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Abstract A new topology optimization using adaptive
inner-front level set method is presented. In the con-
ventional level set-based topology optimization, the
optimum topology strongly depends on the initial level
set due to the incapability of inner-front creation dur-
ing the optimization process. In the present work, in
this regard, an algorithm for inner-front creation is
proposed in which the sizes, the positions, and the
number of new inner-fronts during the optimization
process can be globally and consistently identified.
In the algorithm, the criterion of inner-front creation
for compliance minimization problems of linear elastic
structures is chosen as the strain energy density along
with volumetric constraint. To facilitate the inner-front
creation process, the inner-front creation map is con-
structed and used to define new level set function. In
the implementation of inner-front creation algorithm,
to suppress the numerical oscillation of solutions due
to the sharp edges in the level set function, domain reg-
ularization is carried out by solving the edge smooth-
ing partial differential equation (smoothing PDE). To
update the level set function during the optimization
process, the least-squares finite element method (LS-
FEM) is adopted. Through the LSFEM, a symmetric
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positive definite system matrix is constructed, and non-
diffused and non-oscillatory solution for the hyperbolic
PDE such as level set equation can be obtained. As
applications, three-dimensional topology optimization
of shell structures is treated. From the numerical ex-
amples, it is shown that the present method brings in
much needed flexibility in topologies during the level
set-based topology optimization process.

Keywords Topology optimization · Level set method ·
Inner-front creation · LSFEM

1 Introduction

Since the pioneering work of Bendsøe and Kikuchi
(1988), topology optimization method has attracted a
great deal of attention of researchers and engineers and
has been applied to various engineering design prob-
lems in the fields of structural optimization. Notwith-
standing its rapid progress, however, the topology
optimization method has left certain rooms for further
improvement. In general, the obstacles encountered in
applying topology optimization include the formation
of checker-board patterns and the occurrence of inter-
mediate densities (Harber et al. 1996; Youn and Park
1997; Bendsøe and Sigmund 2003).

As a new attempt to overcome the shortcomings,
the level set-based topology optimization has been
proposed by Sethian and Wiegmann (2000). In the
level set-based topology optimization method, the
moving front which corresponds to the material bound-
ary is given as the design variable. As the mater-
ial boundary evolves, it can be freely merged and/or
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splitted. The evolution of material boundary is gov-
erned by the level set equation employing the shape
velocity, which is computed from the design sensi-
tivity analysis (DSA). Unlike the conventional topol-
ogy optimization method, since the optimum shape
is represented by the material boundary, both inter-
mediate densities and checker-board patterns can be
avoided. Based on the basic notion of the level set-
based topology optimization, several application ex-
amples have been presented. Some of the examples
include structural optimization problems considering
linear elasticity (Wang et al. 2003), nonlinear elasticity
(Allaire et al. 2004; Kwak and Cho 2005), eigen-
frequency (Allaire et al. 2004), compliant mechanism
(Allaire et al. 2004), multi-materials and multi-
constraints (Wang and Wang 2004), and heat conduc-
tion (Ha and Cho 2005).

In the conventional level set-based topology opti-
mization, new inner-fronts cannot be created in the
material domain during the optimization process. Since
some of inner-fronts are merely merged, an initial level
set distribution usually includes a large number of
inner-fronts, and the optimum topology of the conven-
tional level set-based topology optimization is signifi-
cantly affected by the initial distribution of inner-fronts
(Allaire et al. 2004). To overcome the shortcomings,
attempts to create inner-fronts during the optimiza-
tion process by incorporating the topological deriva-
tive (Sokołowski and Żochowski 1999; Novotny et al.
2003) with the level set-based topology optimization
have been presented. In the works, the topological
derivative that relates changes in the objective func-
tion to the introduction of infinitesimally small inner-
fronts is used as a criterion for inner-front creation.
In the practical implementations, by removing nodes
(or elements) (Céa et al. 2000), inserting soft materials
(Mei and Wang 2004; Burger et al. 2004), perforating
level set function (Allaire et al. 2005), or adding forcing
term (Amstutz and Andra 2006) at the local regions
where the topological derivative attains its extreme
value, topological changes can be carried out during the
optimization process.

In the present work, a new inner-front creation algo-
rithm is proposed in which the sizes, the positions, and
the number of new inner-fronts during the optimization
process are adaptively and consistently identified by
considering both the value of a given criterion for inner-
front creation and the occupied volume of material
domain. Especially, as a generalized energy density, the
value of strain energy density of linear elastic structure
is employed as a criterion for inner-front creation. In
addition, to smooth out the sharp edges due to the
abrupt changes of level set function values during the

inner-front creation, an edge smoothing based on the
technique of smoothing partial differential equation
(smoothing PDE; Aubert and Kornprobst 2001) is car-
ried out. As the applications of adaptive inner-front
level set method, topology optimization of shell struc-
tures is dealt with. In engineering fields and industrial
areas, due to the handling limitation and manufacturing
cost, the total weight of structures should be kept low.
However, there exist the trade-offs between stiffness
and weight. In this context of lightweight design, in the
present work, applying the compliance minimization
problem subjected to volume constraint to the shell
structures, such as the cantilever beam, curved shell
structure, and steel deck, which are common applica-
tions in the field of aerospace engineering, the promis-
ing flexibility, and potential of the present method are
demonstrated.

