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Abstract The effectiveness of surrogate modeling of
helicopter vibrations, and the use of the surrogates for
minimization of helicopter rotor vibrations are stud-
ied. The accuracies of kriging, radial basis function
interpolation, and polynomial regression surrogates are
compared. In addition, the surrogates are used to gen-
erate an objective function which is employed in an
optimization study. The design variables consist of the
cross-sectional dimensions of the structural member of
the blade and non-structural masses. The optimized
blade is compared with a baseline rotor blade which
resembles an MBB BO-105 blade. Results indicate
that: (a) kriging surrogates best approximate vibratory
hub loads over the entire design space and (b) the
surrogates can be used effectively in helicopter rotor
vibration reduction studies.
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Cd0 Blade profile drag coefficient
Cdf Flat plate drag coefficient
D Vector of design variables
E Young’s modulus
f (x) Assumed polynomials which account

for the ‘global’ behavior in kriging
F4X, F4Y ,

F4Z 4/rev hub shears, non-dimensionalized
by m0�

2 R2

F̂4X, F̂4Y ,

F̂4Z Surrogates for the non-dimensional
4/rev hub shears

g(D) Contraints
h Height of the blade cross-section
J Objective function
Ĵ Surrogate objective function
JP Mass polar moment of inertia of the

rotor
m0 Baseline mass per unit length
mns Non-structural mass located at the

elastic axis
M4X, M4Y ,

M4Z 4/rev hub moments, non-
dimensionalized by m0�

2 R3

M̂4X, M̂4Y ,

M̂4Z Surrogates for the non-dimensional
4/rev hub moments

Nb Number of rotor blades
Nc Number of behavior constraints
Ndv Number of design variables
Nsp Number of sample points
Ntp Number of test points
pk, ϑk Fitting parameters in kriging corre-

sponding to the kth design variable
R Blade radius
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Rkrg Spatial correlation matrix used in
kriging

Rkrg(·) Spatial correlation function in kriging
rkrg(x) Spatial correlation vector in kriging
t1, t2, t3 Thicknesses of the blade cross-section,

see Fig. 3
w Vector or coefficients in RBF interpo-

lation, with elements wi

x(i) ith sample point
x1, x2 Cross-sectional dimensions, see Fig. 3
XF A, Z F A Longitudinal and vertical offsets be-

tween rotor hub and helicopter aero-
dynamic center, see Fig. 6

XFC, Z FC Longitudinal and vertical offsets be-
tween rotor hub and helicopter center
of gravity, see Fig. 6

y(x) Unknown function to be approximated
y(i) output response at x(i)

y Vector of observed function outputs
ŷ(x) Approximation of y(x)

ȳ Mean of the absolute values of the
responses

Z (x) Realization of a stochastic process in
kriging

αd Flight descent angle, see Fig. 6
β Constant used in kriging
β̂ Generalized least squares estimate of β

β0, βi, βij Fitting coefficients in polynomial
regression

βp Blade precone angle
εpr Approximation error in polynomial

regression
ε(tp), ε(cv) Absolute percent error, based on

test points and leave-one-out cross
validation

λk Hover stability eigenvalue for kth mode
ζk, ωk Real and imaginary parts of λk,

respectively
μ Advance ratio
v Poisson’s ratio
� Rotor angular speed
ωF1, ωL1, ωT1 Fundamental rotating flap, lead-lag

and torsional frequencies, /rev
ωL, ωU Lower and upper bounds for frequency

constraints, /rev
�RBF(·) Spatial correlation function in RBF

interpolation
�RBF Spatial correlation matrix in RBF

interpolation
�RBF(x) Spatial correlation vector in RBF

interpolation
ρfiller Material density for non-structural

filler mass

ρstruct Material density for the structural
member of the blade

σ Rotor solidity
σallowable Allowable blade stress
σxx, σxη, σxζ Blade stresses
σ 2

var Variance of the Gaussian process Z (x)

σY , Yield stress
σ̂ 2

var Generalized least squares estimate of
σ 2

var
τ Fitting parameter in RBF interpolation
θpt Blade built-in pre-twist angle

1 Introduction

Vibration is one of the most critical concerns in the
design of modern rotorcraft. Stricter demands for
enhanced performance, comfort, and customer accep-
tance require designs with reduced vibration levels. In
helicopters, the dominant source of vibrations is the
rotor, which transfers vibrations to the rotor hub and
fuselage at harmonics that are predominantly Nb /rev,
where Nb is the number of blades.

During the last 25 years, two principal approaches to
vibration reduction have emerged. The first approach
is passive and uses structural/multidisciplinary opti-
mization for reducing vibrations (Friedmann 1991; Celi
1999; Ganguli 2004), while the second approach utilizes
active control methods (Friedmann and Millott 1995;
Patt et al 2005). This paper focuses on the passive
approach. In the passive approach the vibration reduc-
tion problem is formulated as a mathematical optimiza-
tion problem subject to appropriate constraints. The
objective function consists of a suitable combination of
the Nb /rev hub shears and moments that are computed
from an aeroelastic response code; the constraints
are blade stability margins, frequency constraints, an
autorotation constraint, constraints associated with the
blade geometry, and a constraint on the blade stresses.
The design variables can be dimensions of the blade
cross-section, mass and stiffness distributions along the
span, or geometrical parameters which define advance
geometry tips. Typical levels of vibration reduction
achieved with passive approaches have been in the
range of 30-60%.

Due to the complex rotary-wing aerodynamic envi-
ronment, the aeroelastic response simulations needed
for vibratory load calculations are computationally
expensive. Therefore numerous evaluations of the
vibration objective function are costly. Consequently,
direct combination of the objective function gener-
ated by the aeroelastic response simulation with tradi-
tional optimization algorithms is computationally very
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expensive. Moreover, traditional optimization search
algorithms can converge to local optima, which are
known to occur in this class of problems.

