Klawonn et al.
2002). As it is computationally infeasible to maintain
the domain decomposition with material decomposi-
tion, which changes with every topology optimization
iteration, FETI-DP demonstrates less than optimal per-
formance on such problems.

To illustrate the fact that it is the heterogeneity
within the subdomains that makes FETI-DP converge
slowly, we have performed the following test. An “op-
timal” 2D MBB beam solution, corresponding to the
SIMP exponent of 3.0 and the lower density bound
of 5.0 · 10−2 on a 1,020 × 340 regular mesh, has been
decomposed into ∼1,024 subdomains in two different
ways. First, we perform a material-based decomposi-
tion; that is, we decomposed the “solid” and the “void”
parts of the domain separately Fig. 6a–b and then
merged two meshes Fig. 6c. Second, we decomposed
the whole domain into subdomains disregarding the dif-
ference in material properties, in a way that minimizes
the total length of the interface whence the size of the
dual system, yet keeps the subdomains geometrically
roughly equal and regular (Fig. 6d).

Strikingly, on the material-based decomposition, it
takes 20 CG iterations to decrease the residuals below
1 · 10−7; on the second decomposition, the same goal
is reached in 93 CG iterations. These numbers are in
accordance with the condition number estimate (14)
and indeed demonstrate the efficiency of FETI-DP for
most but topology optimization purposes.

5.5 Scaling of the primal residual (asymmetric
Jacobi-type preconditioning)

In the hope of improving the performance of FETI-
DP for topology optimization, instead of applying
the method to a preconditioned system [D(ρ)K(ρ)

D(ρ)[D−1(ρ)u] = D(ρ) f as described in Section 5.2, we
apply FETI-DP to the original system K(ρ)u = f , but
we measure the primal residual in a different norm:

‖D−2(ρ)[K(ρ)u − f]‖,
which essentially corresponds to preconditioning the
system from the left only or “ignoring” the primal resid-
ual for the “void” nodes in a convergence criterion.
Unfortunately, one may see from Fig. 7 that the primal
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error is distributed relatively evenly within the domain
and cannot be attributed to void regions only. Thus,
this strategy, which works in other applications (Pajot
2006), also does not make a significant improvement in
efficiency for topology optimization with FETI-DP.

5.6 Scaling of the augmentation matrix

Finally, we would like to mention one approach
that makes a significant difference in the perfor-
mance of FETI-DP on heterogeneous elastic systems
(Dohrmann 2003) but unfortunately is still not enough
to help topology optimization. To do this, we must pro-
vide more details about FETI-DP than we mentioned in
Section 3. One important concept that makes FETI-DP
numerically scalable for 3D elasticity problems is that
of an augmentation matrix. In addition to the continuity
constraints (7), we introduce essentially a duplicate
set of aggregated constraints (and thus additional dual
variables or Lagrange multipliers) as:

QT
b Brur = 0, (16)

a

b
Fig. 9 Compliance minimization under volume constraint:
“optimal” 3D MBB-beam

where Qb is an augmentation matrix. To keep the size
of the dual system small, it makes sense to keep the
number of columns in the matrix Qb small. In the
standard FETI-DP as introduced in (Farhat et al. 2001),
the matrix Qb is empty; for 3D elliptic problems and
forced vibrations problems, it is recommended to set
columns ofQb to translational rigid body modes of each
edge (Farhat et al. 2005). That is, for every edge �,
there are three consecutive columns in the matrix Qb ,
namely:

q�
x = (0 . . . 0 [1 0 0 . . . 1 0 0 . . . 1 0 0] 0 . . . 0)T ,

q�
y = (0 . . . 0 [0 1 0 . . . 0 1 0 . . . 0 1 0] 0 . . . 0)T ,

q�
z = (0 . . . 0 [0 0 1 . . . 0 0 1 . . . 0 0 1] 0 . . . 0)T , (17)

where the only non-zero values in the columns are
between two square brackets and they correspond to
the DOFs associated with the edge �. This type of
augmentation will be referred to as edge augmentation.