In Section 2, the level set method is briefly reviewed.
In Section 3, the inner-front creation algorithm, op-
timization formulation, and shape design sensitivity
analysis are presented. In Section 4, numerical exam-
ples of the level set-based topology optimization using
adaptive inner-front creation map are presented. The
emphasis is on the construction and implementation
of the inner-front creation algorithm to identify the
suitable sizes, positions, and number of inner-fronts in
the material domain.

2 Level set method

In this section, the level set method is briefly outlined.
The basic concept, mathematical model, and numerical
implementation can be found in Osher and Sethian
(1998), Sethian (1999), Osher and Fedkiw (2003), and
references there in.

2.1 Basic concept and mathematical model

Basic idea of the level set method is to describe a curve
or a surface in an implicit form as the zero level set
or iso-level of a higher dimensional function. Thus, the
boundary that will be denoted � is represented by a set
of all points x, which correspond to the zero value of
level set function φ, as follows:

� = {x|φ(x, t) = 0, x ∈ �}, (1)

where � denotes the analysis domain.
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To describe the governing equation of the evolution
of level set function, material derivative is taken on �.
That is,

Dφ

Dt
= ∂φ

∂t
+ ∂x

∂t
· ∇φ,

= ∂φ

∂t
+ V · ∇φ,

= 0, (2)

where
D(•)

Dt
is the material derivative, t the time vari-

able, and V ≡ ∂x
∂t

= [
Vx, Vy, Vz

]
the local velocity.

Using the relationship between the normal vector

and level set function n = − ∇φ

|∇φ| , (2) can be repre-

sented as follows:

∂φ

∂t
− Vn |∇φ| = 0, (3a)

with initial condition:

φ(x, t = t0) = φ0(x), (3b)

where Vn ≡ V · n is the speed in the normal direction
of boundary, and t0 the initial time.

Equation (3a) is called the level set equation, which
is a kind of Hamilton–Jacobi equation.

As shown in (2), the level set equation is derived
from in the rectangular Cartesian coordinates. How-
ever, to describe the evolution of level set function in
the curved domains, the level set equation should be
reformulated in curvilinear coordinates ξ j (= [ξ, η, ζ ])
in which velocity vectors follow the coordinate direc-
tions. As an illustrative example, a schematic diagram
of boundary representation by the level set function in
curvilinear coordinates is shown in Fig. 1. The closed
curve (dashed line) in Fig. 1 represents the zero level
set in curvilinear coordinates.

To convert the level set equation from Cartesian co-
ordinates to curvilinear coordinates, the set of transfor-
mation rules adopted by Lee and Soni (1997), Takahira
et al. (2004), and Yue et al. (2005) is applied. Based
on the transformation rules, the level set equation in
curvilinear coordinates can be obtained as follows:

∂φ

∂t
+ 1

J
∂

∂ξ j

(
J√
g jj

φV j
)

= 0 j = 1, · · · , 3, (4)

where J = det[J] is the Jacobian, [J] the Jacobian ma-
trix, √

g jj = √g j · g j the magnitude of covariant basis
vector g j in the curvilinear coordinates, and V j the
velocity component in the ξ j-coordinate direction.

Fig. 1 Boundary representation by level set function in curvilin-
ear coordinates

2.2 Domain representation and regularization

At an arbitrary time of level set evolution, the material
and void domains can be separated by the sign of level
set function values. Namely,

φ(x, t) > 0 for x ∈ �MAT,

φ(x, t) = 0 for x ∈ �MAT, (5)

φ(x, t) < 0 for x ∈ �VOID,

where �MAT is the material domain, �MAT the mate-
rial boundary, �VOID = �DES\�MAT the void domain,
�DES the design domain, and �MAT the closure of
material domain.

To serve the mathematical convenience of manip-
ulating the material and void domains, the following
Heaviside step function is used:

H(ς) ≡
{

0 if ς < 0,

1 if ς ≥ 0.
(6)

The derivative of the Heaviside step function is also
defined as the following Dirac delta function:

δ(ς) ≡ dH(ς)

dς
. (7)

By introducing the Heaviside step and Dirac delta func-
tions, the domain and boundary integrals of a function
F(x) can be expressed as follows:

Domain integral
∫

�

F(x)H(φ)d�, (8a)
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Boundary integral
∫

�

F(x)d� =
∫

�

F(x)δ(φ) |∇φ| d�.

(8b)

For the numerical implementation, the Heaviside step
and Dirac delta functions are regularized and replaced
by the smooth and continuous functions, Hα(ς) and
δα(ς), respectively. In the present work, the following
regularized Heaviside step and Dirac delta functions
with regularization parameter α are employed:

Hα(ς) =

⎧
⎪⎪⎨

⎪⎪⎩

�S if ς < −α,

− ς3

4α3
+ 3ς

4α
+ 1

2
if |ς | ≤ α,

1 if ς > α,

(9a)

and

δα(ς) =
⎧
⎨

⎩

�S if |ς | > α,

− 3

4α

(
ς2

α2
− 1

)
if |ς | ≤ α,

(9b)

where �S is the small constant being used to avoid the
zero stiffness (say 0.001).