To overcome these obstacles, approximation con-
cepts have been used. A widely used approach for
approximating the vibration objective function and
constraints is to use Taylor series expansions about
local design points (Schmit and Miura 1976). The deriv-
atives needed for the Taylor series are calculated using
difference formulas, or analytical sensitivity deriva-
tives. These approximations of the objective function
and constraints are used to replace the actual problem
with an approximate one that is used in conjunction
with an optimizer to obtain an optimal design. Repre-
sentative examples of the application of this method to
the rotor vibration reduction problem can be found in
Yuan and Friedmann (1998) and Yuan and Friedmann
(1995), in which vibration reduction of composite rotor
blades with advanced geometry tips in forward flight
was studied. The disadvantages of this method are that
it utilizes a local approximation in the vicinity of a
design point and a local search procedure. Even when
augmenting such methods with move limits or a trust
region strategy (Wujek and Renaud 1998; Alexandrov
et al 1998), convergence is only guaranteed to a local
optimum.

An alternative to the local Taylor expansion method
is to use global approximation methods (Queipo et al
2005); i.e. methods which try to capture the behavior of
a function over the entire design space. The advantages
of surrogate-based optimization (SBO) with global
approximations are threefold: fewer “true” function
evaluations (thus fewer expensive aeroelastic simula-
tions), the formulation is conducive to parallel comput-
ing, and facilitation of a more “global” search of the
design space. In one SBO application, Ganguli (2002)
used a 2nd order polynomial global approximation of
the vibration objective function and obtained 30%
vibration reduction. The 2nd order polynomial was
found to be accurate only in the vicinity of the baseline
design. In addition to polynomials, there is a class
of global approximation methods based on stochastic
processes, which can be used in a global search of the
design space (Won and Ray 2005). Illustrative examples
of the benefits of SBO with stochastic process based
approximations can be found in the studies by Sóbester
et al (2004) and Booker et al (1999).

In Sóbester et al (2004), surrogate based methods
and conventional methods – i.e. no approximations
of the objective function combined with genetic algo-
rithms and gradient based search methods – were used
to find the optima of closed form five-dimensional test
functions. The test functions were not computationally

expensive to evaluate, and were only used to test the
SBO method. In addition, Sóbester et al (2004) took
advantage of the opportunities for parallel comput-
ing afforded by SBO. Not only did SBO converge
to the optima in less time, but the optimum yielded
by SBO was superior to the optimum obtained from
conventional optimization algorithms which do not use
approximations of the objective function. Sóbester et al
(2004) employed a stochastic process based approxi-
mation method known as radial basis function (RBF)
interpolation.

In Booker et al (1999), surrogate based methods
were applied to minimization of helicopter vibration,
using 31 design variables to characterize the rotor
blade. The cross-sectional design variables were mass,
center of gravity offset from the elastic axis, and the
blade stiffnesses. The analysis code Tech01 (Shultz et al
1994) was used to generate hub shears and moments,
and the stochastic process based method known as krig-
ing interpolation was used to approximate the objective
function. The results showed that kriging could be used
to find reduced vibration designs in an efficient manner.
However, it is important to note that the principal
focus of Booker et al (1999) was on the effectiveness
of surrogate objective functions, and therefore accurate
modeling of the aerodynamic environment of a rotor
blade during flight was not considered to be important.
Consequently, accurate free wake models were sacri-
ficed for a computationally less expensive prescribed
wake model. Furthermore, no constraints were placed
on the aeroelastic stability of the blade. Thus, the model
of the helicopter vibratory loads was not sufficiently
reliable to produce a realistic blade design.

It is important to note that various global approx-
imation methods have been compared for different
engineering problems (Chen et al 2006; Simpson et al
2004, 2001b), and there is no universal conclusion as
to which method is best. For instance, some studies
have found that polynomials perform as well or better
than other approximation methods, while others have
concluded that RBF interpolation or kriging are the
best methods (Simpson et al 2001a; Stander et al 2004;
Jin et al 2001; Forsberg and Nilsson 2005; Palmer and
Realff 2002a,b). Thus, a single approximation method
has not distinguished itself as the most suitable for
engineering applications.

An important feature of the surrogate based opti-
mization approach using interpolation is that the
method is computationally effective when the number
of design variables is relatively small (less than 50). This
is compatible with helicopter rotor blade optimization
problems where the number of important design vari-
ables can be limited to this range. The overall objective
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of this paper is to examine the applicability of global
approximation methods to the rotor blade vibration
reduction problem in forward flight. To achieve this
objective, the suitability of three approximation meth-
ods commonly used in optimization applications are
considered:

1. Polynomial Regression
2. Radial Basis Functions (RBF’s)
3. Kriging

2 Overview of the aeroelastic response and stability
analysis

The simulation code used in this study is based on a
comprehensive aeroelastic analysis code (Millott and
Friedmann 1994; Yuan and Friedmann 1995; Myrtle
and Friedmann 2001; de Terlizzi and Friedmann 1999;
Depailler and Friedmann 2002; Patt et al 2006; Liu et al
2005). The aeroelastic response analysis can represent
the behavior of hingeless rotor blades as shown in
Fig. 1, with actively controlled flaps; as well as blades
with advanced geometry tips as shown in Fig. 2. The
key ingredients of the aeroelastic response analysis are:
(1) the structural dynamic model, (2) the unsteady
aerodynamic model and (3) a coupled trim/aeroelastic
response procedure that is required for the computa-
tion of the steady state blade response. The aeroelastic
response analysis and overviews of the blade stress
calculations and aeroelastic stability in hover analysis
are described next.

2.1 Structural dynamic model

The structural dynamic model is based on an analy-
sis developed by Yuan and Friedmann (1995, 1998)
which is capable of modeling composite blades with
transverse shear deformations, cross-sectional warping,

Fig. 1 Helicopter rotor blade with trailing edge flaps
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Fig. 2 A blade with advanced geometry tip

and swept tips. This study is limited to the behavior
of isotropic blades with spanwise varying properties.
The equations of motion are formulated using a finite
element discretization of Hamilton’s principle, with the
assumption that the blade undergoes moderate deflec-
tions. The beam type finite elements used for the dis-
cretization have 23 nodal degrees of freedom. Normal
modes are used to reduce the number of structural
degrees of freedom. In this study, eight modes are used:
the first 3 flap modes, first 2 lead-lag modes, first 2
torsional modes, and the first axial mode.