For highly heterogeneous materials, it was suggested
(Dohrmann 2003) that the columns of the augmenta-
tion matrix should be scaled with the diagonal entries
of the stiffness matrix K, corresponding to the DOFs
associated with ur. That is, in (17), instead of entries
set to 1, we will have values kii, where i is the degree
of freedom associated with the given entry. This type
of the augmentation will be referred to as the weighted
edge augmentation.

We studied the performance of FETI-DP with the
various augmentation matrices on a pure zero–one “op-
timal” 2D MBB-beam solution, on a 360 × 120 grid
divided into 128 subdomains in an “optimal” way. We
keep the Young’s modulus of the stiff material fixed
and equal to 1.8 · 105 and successively decrease the
Young’s modulus if the soft (void) material to increase
the ill-conditioning of the system.

The results of this study are reported in Fig. 8. The
problem with FETI-DP as applied to systems with big
jumps in coefficients is that there is a huge difference
between the norms of primal and dual residuals. For
example, for the 2D MBB example with the ratio of
Young’s moduli for stiff and soft materials of 106, we
observe similar ratio in primal and dual residuals. Thus,
to solve the (primal) problem to the accuracy of 10−7

in terms of the primal residual, one has to solve the
corresponding dual interface problem to the precision
of 10−13, which is nearly impossible with IEEE double
precision floating point arithmetics.

Again, we should mention that, for certain topology
optimization problems, it may not be necessary to solve
the linear system to a very high accuracy. Neverthe-
less, we feel that methods working in terms of primal
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variables yet enjoy the numerical scalability may be
more appropriate for topology optimization problems;
see, e.g. (Li and Widlund 2006) for an overview.

6 Gallery of examples

In this section, we illustrate the capabilities and the
shortcomings of FETI-DP based topology optimiza-
tion toolbox. We use trilinear Lagrange finite elements
(eight-node brick elements) to discretize all numerical
examples in this section.

One of the first examples that we have solved is a
3D MBB beam, see Section 5.1 and Fig. 2d. We used
a regular 30 × 60 × 180 mesh, “optimally” decomposed
into 868 subdomains. This example is rather small, it
contains only about 9.72 · 105 DOFs and 3.24 · 105 opti-
mization variables. We use standard filtering (Bourdin

2001; Sigmund 1997; Sigmund and Petersson 1998) with
a filter radius of 1.2 times the size of the finite ele-
ment to prevent checkerboarding. A “typical” function
evaluation for this example requires 300 CG iterations
within FETI-DP, which takes approximately 85 s on 96
processors on our cluster. This example is “good” for
FETI-DP because it contains only an integral energy-
type objective function, which is very important for
residual minimization-driven iterative linear solvers,
such as FETI-DP. A couple of views of an “optimal”
design that we have obtained after 122 MMA iterations
(with the maximal step size restricted to 0.1) is shown in
Fig. 9. FETI-DP in this example demonstrated the same
behavior as described in Section 5; that is, the number
of CG iterations for the interface problems increases
with the increasing heterogeneity of the solution as the
optimization algorithm progresses.

The next example is a design of a compliant mech-
anism. We design a 3D force inverter, as shown in

Fig. 10 Optimization of a
compliant mechanism
(inverter). (a) Problem setup;
(b) “optimal” design without
post-processing; (c)
post-processed “optimal”
design; (d) post-processed
“optimal” design including
symmetries
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Fig. 10a, where a force is applied in an upward direction
at one of the vertices of the design “box,” and we are
interested in maximizing the downward displacement
of a spring-supported adjacent vertex. The amount of
material available is limited to 20% of the volume
of the design domain, and a bound on the vertical
displacement of the loaded point is imposed. We use
SIMP and filtering as in the previous example (3D
MBB beam). This particular design problem requires
much more precision from the linear solver, as we
need individual nodal displacements and their deriva-
tives to evaluate both the objective function and the
constraints. This example is also a little bit larger in
terms of number of DOFs. We use a grid of 75 × 75 ×
150 nodes (approximately 2.5 · 106 DOFs, 8.4 · 105 op-
timization variables) divided into approximately 1, 024
subdomains. We use a filter with a radius of 2 times the
size of the finite element to prevent checkerboarding.
We solved this example on 8 processors, with about
360 CG iterations per function evaluation taking ap-
proximately 830 s. With FETI-DP settings similar to
the previous example, after 68 MMA iterations (with
the maximum step-size set to 0.1), we obtain a design
shown in Fig. 10b. While this design is definitely feasible
and performs the function of a force inverter, it can
certainly be improved upon; in particular, it contains a
lot of numerical “noise” coming from imprecise eval-
uations of the gradients. Figure 10 c and d contains
the same design with the “noise” removed after some
post-processing.