Figure 2 shows the regularized step and delta func-
tions for a certain regularization parameter α. In the
computation, α = 0.5 is used.

2.3 Computation for level set evolution

As presented in the early works of level set method,
the finite difference-based techniques, such as Upwind,
essentially non-oscillatory (ENO), weighted ENO, and
Godunov’s schemes, have been widely employed to
update the level set function. The theory and appli-
cation of the conventional updating schemes can be
found in Sethian (1999) and Osher and Fedkiw (2003).
Although the conventional updating schemes are easily

Fig. 2 Regularized Heaviside step and Dirac delta function

applicable to regular domains and boundary condi-
tions, they still possess certain computational diffi-
culties when geometry and/or boundary conditions
become more complicated.

In the present work, the LSFEM is adopted to
compute the evolution of level set function. The
least-squares finite element formulation can give a
symmetric positive definite system matrix for the non-
self adjoint first order hyperbolic problems such as
the level set equation. Thus, the conventional solution
method based on the finite elements can be easily
employed without any special treatment. In addition,
numerical stability of LSFEM for the first order hy-
perbolic problem is a well-established fact. The basic
theory, formulation, and application of LSFEM can be
found in Jiang (1998) and references there in.

To proceed the least-squares finite element formula-
tion of level set equation in curvilinear coordinates, the
following equation is considered in a component form
of (4):

∂φ

∂t
+ 1

J
∂

∂ξ

(
J√
g11

V1φ

)
+ 1

J
∂

∂η

(
J√
g22

V2φ

)

+ 1

J
∂

∂ζ

(
J√
g33

V3φ

)
= 0. (10)

A least-squares formulation of (10) can be obtained as
the following procedure:

For a given time step �t = tk+1 − tk, (10) is dis-
cretized with the backward difference scheme in time
as follows:

φk+1 − φk

+ �t
J

[
∂

∂ξ

(
J√
g11

V1k
φk+1

)
+ ∂

∂η

(
J√
g22

V2k
φk+1

)

+ ∂

∂ζ

(
J√
g33

V3k
φk+1

)]
= 0, (11)

where k denotes the k-th time step.
Equation (11) can be represented as the following

matrix form:

Ak+1φk+1 = rk+1, (12)

where

Ak+1 =
[

1 + �t
J

(
JV1k

√
g11

∂

∂ξ
+ JV2k

√
g22

∂

∂η
+ JV3k

√
g33

∂

∂ζ

)]

,

φk+1 = [
φk+1

]
,

rk+1 = [
φk] .
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Applying the least-squares formulation with the test
function ϕ ∈ H1(�), the energy bilinear and load linear
forms to solve (12) are constructed as follows:

B(φ, ϕ) = R(ϕ) for all ϕ ∈ H1(�), (13)

where

B(φ, ϕ) ≡ (
Ak+1φk+1, Ak+1ϕ

)
,

R(ϕ) ≡ (
rk+1, Ak+1ϕ

)
.

Especially, the time step size �t in (13) is determined by
setting the Courant–Friedrichs–Lewy (CFL) number to
less than one. The CFL number CCFL is defined as
follows:

CCFL = max

⎛

⎝
�t

√(
V1

)2 + (
V2

)2 + (
V3

)2

hMESH

⎞

⎠ , (14)

where hMESH denotes the length of element.

3 Inner-front creation algorithm and optimization
formulation

3.1 Procedure of inner-front creation

As mentioned earlier, in the conventional level set-
based topology optimization, there exists a drawback
related to the incapability of creating new inner-fronts.
In this regard, the converged solution is heavily depen-
dent on the initial level set distribution and is liable
to be deviated from the optimum solution. As a moti-
vating example, the optimization results of the conven-
tional level set-based topology optimization method for
the compliance minimization problem are represented
in Fig. 3. As shown in Fig. 3, it is not allowed to create
new inner-fronts in the design domain. Furthermore,
it is observed that the optimum topologies depend
strongly on the initial level sets.

In the present work, to overcome the shortcomings,
level set-based topology optimization using an inner-
front creation algorithm is proposed. A main focus
of the present work is that the inner-front creation
map is constructed by identifying the level value of the
inner-front creation criterion concurrently considering
the occupied volume (VOCP) of material domain. Thus,
applying the inner-front creation map to the inner-front
creation process, not only positions and number of
inner-fronts but also the suitable sizes of inner-fronts,
can be globally and consistently identified. Especially,
the criterion of inner-front creation for compliance
minimization problem of a linear elastic structure is
chosen as the strain energy density that corresponds
to a specific case of generalized energy density. To

P

Compliance Minimization with
Volume Constraint

a Problem Definition

b Initial Level Set: Case I

Initial Level Set: Case II

Initial Level Set: Case III

c Optimum Topology of Case I

d e Optimum Topology of Case II

f g Optimum Topology of Case III

Fig. 3 Motivating example: incapability of inner-front creation
and dependency of initial level sets

describe the concept of generalized energy density, the
following objective functional that can be written as an
integral form for an arbitrary time τ is considered.

� =
∫

�τ

g(zτ )d�τ , (15)

where � is the objective functional, z ∈ H1(�) the state
variable, and g the continuously differentiable function
with respect to its arguments.