2.2 Aerodynamic model

The attached flow blade section aerodynamics are
calculated using a rational function approach (RFA)
(Myrtle and Friedmann 2001; Myrtle 1998). The
RFA approach is a two-dimensional unsteady time-
domain theory that accounts for compressibility as
well as variations in the oncoming flow velocity. This
two-dimensional aerodynamic model is linked to an
enhanced free-wake model which provides a non-
uniform inflow distribution at closely spaced azimuthal
steps (Patt et al 2005; Johnson 1988a,b). Although the
simulation code can also account for dynamic stall at
high advance ratios (Depailler and Friedmann 2002),
dynamic stall was not considered in this paper because
the vibration levels being approximated are those due
to blade vortex interaction (BVI), which occurs at low
advance ratios.

2.3 Coupled trim/aeroelastic response

The combined structural and aerodynamic equations
form a system of coupled ordinary differential equa-
tions that are cast into first order state variable form
(Myrtle and Friedmann 2001) and integrated in the



Surrogate based optimization of helicopter rotor blades for vibration reduction in forward flight 345

time domain using the Adams-Bashforth predictor-
corrector algorithm. A propulsive trim procedure,
where six equilibrium equations (three forces and three
moments) are enforced, is used in this study (Millott
and Friedmann 1994; de Terlizzi and Friedmann 1998).
The trim equations are solved in a coupled manner
with the aeroelastic equations of motion. The vibratory
hub shears and moments are found by integrating the
distributed inertial and aerodynamic loads over the en-
tire blade span in the rotating frame, then transforming
these loads to the hub-fixed non-rotating system, and
summing the contributions from each blade (Yuan and
Friedmann 1995). In the process, cancellation of vari-
ous terms occurs and the primary components of the
hub shears and moments have a frequency of Nb /rev,
which is known as the blade passage frequency.

2.4 Blade stresses

After the blade responses are obtained from the cou-
pled trim/aeroelastic response solution, the stresses in
the blade at any spanwise location can be recovered
by using strain-displacement and constitutive relations.
Solving for the stresses in this manner accounts for the
complicated loading a blade encounters and is consis-
tent with the structural dynamic model. The procedure
for calculating stresses is as follows:

1. For a given azimuth angle, the displacements at any
spanwise location are calculated by the aeroelastic
response code.

2. The displacements are then substituted into the
nonlinear strain-displacement relations (Yuan and
Friedmann 1995), giving the strains at any spanwise
location.

3. Stresses are calculated from the stress-strain
relations.

This calculation gives the blade stresses at any spanwise
location and at any azimuth angle.

2.5 Aeroelastic stability in Hover

The process for determining the hover stability of
the blade is based on the method used by Yuan and
Friedmann (1995), and is described below:

1. The non-linear static equilibrium solution of the
blade is found for a given pitch setting and uni-
form inflow, by solving a set of nonlinear alge-
braic equations. Note that uniform inflow is used
only in the hover stability calculation. The forward
flight analysis employs a free-wake model for inflow
calculation.

2. The governing system of ordinary differential equa-
tions are linearized about the static equilibrium
solution by writing perturbation equations and
neglecting second-order and higher terms in the
perturbed quantities. The linearized equations are
rewritten in first-order state variable form.

3. The real parts of the eigenvalues of the first-order
state variable matrix, λk = ζk + iωk, determine the
stability of the system. If ζk ≤ 0 for all k, the system
is stable.

For this study, the linearization process in Yuan and
Friedmann (1995) is modified to account for the aero-
dynamic states introduced by the RFA model. Details
of the linearization process with RFA aerodynamics are
provided in Appendix A.

3 Formulation of the blade optimization problem

The formulation of the blade optimization problem in
forward flight consists of several ingredients: the ob-
jective function, design variables, and constraints. The
mathematical formulation of the optimization is stated
as: Find the vector of design variables D which min-
imizes the objective function, i.e. J(D) → min, where
the objective function consists of a combination of the
Nb /rev oscillatory hub shears and moments. For a four
bladed rotor, the objective function is given by

J = KS

√
(F4X)2 + (F4Y)2 + (F4Z )2 +

KM

√
(M4X)2 + (M4Y)2 + (M4Z )2 (1)

where KS and KM are appropriately selected weighting
factors.

The vector of design variables D consists of the
thicknesses t1, t2, t3, and the non-structural mass
mns located at the shear center, which are specified

x1

x2

t1

t2

t3

mfiller

h = 0.12c
mns

c
Fig. 3 Simplified model of the blade structural member
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at several spanwise locations and shown in Fig. 3.
The three thickness design variables were defined at
the 0%, 25%, 50%, 75%, and 100% stations, while
the non-structural mass design variable was defined at
the 68% and 100% blade stations, resulting in a total
of 17 design variables. These two blade stations were
chosen for the non-structural mass because previous
studies have shown that non-structural masses are most
effective for vibration reduction when they are distrib-
uted over the outboard 1/3 of the blade (Friedmann
and Shanthakumaran 1984; Lim and Chopra 1989). The
cross-sectional variables were assumed to vary linearly
between stations. The non-structural mass at the elastic
axis inboard of the 68% station was set to zero. The
design variables have side constraints to prevent them
from reaching impractical values; these are stated as

D(L)

j ≤ D ≤ D(U)

j , j = 1, 2, . . . , Ndv. (2)

In addition, four types of behavior constraints, given by

gi(D) ≤ 0, i = 1, 2, . . . , Nc, (3)

are placed on the design variables. The first type of be-
havior constraints are frequency placement constraints,
which are prescribed upper and lower bounds on the
fundamental flap, lag, and torsional frequencies of the
blade. The frequency placement constraints on the
fundamental flap frequency are written as

gflap(D) = ωF1

ωU
− 1 ≤ 0 (4)

and

gflap(D) = 1 − ωF1

ωL
≤ 0 (5)

where ωU and ωL are the prescribed upper and
lower bounds on the fundamental flap frequency.
Similar constraints are placed on the lag and torsional
frequencies, i.e. glag and gtorsion. In addition, all blade
frequencies must differ from integer multiples of the
angular velocity – 1/rev, 2/rev, 3/rev, . . . , etc. – to avoid
undesirable resonances.