The last example is a design of an elastic surface
wave-guide (Rupp et al. 2006). In this study, we try
to guide a 2-GHz harmonic load entering the design
domain at an input port toward an output port (cf.
Fig. 11a) by distributing aluminum within a thin layer
of silicon; the whole structure is attached to a silicon
substrate at the bottom. We surround the domain with
non-reflecting boundary conditions on all sides except
the top, thus modeling 3D halfspace. The non-reflecting
boundary conditions are modeled with viscous damping
elements. For manufacturing purposes, we do not allow
the design to change in the vertical direction, so that
etching or lithography may be used to build it. This ex-
ample was discretized with a 160 × 160 × 64 elements,
resulting in approximately 5.1 · 106 complex, or 107 real,
DOFs. At the same time, the optimization problem has
only 2.6 · 104 variables owing to the manufacturability
considerations. On 12 processors, 225 generalized con-
jugate residual iterations needed for a typical function
evaluation require approximately 2,240 s, this number
dropping to approximately 510 s on 80 processors. No
filtering or penalization is used or usually needed to
obtain well-defined 0–1 “optimal” designs in elastic

wave propagation (Rupp et al. 2006). The design shown
in Fig. 11b is obtained after 36 MMA iterations (with
the maximum step-size set to 0.25), and it still contains
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bender”). a Problem setup; b “optimal” design; c surface wave
propagation corresponding to design (b)
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some intermediate density areas (around 8% of
optimization variables are strictly between 0 and 1),
which can be fixed by simplistic post-processing tech-
niques without altering the objective function much, or
by letting the optimization algorithm proceed further
(Rupp et al. 2006). The elastic surface wave-field corre-
sponding to the “optimal” design is shown in Fig. 11c,
and one can see that the majority of the elastic energy
is indeed guided to the output port.

Numerically, this example is very convenient for
FETI-DP; elastic properties of silicon and aluminum
are not as different as the typical stiff and soft materials
in compliance minimization problems with SIMP. How-
ever, the linear system is not definite any more, and
therefore, there is no theoretical numerical scalability
estimate, such as (13), available. In addition, the solver
seems to have difficulties solving the linear system if
the viscous damping elements are replaced by perfectly
matching layer elements, where the material properties
vary very fast from one element to another (see, e.g.,
Basu and Chopra 2003).

7 Concluding remarks and future research directions

In this paper, we studied the behavior of the state-of-
the-art scalable linear solver FETI-DP for the purposes
of topology optimization. FETI-DP is numerically scal-
able for problems with large jumps in coefficients, uni-
formly in the size of the jump, as long as the subdomains
are kept homogeneous, which is not the case in the
topology optimization. With numerical examples, we
demonstrated that the performance of FETI-DP dete-
riorates quickly as the heterogeneity of the subdomains
increases or as the optimization algorithm progresses
from the initial homogeneous design toward “optimal”
0–1 designs.

For certain problems, where jumps in the coefficients
are not so large, such as in the case with topology
optimization problems in elastic wave propagation, the
method can be recommended. For “classical” solid–
void topology optimization problems in linearized
elasticity with SIMP, the dual-primal method has to
confront the difficulty that the ratio of the primal
and dual residuals is huge. Therefore, we expect that
domain decomposition techniques operating in terms
of primal variables and primal residuals only, such
as balancing domain decomposition by constraints
(Dohrmann 2003; Mandel et al 2005), may demonstrate
better performance, as they effectively avoid the latter
difficulty.
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