Considering the dependence of the functional � on
its domain integration and the following variational
equation,

a (zτ , z̄τ ) ≡
∫

�τ

θ (zτ , z̄τ ) d�τ

=
∫

�τ

f z̄τ d�τ ≡ l�τ
(z̄τ ) for all z̄τ ∈ Zτ , (16)

where Zτ ⊂ Hm(�τ ) is the admissible space, θ (•, •) the
bilinear mapping, which is defined by the integrand of
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the variational equation, and f the prescribed data.
From the definitions of partial derivative z′ and mater-
ial derivative of a domain functional (Haug et al. 1986),
a variation of the functional (15) can be expressed as
follows:

� ′ =
∫

�

gzz′d� +
∫

�

f
(
VTn

)
d�,

=
∫

�

[
gzż − gz

(∇zTV
) ]

d� +
∫

�

f
(
VTn

)
d�, (17)

where V denotes the shape velocity field.
By introducing the adjoint variable z∗ ∈ Z, the first
term in the last expression of (17), can be represented
as follows:
∫

�

gzżd� = l′(z∗) − a′ (z, z∗) . (18)

Using (18) and the divergence theorem, (17) can be
simply rewritten as follows:

� ′ =
∫

�

{
θ

(
z, z∗) − f z∗ − gzz

} (
VTn

)
d�,

=
∫

�

�
(
z, z∗) (

VTn
)

d�,

=
∫

�

∇ · {
�

(
z, z∗) V

}
d�, (19)

where �(z, z∗) = θ (z, z∗) − f z∗ − gzz.
� is the generalized energy density, as it can be de-

rived as a form of energy density. In addition, the veloc-
ity field V is chosen in the direction which the objective
functional should be minimized or maximized. Since
this result is derived from the general objective func-
tional, for optimization problem with different physical
principles, the generalized energy density concept can
also easily be devised by employing the same energy
functional concept. For a more specific explanation,
let us consider the compliance minimization problem
subjected to the volume constraint. In the compliance
minimization, the objective functional � is defined as
follows:

� =
∫

�

bTz +
∫

�TRAC

tTzd�. (20)

where b is the body force, t the traction, �TRAC the
traction boundary, and VMAX the allowable volume. As
described earlier, using an adjoint variable z∗, one can
define the following functional.

�
(
z, z∗)=

∫

�

bTzd� +
∫

�TRAC

tTzd� −
∫

�

σ(z)Tε
(
z∗) d�

+
∫

�

bTz∗d� +
∫

�TRAC

tTz∗d�. (21)

Furthermore, the material derivative of (21) in the
direction of V can be obtained as follows:

� ′ (z, z∗)

=
∫

�

∇ ·
[
bT(z + z∗) − σ(z)Tε

(
z∗)

]
d�

+
∫

�TRAC

[
tT∇ (

z + z∗)T n + κtT (
z + z∗)

]
VTnd�,

=
∫

�

∇ ·
[{

bT(z + z∗) + tT∇(z + z∗)Tn

+ κtT(z + z∗) − σ (z)T ε
(
z∗)} V

]
d�,

=
∫

�

∇ · {
�

(
z, z∗) V

}
d�, (22)

where �(z, z∗) = bT(z + z∗) + tT ∇ (z + z∗)Tn + κtT

(z + z∗) − σ (z)T ε (z∗).
In case of the compliance minimization problem of

a linear elastic structure, the adjoint variable is simply
z∗ = −z; thus, �(z, z∗) in (22) is equal to the strain
energy density, �(z, z) = σ (z)T ε (z). Furthermore, it is
noted that the topological derivative for the compliance
minimization problem of a linear elastic structure can
be expressed some constant times of strain energy den-
sity (Céa et al. 2000; Mei and Wang 2004; Allaire et al.
2005). Therefore, in the present work, the strain energy
density is chosen as the criterion to identify the suitable
positions of inner-front creation.

The success of the compliance minimization problem
is closely related to the efficient use of the limited
material. In this respect, the region with lower-valued
strain energy density can be regarded as being under-
utilized, and thus, they will become the possible sites
of inner-front creation. If a suitable cut-off criterion is
introduced, the regions of lower-valued strain energy
density can be identified. In the present work, based
on the notion underlying the material usage, the occu-
pied volume of current material domain is set as the
cut-off criterion. For practical use, the distribution of
strain energy density is modified to the discrete valued
function, which is called inner-front creation map. The
construction of inner-front creation map is described in
the following. For a certain value of normalized strain
energy density ŜE

∗
, the discrete valued function χ(x) is

defined as follows:

χ(x) =
⎧
⎨

⎩

0 if ŜE(x) < ŜE
∗
, x ∈ �DES,

1 if ŜE(x) ≥ ŜE
∗
, x ∈ �DES,

(23)
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where ŜE(x) = SE(x)

SEMAX
is the normalized strain energy

density, SE(x) the strain energy density, and SEMAX the
maximum strain energy density.

The domain integral of the function χ(x), which will
be denoted VŜE

∗ , is represented as follows:

VŜE
∗ ≡

∫

�DES

χ(x)d�. (24)

For the strain energy density ŜE
∗

that satisfies VŜE
∗ =

VOCP, the inner-front creation map HMAP(x) can be
constructed as follows:

HMAP(x) =
⎧
⎨

⎩

−1 for ŜE(x) < ŜE
∗
, x ∈ �DES,

+1 for ŜE(x) ≥ ŜE
∗
, x ∈ �DES.