Another behavior constraint is an autorotational
constraint, which ensures that mass redistributions pro-
duced during the optimization do not degrade the
autorotational properties of the rotor. Although there
are several indices which can be used to represent the
autorotational properties of the blade, the one used in
this study is to require that the mass polar moment
of inertia of the rotor be at least 90% of its baseline
value (Celi and Friedmann 1990). Mathematically, this
is expressed as

g(D) = 1 − JP

0.9JP0
≤ 0 (6)

where JP is the mass polar moment of inertia of the
rotor when it is spinning about the shaft, and JP0 is the
baseline value.

The third type of behavior constraints are aero-
elastic stability margin constraints, expressed mathe-
matically as

gk(D) = ζk + (ζk)min ≤ 0, k = 1, 2, . . . , Nm (7)

where Nm is the number of normal modes, ζk is the
real part of the hover eigenvalue for the kth mode, and
(ζk)min is the minimum acceptable damping level for
the kth mode. It should be noted that the most critical
modes for stability are usually the first and second lag
modes.

The final behavior constraint is a yielding constraint
obtained by substituting the blade stresses into Von
Mises’ criterion, which is expressed mathematically as

2σ 2
xx + 6

(
σ 2

xη + σ 2
xζ

)

6
− σ 2

allowable

3
≤ 0 (8)

where σxx, σxη, and σxζ are the axial and shear stresses,
and σallowable is the material yielding stress divided by a
factor of safety. At discrete values of the azimuth angle,
(8) is evaluated at spanwise locations corresponding to
the finite element nodes. The maximum evaluation of
(8) is used for the constraint, and is given as

g(D) = MAX

[
2σ 2

xx + 6
(
σ 2

xη + σ 2
xζ

)

6
− σ 2

allowable

3

]

≤ 0

(9)

where MAX[ ] denotes the maximum value of (8) over
each set of azimuth angle and blade stations at which
it is evaluated. Therefore the yielding constraint is
enforced at the blade station and azimuth angle where
the stress condition is most critical.

4 Global approximation methods

The goal in using global approximation, or surro-
gate, methods is to replace the “true” objective func-
tion and expensive constraints with smooth functional
relationships of acceptable accuracy that can be eval-
uated quickly. In order to construct the surrogates,
the objective function and constraints must first be
evaluated over a set of design points. The surrogate
is then generated by fitting the initial design points.
Although function evaluations, which come from the
expensive helicopter simulations, are needed to form
the approximation, this initial investment of computer
time is significantly less compared to global searches
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using non-surrogate based optimization methods. Once
the surrogates have been obtained, they are used to
replace the more expensive “true” objective function
and constraints in the search for the optimum.

In order to determine the best approach for gen-
erating the surrogate objective function, two schemes
will be compared: (a) the vibratory hub shears and
moments in (1) will be replaced by surrogates and used
to build the surrogate objective function, as in (10), and
(b) the overall output, J, will be approximated directly.
Therefore, 6 responses need to be approximated in the
first approach, and 1 response needs to be approxi-
mated in the second approach.

Ĵ = KS

√
(F̂4X)2 + (F̂4Y)2 + (F̂4Z )2 +

KM

√
(M̂4X)2 + (M̂4Y)2 + (M̂4Z )2. (10)

The yielding constraint is the only constraint which
requires a forward flight simulation, and is therefore
the only computationally expensive constraint. Conse-
quently, a surrogate constraint is used in place of (9)
during optimization. Descriptions of several methods
for constructing the global approximations are given
below.

4.1 Design of computer experiments

When the initial data set is produced by a deterministic
computer code (as is the case in the vibration reduc-
tion problem), the term “design of computer experi-
ments,” is more appropriate than design of experiments
(Sacks et al 1989; Simpson et al 2004). The distinction
is necessary because in physical experiments there is
measurement error and other random sources of noise
that cannot be controlled, which affect the choice of the
design point. However, in computer experiments, there
is no random error; i.e., for a deterministic computer
code, a given input will always yield the same output.

Thus, the design of computer experiments need only be
space-filling. Figure 4 illustrates the difference between
a conventional design of experiment and a space-filling
design. In the figure, locations of design points where
experiments are to be conducted, which in this case
represent design points where aeroelastic response sim-
ulations are performed, are shown for a design space
which has two design variables.

A commonly used space-filling design is Latin hyper-
cube sampling (LHS) (McKay et al 1979). In LHS, each
design variable is partitioned into Nsp equally spaced
sections, or strata. Every design variable Di, where
i = 1, 2, . . . , Ndv , is sampled once in each strata, which
forms Ndv vectors of size Nsp. The components of the
Ndv vectors are then randomly combined to form an
Nsp × Ndv matrix known as a Latin hypercube, where
each row corresponds to a design point at which a com-
puter experiment is performed. A major disadvantage
of Latin hypercube sampling is that design points can
cluster together due to the random process by which de-
sign points are created. To prevent this, optimal Latin
hypercube (OLH) (Queipo et al 2005) sampling is used
in this study to ensure a more uniform (or space-filling)
design of computer experiment. Optimal Latin hyper-
cube sampling creates a more uniform design than
conventional LHS by maximizing a spreading criteria,
rather than randomly creating design points from the
samples. Figure 5 illustrates the difference between a
conventional Latin hypercube and an optimal Latin
hypercube. In this study, the OLH algorithm from the
iSIGHT software package is used (Jin et al 2005; Koch
et al 2002). Methods for fitting the data points in the
OLH are described next.