(25)

The construction procedure of inner-front creation
map is illustrated in Fig. 4.

In the implementation of inner-front creation algo-
rithm, the updated level set function with new inner-
fronts can be generated by multiplying the current
level set function, inner-front creation map, and sign
function. Namely,

φNEW(x) = Sgn(x) ◦ HMAP(x) ◦ φOLD(x), x ∈ �DES,

(26)

Fig. 4 Construction of inner-front creation map

Fig. 5 Schematic diagram of inner-front creation process

where

Sgn(x) =
{ −1 for φOLD(x) < 0 and HMAP(x) = −1,

+1 otherwise,

is the sign function, ◦ the multiplication operator of
two functions, i.e. a(x) ◦ b(x) = a(x)b(x), φNEW(x) the
level set function with new inner-fronts, and φOLD(x)

the current level set function.
The overall inner-front creation process is repre-

sented in Fig. 5.
Due to the piecewise constant distribution of the

inner-front creation map, the sharp edges in the level
set function possessing new inner-fronts are appeared.
Since these sharp edges may adversely affect the con-
vergence speed and/or numerical stability, the edge
smoothing process is required. In the present work, to
make isotropic linear Gaussian filtering effects on the
level set function possessing sharp edges, the smoothing
PDE that is widely used in the image processing is
adopted. The edge smoothing PDE is expressed as the
following linear parabolic equation:

∂φ

∂η
− ∇2φ = 0, (27)

with initial condition:

φ(x, η = η0) = φ0(x),

where η denotes the pseudo-time that acts as the time
variable of edge smoothing PDE.
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In the computation of (27), standard Galerkin finite
element method with the backward difference approxi-
mation in time is employed. That is,
∫

�

φm+1ωd� − �η

∫

�

∇φm+1 · ∇ωd�

=
∫

�

φmωd� for all ω ∈ H1(�), (28)

where m is the m-th time step and �η = ηm+1 − ηm the
time step size.

In the present work, since the purpose of edge
smoothing is to obtain level set function with smooth
boundaries that enable the numerical oscillation to be
avoided during the optimization process, considering
the computational time, the level set function with
new inner-fronts is updated only twice in the edge
smoothing process. The smoothing effect on the level
set function with sharp edges is illustrated in Fig. 6.

3.2 Formulation of compliance minimization problem

In this section, the optimization formulation and the
shape sensitivity analysis for compliance minimization
problem of a linear elastic shell structure subjected
to the volume constraint are outlined. The detailed
descriptions of overall optimization formulation can be
found at Sethian and Wiegmann (2000), Wang et al.
(2003), and Allaire et al. (2004). Especially, as for the
shape sensitivity analysis, Simon (1980), Haug et al.
(1986), and Haftka and Gürdal (1992) provide a well-
established theoretical background.

The linear elastic problem to analyze static responses
of the shell structure is described as follows:

∇ · σ = −f in �DES, (29a)

u = g on �DISP, (29b)

σ Tn = h on �TRAC, (29c)

where �DISP and �TRAC are the boundaries, respec-
tively, of the design domain on which the essential
boundary condition and the natural boundary condi-
tion are imposed, u the displacement vector, σ = Eε

the stress vector, E the elasticity matrix, ε the strain
vector, n the outer unit normal vector on �TRAC, and f,
g, and h the prescribed data on �DES, �DISP, and �TRAC,
respectively.

By applying the Galerkin method and embedding
the level set function φ to (29a)–(29c), the following
variational formulation can be constructed:

aφ(u, v) = lφ(v) for all v ∈ H1(�), (30)

where

aφ(u, v) =
∫

�DES

H(φ)εT
u Eεvd�,

lφ(v) =
∫

�TRAC

H(φ)hTvd� +
∫

�DES

H(φ)fTvd�,

and εu = ∇u+∇uT

2 is the stain vector with respect to its
argument displacement u.

a Level Set Function with Sharp Edges

b Level Set Function with Smooth Edges

Fig. 6 Effect of edge smoothing via smoothing PDE
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Based on the general framework of optimization for-
mulation, the compliance minimization problem sub-
jected to the volume constraint can be stated as follows:

Minimize FCOMP(u, φ) ≡
∫

�DES

H(φ)εT
u Eεud�

=
∫

�TRAC

H(φ)hTud�

+
∫

�DES

H(φ)fTud�,

(31a)

subject to HVOL(φ) ≡
∫

�DES

H(φ)d� − ξVOL · VTOT ≤ 0,

(31b)

where ξVOL is the prescribed volume ratio.
Using the Lagrange multiplier, the constrained min-

imization problem of (31a) and (31b) can be reformu-
lated as the following Lagrangian form:

L(u, φ, λ) =
∫

�DES

[H(φ)U(u) + λ (H(φ) − ξVOL)] d�,

(32)

where L(u, φ, λ) is the Lagrangian functional, λ the
Lagrange multiplier, and U(u) = εT

u Eεu.
In the present work, the Lagrangian functional in

(32) is considered in the optimization procedure.