4.2 Polynomial regression

Suppose a deterministic function of Ndv design vari-
ables, that needs to be approximated, has been

Fig. 4 Design of physical
experiment vs. design of
computer experiment
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Fig. 5 Conventional LH vs.
Optimal LH in two
dimensional design space

evaluated at Nsp sample points. Sample point i is de-
noted x(i) = (x(i)

1 , . . . , x(i)
Ndv

) and the associated response
is given by y(i) = y(x(i)) for i = 1, . . . , Nsp. A polyno-
mial regression approximation to y(x) can be written
as

y(x) = ŷ(x) + εpr (11)

where ŷ(x) is the function chosen to approximate the
true response y(x), and εpr is the error associated with
the approximation. It is important to note that the
errors are assumed to be independent; i.e. the errors at
two points close together will not necessarily be close.
This assumption will be revisited when considering
kriging. In this study, 2nd order polynomials are used
for ŷ(x). The least squares regression approximation is
given as (Jin et al 2001)

ŷpr = β0 +
Ndv∑

i=1

βixi +
Ndv∑

i=1

Ndv∑

j=1,i< j

βijxix j +
Ndv∑

i=1

βiix2
i . (12)

4.3 Kriging

Kriging is based on the fundamental assumption that
errors are correlated, which is in contrast to the as-
sumption of independent or uncorrelated errors made
in polynomial regression. This implies that one assumes
the errors at two points close together will be close. In
fact, the assumption that the errors are uncorrelated is
only appropriate when the sources of error are random,
such as in the case of measurement error or noise. In the
case of deterministic computer simulations, there is no
source of random error. Therefore, it is more reason-
able to assume that the error terms will be correlated
and that this correlation is higher the closer two points
are to each other. In kriging, the unknown function y(x)

is assumed to be of the form

y(x) = f (x) + Z (x) (13)

where f (x) is an assumed function (usually polynomial
form) and Z (x) is a realization of a stochastic (random)
process which is assumed to be a Gaussian process
with zero mean and variance of σ 2

var, i.e. Z (x) follows
a normal, or Gaussian, distribution (Jones et al 1998;
Sasena 2002). The function f (x) can be thought of as a
global approximation of y(x), while Z (x) accounts for
local deviations which ensure that the kriging model
interpolates the data points exactly. The covariance
matrix of Z (x), which is a measure of how strongly
correlated two points are, is given by

Cov[Z (x(i)), Z (x( j))] = σ 2
varRkrg (14)

where each element of the Nsp × Nsp correlation matrix
Rkrg is given by

(Rkrg)ij = Rkrg(x(i), x( j)) (15)

and Rkrg(xi, x j) is a correlation function which accounts
for the effect of each interpolation point on every other
interpolation point. This function is called the spatial
correlation function (SCF) and is chosen by the user.
The most commonly used SCF is the Gaussian correla-
tion function,

Rkrg(x(i), x( j)) = exp

[

−
Ndv∑

k=1

ϑk|xk
(i) − xk

( j)|pk

]

, (16)

which is also employed in this study. The Gaussian SCF
is dependent on the distance between two points. As
two points move closer to each other, |xk

(i) − xk
( j)| → 0,

and (16) approaches unity which is the maximum value
of the Gaussian SCF. In other words, the Gaussian
SCF recovers the intuitive property that the closer two
points are to each other, the greater the correlation
between the points.

The fitting parameters ϑk and pk are unknown cor-
relation parameters which need to be determined. In
order to determine these parameters, the form of f (x)

needs to chosen. The most common choice for f (x) is
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f (x) = β where β is a constant. Previous studies have
found that modeling with the SCF is so effective, that
using a constant for the global behavior results in little
loss of fidelity (Sasena 2002; Sacks et al 1989; Simp-
son et al 2001b; Jones et al 1998). Another common
simplification, is to fix all pk = 2. When this simplifica-
tion is combined with the constant global approxima-
tion, the approximation method is known as ordinary
kriging. In the present study, kriging models where pk

are not fixed at 2 will be compared with ordinary kriging
models. In order to find ϑk and pk, the generalized least
square estimates of β and σ 2

var, denoted by β̂ and σ̂ 2
var

respectively, are employed (Sasena 2002; Jones et al
1998):

β̂ = (1T(Rkrg)
−11)−11T(Rkrg)

−1y (17)

and

σ̂ 2
var = (y − 1β̂)T(Rkrg)

−1(y − 1β̂)

Nsp
(18)

where 1 is a vector populated by ones and y is a
vector of observed function outputs at the interpolation
points; both vectors are of length Nsp. With σ̂ 2

var and
β̂ known, ϑk and pk are found such that a likelihood
function (Schonlau 1997; Sasena 2002; Jones et al 1998)
is maximized. The likelihood function, given in (19),
is a measure of the probability of the sample data
being drawn from a probability density function as-
sociated with a Gaussian process. Since the stochastic
process associated with kriging has been assumed to be
a Gaussian process, one seeks the set of ϑk and pk that
maximize the probability that the interpolation points
have been drawn from a Gaussian process.

−
[
Nsp ln(σ̂ 2

var) + ln |Rkrg|
]

2
(19)

The maximum likelihood estimates (MLE’s) of ϑk and
pk represent the “best guesses” of the fitting parame-
ters. Any values of ϑk and pk would result in a surrogate
which interpolates the sample points exactly, but the
“best” kriging surrogate is found by optimizing the like-
lihood function. This auxiliary optimization process can
result in significant fitting time depending on the size of
the system. Due to the optimization process needed to
create the kriging surrogate, kriging is only appropriate
when the time needed to generate the interpolation
points is much larger than the time to interpolate the
data – which is the case in the helicopter vibration
problem. With all parameters known, the kriging ap-
proximation to a function y(x) can be written as (Sasena
2002; Simpson et al 2001b; Sacks et al 1989; Jones et al
1998)

ŷkrg = β̂ + rkrg(x)T(Rkrg)
−1(y − 1β̂) (20)

where

rkrg(x)= [
Rkrg(x, x(1)), Rkrg(x, x(2)), . . . , Rkrg(x, x(Nsp))

]T

(21)

The column vector rkrg(x) of length Nsp is the cor-
relation vector between an arbitrary point x and the
interpolation points, x(1), . . . , x(Nsp).

4.4 Radial basis function overview

Radial basis function (RBF) interpolation is similar to
kriging in the sense that they are based on Gaussian
correlation functions. However, in this paper RBF in-
terpolation refers to an approximation method based
on Gaussian correlation functions that does not include
a constant global approximation term, unlike kriging.
The method of RBF interpolation used in this study is
based on the method employed in Sóbester et al (2004).
A brief description of the methodology for generating
the RBF surrogate is described next.

In RBF surrogates, the approximate response is a
weighted sum of basis functions:

ŷ =
Nsp∑

i=1

wiφRBF
(∥∥x − x(i)

∥∥)
(22)

where φRBF(∗) is typically a non-linear function de-
pending on the Euclidean distance (denoted by∥∥x − x(i)

∥∥) between two design points. The coefficients,
wi, must be found such that the surrogate interpolates
the initial data points. Thus, the following condition
must be satisfied for j = 1, . . . , Nsp:

y
(
x( j)) =

Nsp∑

i=1

wiφRBF
(∥∥x( j) − x(i)

∥∥)
(23)

By defining the vectors w = [w1, w2, . . . , wNsp]T, y =
[y1, y2, . . . , yNsp], and the Nsp×Nsp spatial correlation
matrix �RBF with elements (�RBF)ij =φRBF

(|x(i)−x( j)|),
(23) can be rewritten as

�RBFw = yT (24)

If the inverse of �RBF exists, then the weighting coeffi-
cients are

w = (�RBF)−1yT (25)

and the RBF surrogate is

ŷRBF(x) = φφφRBFw = φφφRBF(�RBF)−1yT (26)
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where

φφφRBF = [
φRBF

(∥∥x − x(1)
∥∥)

, . . . , φRBF
(∥∥x − x(Nsp)

∥∥)]
.

(27)

As stated above, (26) shows that the RBF surro-
gate does not include a constant global approximation
term, unlike (20) which includes β̂. Gaussian correla-
tion functions of the form given by (28) are used for the
basis functions in (22).

φRBF(η) = exp(−η2/2τ 2) (28)

In this case, the dummy variable η would be
∥∥x − x(i)

∥∥.
As described in Sóbester et al (2004), the fitting para-
meter τ is found by leave-one-out cross validation. This
process is described below:

1. The design variables are scaled to vary from 0
to 1. The possible values of τ are then spread over
the domain [10−1, 101] on a logarithmic scale. This
domain was used because the spatial correlation
matrix did not become ill-conditioned during the
fitting process with these bounds on τ .

2. For each value of τ , Nsp RBF models are created,
leaving one interpolation point out each time, as
if only (Nsp − 1) interpolation points exist. There-
fore, for each value of τ , Nsp evaluations of (26) are
required and each evaluation involves the inversion
of the Nsp × Nsp matrix �RBF. Since a large set of
τ can lead to an excessive number of evaluations of
(26), only 15 values for τ were considered so that
the RBF remains computationally tractable.

3. The difference between the true response at the left
out point and the response predicted at the left out
point by the RBF model based on (Nsp − 1) points
is computed.

4. The value of τ that minimizes the sum of these
residuals is selected as the fitting parameter.

5 Results

This section presents accuracy and robustness mea-
sures of the approximation methods that have been
described, as well as vibration reduction results using
surrogate objective functions. The helicopter configu-
ration used in all computations is given in Table 1.
The simulations are conducted at an advance ratio of
0.15 and descent angle of 6.5◦, where high vibration
levels due to strong blade vortex interaction (BVI) are
encountered (Patt et al 2006). Figure 6 illustrates a
helicopter in descent; this figure is also employed for
the propulsive trim calculation.

Table 1 Rotor and helicopter parameters needed for the
computations

Dimensional Data

R = 4.91 m � = 425 rpm

Non-Dimensional Data
Nb = 4 c = 0.05498R
βp = 0.0◦ Cdo = 0.01
θpt = 0◦ αd = 6.5◦
μ = 0.15 CW = 0.005
σ = 0.07 Cdf = 0.01
XF A = 0.0 Z F A = 0.3
XFC = 0.0 Z FC = 0.3

In addition to the information provided in Table 1,
additional information is needed for the fixed cross
sectional parameters, objective function, constraints,
and the finite element discretization of the blade. The
material properties and the chordwise locations of the
vertical walls are given in Table 2. Details on how x1

and x2 were determined can be found in Glaz et al
(2006).

The weighting factors in the objective function, KS

and KM, are selected to be 1. These weighting factors
result in an objective function which represents the
sum of the 4/rev oscillatory hub shear resultant and the
4/rev oscillatory hub moment resultant in the hub-fixed
non-rotating frame. For this study, the following side
constraints are enforced:

1.0 mm ≤ t1 ≤ 8.0 mm (29)

1.0 mm ≤ t2, t3 ≤ 12.0 mm (30)

0.0 ≤ mns/m0 ≤ 0.25 (31)

The upper and lower bounds used for the frequency
placement constraints are given in Table 3, and are sim-
ilar to those used in Lim and Chopra (1991), which also
used cross-sectional dimensions as design variables.

Fig. 6 Helicopter in descent flight condition
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Table 2 Fixed parameters defining the structure and cross
section

Aluminum Material Properties
E = 70.7 GPa
ν = 0.33
ρstruct = 2700 kg/m3

σY = 324 MPa

Non-structural Filler Mass Density
ρfiller = 237.4 kg/m3

Locations of the Vertical Walls
x1 = 65.4 mm x2 = 111.6 mm

In the aeroelastic stability constraints given by
(7), the minimum acceptable damping for all modes,
(ζk)min, is chosen to be 0.01, as in Yuan and Friedmann
(1995). Additionally, the constraints are modified for
the 2nd lag mode, which can sometimes be slightly
unstable. To prevent this situation, a small amount of
structural damping is added to this mode, as in Yuan
and Friedmann (1998). For this study, 0.5% structural
damping is added to stabilize the 2nd lag mode of the
baseline blade. For the yielding constraint, a factor of
safety of 1.5 is used. The rotor blade was discretized
into the 6 finite elements shown in Fig. 7.