3.2.1 Shape design sensitivity analysis

To define the shape design sensitivity, it is convenient
to consider the concept of original and perturbed do-
main as a continuous medium. The process of de-
forming reference domain �0 and perturbed domain
�τ by the mapping M(�0, τ ) may be regarded as a
dynamic process of deforming a continuum, with τ

playing the role of time. In neighbor of τ = 0, un-
der a certain regularity hypothesis (Haug et al. 1986;
Oden and Demkowicz 1996), xτ ∈ �τ can be expressed
as follows:

xτ = x + τVSV(x). (33)

where VSV(xτ , τ ) ≡ dxτ

dτ
= ∂ M(x, τ )

∂τ
is the shape

velocity.
With this context, by considering the shape velocity

VSV, (2) can be modified as follows:

∂φ

∂t
+ VSV · ∇φ = 0. (34)

In the level set-based topology optimization, (34)
governs the evolution of material boundary during
optimization process.

To carry out the shape design sensitivity analysis
for the optimization problem in (32), let us consider
the boundary variation in the direction of ψ . Then the
shape derivative of the Lagrangian functional in (32) is
obtained as follows:

∂L(u, φ, λ)

∂φ

∣
∣∣
∣
ψ

= ∂FCOMP(u, φ)

∂u

∣
∣∣
∣
μ

+ ∂FCOMP(u, φ)

∂φ

∣
∣∣
∣
ψ

+ λ
∂HVOL(φ)

∂φ

∣
∣
∣∣
ψ

, (35)

where
∂L(u, φ, λ)

∂φ

∣
∣∣
∣
ψ

=
∫

�0

∂L(u, φ, λ)

∂φ
ψd� is the

Fréchet derivative of Lagrangian functional with
respect to φ in the direction of ψ , ψ the direction of
shape variation, and μ the direction that is introduced
to represent the implicit dependence of displacement
field u during the shape variation of domain in the
ψ-direction.

By introducing an adjoint variable v ∈ H1(�), which
is employed to represent the sensitivity of the first term
of (35) with respect to displacement field u as the form
of level set function φ and the shape variation in the
ψ-direction, the first term in the right-hand side of (35)
is represented as follows:

∂FCOMP(u, φ)

∂u

∣∣
∣
∣
μ

≡
∫

�0

δ(φ)
[
fTv + κ

{
hTv

} − εT
u Eεv

]
ψd�

+
∫

�0

δ(φ)
δ(φ)

|∇φ|
∂φ

∂n
ψd�. (36)

where κ = ∇ · ∇φ

|∇φ| denotes the curvature.

Furthermore, the second and third terms on the
right-hand side of (35) are defined as follows,
respectively:

∂FCOMP(u, φ)

∂φ

∣
∣∣
∣
ψ

≡
∫

�0

δ(φ)U(u)ψd�, (37a)

∂HVOL(φ)

∂φ

∣
∣
∣∣
ψ

≡
∫

�0

δ(φ)ψd�. (37b)
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Incorporating the results of (36), (37a), and (37b),
the shape design sensitivity of Lagrangian functional in
(35) is expressed as follows:

∂L(u, φ, λ)

∂φ

∣∣
∣
∣
ψ

=
∫

�0

δ(φ)
[
U(u) +fTv + κ

{
hTv

}− εT
u Eεv + λ

]
ψd�

+
∫

�0

δ(φ)
δ(φ)

|∇φ|
∂φ

∂n
ψd�

=
∫

�0

δ(φ)
[
Mφ(u, v) + λ

]
ψd�

+
∫

�0

δ(φ)
δ(φ)

|∇φ|
∂φ

∂n
ψd�, (38)

where Mφ(u, v) ≡ U(u) + fTv + κ
{
hTv

} − εT
u Eεv.

Applying the Karush–Kuhn–Tucker condition to
(32) and (38) and vanishing the boundary integration
term of (38), the final form of shape design sensitivity
of the Lagrangian functional can be denoted as follows:

∂L(u, φ, λ)

∂φ

∣∣
∣
∣
ψ

=
∫

�0

δ(φ)
[
Mφ(u, v) + λ

]
ψd�. (39)

3.2.2 Determination of shape velocity and Lagrange
multiplier

In this section, the procedure to obtain the shape
velocity from the shape design sensitivity analysis is
described. Based on the concept of shape variation, the
Lagrangian functional considering boundary variation
at original domain is obtained as follows:

L(�τ ) = L(�0) − τVSVL′(�0), (40)

where L′(�0) denotes the shape design sensitivity of
the Lagrangian functional at the original domain. In the
present work, the shape velocity is taken as follows:

VSV = [
Mφ(u, v) + λ

]
ψ. (41)

By defining the shape velocity as (41) and applying it
to (40), the decrease of the Lagrangian functional is
ensured as follows:

L(�τ ) = L(�0) − τ

∫

�0

δ(φ)
[{Mφ(u, v) + λ}ψ]2

d�,

(42)

Therefore, based on the mathematical framework for
the shape design sensitivity analysis, the level set-based
topology optimization method satisfying the decrease
of objective function can be obtained.