5.1 Practical implementation details associated
with the surrogates

Four approximation methods were compared: 2nd order
polynomials, RBF interpolation, ordinary kriging, and
kriging where all pk are not fixed at 2. The surrogates
were fit to the sample data using MATLAB programs
on a 3.2 GHz Xeon processor. In this study, the or-
dinary kriging surrogates were created with a freely
available MATLAB kriging toolbox (Lophaven et al
2002). In the parameter estimation, a local optima of
the likelihood function (19) is sought. Since this algo-
rithm is only configured for ordinary kriging, a differ-
ent MATLAB package is used for the more general
kriging. The MATLAB package used for the more
general kriging utilizes the global search algorithm
DIRECT (Sasena 2002; Jones 2001) for optimization of
the likelihood function. Since the DIRECT algorithm

Table 3 Upper and lower bounds on the fundamental frequen-
cies (/rev)

Flap Lag Torsion

ωU 1.20 0.80 6.50
ωL 1.05 0.60 2.50

0 % 20 % 36 % 52 % 68 % 84 % 100 %

R

Fig. 7 Finite element node locations

results in a more global optimization, the more general
kriging algorithm is not as efficient as the ordinary
kriging algorithm.

In this study, two sets of fitting points are used to
build the surrogates – a 300 point optimal Latin hy-
percube (OLH) and a 500 point OLH. From the 300
point OLH, 283 points had converged trim solutions
and were used to build the surrogates; while out of the
500 point OLH, 484 points had converged trim solu-
tions. The fitting times for each approximation method
are given in Table 4. For the kriging surrogates, the
majority of the fitting time is devoted to the maximum-
likelihood parameter estimation, while for the RBF’s,
the leave-one-out cross validation method of finding
the fitting parameter is responsible for most of the
fitting time. The prediction time was much less than one
second for each approximation method.

One of the advantages of surrogate based optimiza-
tion with design of computer experiments is that each
simulation corresponding to a design point in the OLH
can be run independently of the other design points,
and therefore the simulations can be run in parallel.
The helicopter simulations were run on a Linux cluster
with 1.8 Ghz Opteron processors. The simulation time
was about 6 hours per simulation and 20 to 60 simula-
tions were run simultaneously.

Table 4 Fitting times associated with the approximation methods
on a 3.2 GHz Xeon processor

Surrogate Sample Size Fitting Time

Poly. 283 < 1 s
RBF 283 1.5 - 2 min.
Ord. krg. 283 15 - 20 s
Krg. 283 4 - 5 min.
Poly. 484 < 1 s
RBF 484 8 - 9 min.
Ord. krg. 484 50 s - 1 min.
Krg. 484 14 - 15 min.
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5.2 Surrogate accuracy results

The predictive capabilities of the approximation meth-
ods discussed in Section 4 were compared using the two
sets of fitting points. In order to quantify the accuracy of
the surrogates, two methods for calculating error were
considered. The first method requires conducting addi-
tional simulations at test points which are independent
of the fitting points, in order to test the predictions of
the surrogates. The second method is based on leave-
one-out cross validation and seeks to represent the
error in the surrogate without conducting additional
expensive simulations.

5.2.1 Errors based on additional test points

The first method for quantifying the error in the sur-
rogates utilizes simulation data at test points which are
not included in the optimal Latin hypercubes used to
create the surrogates. The predicted responses from
the surrogates were then compared to the “actual”
responses at the test points. The test points came from
a 200 point OLH, of which 197 had converged trim
solutions. None of the blade designs from the 197 test
points were coincident with the blade designs from the
two OLH’s used to create the surrogates. Using the test
points, the absolute percent error is given by

ε
(tp)

i
= |y(i) − ŷ(i)|

ȳ
(32)

where y(i) is the “actual” response computed by the
helicopter simulation, ŷ(i) is the response predicted by
the surrogate at the ith test point, and ȳ is the mean
of the absolute values of the responses from the 197

test points. Based on (32), the average percent error,
maximum percent error, and minimum percent error
are:

ε
(tp)

avg
=

∑Ntp

i=1
ε

(tp)

i

Ntp
(33)

ε
(tp)

max
= Max

{
ε

(tp)

1
, . . . , ε

(tp)

Ntp

}
(34)

ε
(tp)

min
= Min

{
ε

(tp)

1
, . . . , ε

(tp)

Ntp

}
(35)

where Ntp is the number of test points. The minimum
and maximum percent errors represent the best and
worst predictive errors respectively. These error mea-
sures are localized since they only represent one point
of the 197 test points, while the average percent error
represents the surrogate’s predictive capability over
the entire design space since all 197 test points are
included.

The average and maximum percent errors in the
approximations of the hub shears and moments are
given in Figs. 8 and 9 respectively. The minimum errors
are very low – under 1% for each approximation
method – and are not shown for the sake of brevity.
Figure 8 shows that one of the kriging surrogates
was the most accurate for every shear and moment
in terms of average error, while the polynomial re-
sponse surface generally had the highest average er-
rors. Typically, the more general kriging surrogate had
the lowest average errors, which ranged from 11-51%
with 283 sample points and 11-42% with 484 sample
points. Figure 8 shows that the kriging models are
superior in terms of accurately modeling the hub shears

Fig. 8 Average errors of the underlying vibratory loads, relative to mean responses
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Fig. 9 Maximum errors of the underlying vibratory loads, relative to mean responses

and moments over the entire designs space, and that the
kriging model which includes pk in the maximum like-
lihood estimation generally outperformed the ordinary
kriging model. Even though the more general kriging
model typically has lower average errors than ordinary
kriging, the differences are not large. The largest differ-
ence in error between the two kriging models was only
5.5%, which occurred in the case of the M4X surrogate
based on 484 sample points. A comparison of the final
fitting parameters of both kriging models is given in
Appendix B.