Fig. 7 Flowchart of overall optimization procedure

To update the Lagrange multiplier λ, Rosen’s (1960)
approach is adopted in the present work. By taking time
derivative of active constraint of (31b) and using (34)
and (41), the following equation is obtained:

∂

∂t

[∫

�0

H(φ)d�

]
=

∫

�0

δ(φ)VSV · ∇φd�,

=
∫

�0

δ(φ)
[
Mφ(u, v) + λ

]
ψ · ∇φd�,

= 0. (43)

Therefore, the Lagrange multiplier can be computed
from the following equation:

λ = −

∫

�0

δ(φ)Mφ(u, v)ψ · ∇φd�

∫

�0

δ(φ)ψ · ∇φd�

. (44)

Table 1 Problem definition for design of cantilever beam

Parameter Specified data

Geometry W = 2 m, H = 1 m, LT = 1 cm
Mesh 3,200 (80 by 40) Linear quadrilateral

shell element
Material Steel (Young’s modulus E = 200 GPa,

Poisson’s ratio ν = 0.3)
Volume ratio 50% (ξVOL = 0.5)
Applied load P = 20 kN
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Fig. 8 Schematic diagram of cantilever beam design

4 Applications

In the present work, topology optimization of shell
structures using the adaptive inner-front creation level
set method is treated. Although there have been shell

a Initialization b Iteration No. 1

c Iteration No. 10 d Iteration No. 20

e Iteration No. 40 f Iteration No. 80

g Iteration No. 120: Optimum

Fig. 9 History of optimization for cantilever beam

structures since ancient times, the significant progress
in research for topology and shape optimization has
been made only recently in conjunction with the rapid
development of powerful methodologies such as finite
element methods. Tenek and Hagiwara (1994) has de-
veloped a scheme for determining thickness distrib-
ution or the density of a repetitious microstructure
using homogenization theory. Maute and Ramm (1996)
have solved the maximum stiffness problems for shell
structures by combining the adaptive optimization tech-
nique with the homogenization concept. Li et al. (1999)
has applied the evolutionary structural optimization to
the topology optimization of shell structures subjected
to thermal loading. The shell stiffener and core layout
design have been treated by Lee et al. (2000) and
Belblidia and Bulman (2002). To the best of our knowl-
edge, no work before the present work applies level set
method to topology optimization of shell structures.

In the applications, in the present work, three-
dimensional linear elastic shell structures are con-
sidered. Based on the Reissner–Mindlin shell theory
permitting the transverse shear deformation, general
curved shell structures are dealt with. To avoid the ele-
ment locking, in the present work, the selective reduced
integration is employed. The membrane locking is not
considered, as the shell thicknesses were regarded as
being relatively thick.

The optimization problem is given as the compli-
ance minimization subjected to volume constraint. Es-
pecially, the following three applications—design of
cantilever beam, doubly curved shell, and lightweight
steel deck—are dealt with. The overall procedure
of level set-based topology optimization using inner-
front creation map is shown in Fig. 7. The optimiza-
tion process is summarized as follows: At first, the

Fig. 10 History of objective function for cantilever beam design



54 K.-S. Park, S.-K. Youn

XY

Z

Fig. 11 Schematic diagram of doubly curved shell design

optimization problem including load, boundary con-
dition, and constraint volume is imposed. And then,
initial level set function is defined on the design domain
of a structure. Via the finite element analysis, the elastic
deformation, compliance, and strain energy density are
computed. Employing the inner-front creation map,
which is constructed from the strain energy density
value, the inner-front creation process is performed. In
addition, to smooth out the sharp edges of the level
set function with new inner-fronts, the edge smoothing
process is carried out. By solving the level set equation
employing the shape velocity, which is obtained from
the shape sensitivity analysis, the level set function
and design domain are updated. Until the objective
function converges, the finite element analysis, inner-
front creation, and level set update are repeated.

4.1 Example 1: cantilever beam

As a standard example, cantilever beam that is widely
treated in the conventional topology optimization
method is considered. The design domain is set as 2 by
1 m rectangular shape. To discretize the design domain,
four-node linear shell elements are employed. As the
constraint, the volume ratio of optimum topology is
limited to 50%. A concentrated load of 20 kN is applied

Table 2 Problem definition for design of doubly curved shell
structure

Parameter Specified data

Geometry L =1 m, LT =1 cm
Mesh 2,500 (50 by 50) Linear quadrilateral

shell element
Material Steel (E = 200 GPa, ν =0.3)
Volume ratio 50% (ξVOL =0.3)
Applied load P = 1 kN

at the center of the right-hand side of the design do-
main. The design conditions are summarized in Table 1.
The schematic diagram of the design problem is shown
in Fig. 8. The initial level set is distributed on whole de-
sign domain. To demonstrate the aspects of inner-front
creation, the evolutionary history of material boundary
at certain iterations is represented in Fig. 9. As shown
in the last result of Fig. 9, the proposed method can
handle the changes of shape and topology at the same

a Initialization b Iteration No. 1

c Iteration No. 10 d Iteration No. 35

e Iteration No. 70 f Iteration No. 90

g Iteration No. 121: Optimum

Fig. 12 History of optimization for doubly curved shell structure
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a Conventional Method b Proposed Method

Fig. 13 Comparison of optimum topology between proposed and
conventional approaches

time. The history of objective function is represented
in Fig. 10. As shown in Fig. 10, as the volume con-
straint is not satisfied at the early stage of optimization,
the objective function is increased. However, once the
volume constraint is satisfied, the objective function is
monotonically converged to a certain value.

4.2 Example 2 : doubly curved shell structure

As the second example, topology optimization of dou-
bly curved shell structure is carried out. This is a design
example of the stiffened panel for a roof structure
that supports two concentric edge loads. A 1 by 1 m
curved square is considered as the design domain. The
volume constraint of the optimization problem is set
to 50%. The schematic diagram of the design problem
is shown in Fig. 11. As shown in Fig. 11, two con-
centric loads are imposed at both edges of the curved
shell. The design conditions are summarized in Table 2.
As the same initialization, the level set is distributed on
the whole design domain. The histories of level set at
certain iterations are represented in Fig. 12. In Fig. 12,

Fig. 14 History of objective function for doubly curved shell
structure

Table 3 Problem definition for design of lightweight steel deck

Parameter Specified data

Geometry L = 1.2 m, LS = 20 cm, LH = 11 cm,
LT = 1 mm

Mesh 2, 500 (50 by 50) Linear quadrilateral
shell element

Material Steel (E = 200 GPa, ν = 0.3)
Volume ratio 30% (ξVOL = 0.3)
Applied load P1 = 10 kN, P2 = 20 kN, P3 = 1 kN

new inner-fronts with smooth boundaries are created at
iteration no. 10 and iteration no. 35, and then, the inner-
fronts are widened during the optimization process. In
addition, from Fig. 12, it is observed that the inner-front
creation algorithm can provide the shapes, positions,
and number of inner-fronts at once. Figure 13 rep-
resents optimum topology obtained from the present
and conventional methods. In Fig. 13, it is shown that
the proposed method can accomplish the shape and
topology changes bringing the inner-front creation. The
history of objective function is represented in Fig. 14.
As shown in Fig. 14, although the objective function is
increased at several iterations, the objective functional
value is converged to a certain value.

4.3 Example 3: lightweight steel deck design

As an extended example, the lightweight steel deck
that is used for providing longer span for floor
construction is carried out. Among other influences, in
the conventional design of the steel deck, the stiffness

X

Y

Z

Fig. 15 Schematic diagram of lightweight steel deck design



56 K.-S. Park, S.-K. Youn

of the deck is determined by shear force traveling in the
hat-shaped (curved) directions. Furthermore, the hat-
shaped elements have tendency to warp and/or roll over
in shear. With flexibility and with shear warping in the
hat shape, the steel deck should resist even more of the
applied load. In addition, due to the handling limitation
and manufacturing cost, total weight of the steel deck
should be kept low. In the present work, topology

a Initialization b Iteration No. 1

c Iteration No. 10 d Iteration No. 30

e Iteration No. 60 f Iteration No. 100

g Iteration No. 121

Fig. 16 History of optimization for lightweight steel deck

a Conventional Method b Proposed Method

Fig. 17 Comparison of optimum topology between proposed and
conventional approaches

optimization of lightweight steel deck is carried out.
The design conditions are summarized in Table 3. The
schematic diagram of the design problem is shown in
Fig. 15. The initial level set is distributed on the whole
design domain. To demonstrate the aspects of inner-
front creation, the evolutionary history of material
boundary at certain iterations is represented in Fig. 16.
In Fig. 16, it can be observed that an optimum structure
to resist and to minimize the deformation in the hat-
shaped direction is obtained. Furthermore, at iteration
no. 10, an inner-front is created near the position of
applied load P1. In Fig. 17, the optimum topology of
proposed and conventional approaches is illustrated.
As represented in Fig. 17, compared with the conven-
tional approach, it is shown that the present method
brings in much flexible topological changes. The history
of objective function is represented in Fig. 18. As shown
in Fig. 18, although the objective function possesses
certain bumps, finally, it converges monotonically.

Fig. 18 History of objective function for lightweight steel deck
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5 Conclusions

In the present work, a new level set-based topology
optimization using inner-front creation algorithm is
proposed. Based on the given inner-front creation cri-
terion, to identify the sizes and positions of inner-
fronts globally and consistently, the occupied volume of
material domain is utilized. To facilitate the inner-front
creation process, the inner-front creation map, which
corresponds to the discrete valued criterion of inner-
front creation, is applied to the level set function. As
an inner-front creation criterion, the strain energy den-
sity, which is, in a sense, a generalized energy density
for compliance minimization problem of linear elastic
structure, is employed.

In the implementation of inner-front creation algo-
rithm, to suppress the numerical oscillation of solutions
due to the sharp edges in the level set function, the edge
smoothing is carried out by solving the edge smoothing
PDE.

Based on the general framework of shape design
sensitivity analysis, the shape velocity that is used as
the velocity term of the level set equation is com-
puted. To update the level set function, the LSFEM
is adopted. Through the LSFEM, a symmetric positive
definite system matrix is constructed, and non-diffused
and non-oscillatory solution for level set equation can
be obtained.

For applications, topology optimizations of shell
structures are presented and illustrated. In the numer-
ical examples, it is shown that creation of new inner-
fronts in the design domain are occurred. As the results,
the evolution of level set function and the history of
objective function have been illustrated and discussed.
From the results, it is observed that the present method
brings in much needed flexibility in topologies during
the level set-based topology optimization process.
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