With the exception of the polynomial response sur-
faces, increasing the number of sample points did not
always reduce the average errors in the approximate
vibratory loads. In fact, for some surrogate vibratory
loads, higher average errors were associated with the
484 sample set. The most drastic case is associated with
the M4Y surrogate in which the error for the more gen-
eral kriging surrogate was 3.9% higher when using 484
sample points as opposed to 283. These results indicate
that for the 17 dimensional design space, increasing

the number of fitting points from 283 to 484 was not
sufficient to significantly enhance the accuracy of the
surrogates over the entire design space.

Figure 9 shows that all of the approximation methods
are susceptible to high maximum errors, which range
from 40-385% for 283 sample points, and 46-324% for
484 sample points. These results suggest that there are
local regions in the design space where the surrogates
are not reliable. Furthermore, increasing the number
of sample points did not always reduce the maximum
error, just as with average error.

The average and maximum errors in the surrogate
objective function are given in Figs. 10 and 11. The sur-
rogate objective functions were generated by two
approaches: (a) combining the surrogate hub shears
and moments to form the approximate objective func-
tion as in (10) and (b) by directly fitting the outputs for
J at the sample points. Figure 10 shows that construct-
ing the surrogates from the approximate underlying
responses results in slightly lower average errors for
both sample sizes. The largest difference in average

Fig. 10 Average errors in the
surrogate objective function,
relative to mean responses
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Fig. 11 Maximum errors in
the surrogate objective
function, relative to mean
responses

error between the two methods for creating the sur-
rogate objective function was only 3.2% and occurred
when using polynomials with 283 sample points.

Figure 11 shows that both methods of approximat-
ing the vibration objective function result in maximum
errors above 100%, and thus both methods are suscep-
tible to very high errors in local regions of the design
space. However, in contrast to the results in Fig. 10
for average error, generating the surrogate objective
function from the underlying vibratory hub loads did
not always result in lower maximum errors. So ap-
proximating the underlying responses offered a small
advantage for modeling the objective function over the
entire design space, but neither method offered a clear
advantage in terms of maximum error.

The errors in the approximate yielding constraint (9)
are given in Figs. 12 a,b. The ordinary kriging surrogate
best approximates the constraint over the entire design
space, with average errors of 35% using 283 sample
points and 31% using 484 sample points. There are
large maximum errors (over 300%) with all the approx-
imation methods, thus the surrogate constraints may
not be reliable in certain regions of the design space.
The more general kriging surrogate has the highest
average and maximum errors when using 484 sample
points. This is because during the maximum-likelihood
estimation of the fitting parameters, the correlation

matrix (15) became ill-conditioned, which is not un-
heard of (Martin and Simpson 2005), so the auxiliary
optimization process used to find the fitting parameters
did not progress to completion.

5.2.2 Errors based on leave-one-out cross validation

The second method for quantifying the error is based
on leave-one-out cross validation. In this approach,
error is calculated as follows:

1. A single design point is removed from the OLH
data used to fit the surrogate.

2. The surrogate is created using the remaining
(Nsp− 1) sample points.

3. The surrogate is evaluated at the left out design and
compared to the actual response.

Thus, the cross validation error is given by

ε
(cv)

i
= |y(i) − ŷ(−i)|

ȳ
(36)

where ŷ(−i) is the surrogate’s prediction at the left
out sample point when the surrogate is fit to the
(Nsp−1) remaining points. The average, maximum, and

Fig. 12 Errors in the
surrogate yielding constraint,
relative to mean responses
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Table 5 Ratio of average
leave-one-out cross validation
errors to average errors based
on test points

Surrogate Sample F4X F4Y F4Z M4X M4Y M4Z J Yielding
Size Constraint

Poly. 283 1.12 1.20 1.19 1.07 1.24 1.25 1.18 1.20
RBF 283 1.01 1.13 0.98 1.06 1.15 1.01 1.00 1.01
Ord. krg. 283 1.10 1.08 1.18 1.01 1.15 1.06 1.09 1.01
Krg. 283 1.06 1.16 0.96 1.15 1.40 1.01 1.05 1.00
Poly. 484 1.18 1.01 1.01 1.14 1.06 1.04 0.96 1.00
RBF 484 1.15 1.02 0.98 1.11 1.11 0.99 0.94 1.04
Ord. krg. 484 1.04 1.04 1.11 1.03 1.22 1.12 1.02 1.13
Krg. 484 1.07 0.98 1.06 1.31 1.15 1.12 1.04 0.96

minimum leave-one-out cross validation errors can be
written as:

ε
(cv)

avg
=

∑Nsp

i=1
ε

(cv)

i

Nsp
(37)

ε
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{
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1
, . . . , ε

(cv)
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}
(38)

ε
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{
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1
, . . . , ε

(cv)

Nsp

}
(39)

The advantage of using leave-one-out cross validation
is that a measure of the error can be obtained using
only the simulated data used to create the surrogates,
as opposed to conducting expensive simulations at
additional test points which are only used to quantify
error. However, leave-one-out cross validation errors
represent the sensitivity of the surrogate to the left out
designs, and may not adequately represent the error
in the surrogate. Therefore, the purpose of comparing
leave-one-out cross validation error with error based
on additional test points is to determine whether the
magnitude of error can be predicted without using ad-
ditional test points. Note that the cross validation error
in (36) is normalized by the mean responses from the
197 test points as in (32) so that errors based on (32)
and (36) can be directly compared.

The ratio of the leave-one-out cross validation errors
to the errors based on test points are given in Tables 5
and 6 for the 6 surrogate hub shears and moments,

the directly approximated objective function, and the
surrogate yielding constraint. Table 5 shows that the
magnitude of the average error can be captured using
leave-one-out cross validation, with the largest differ-
ence occurring for the M4Y kriging surrogate with 283
sample points where the cross validation error was 1.4
times larger than the error based on test points. Fur-
thermore, the average cross validation error generally
gave a more conservative (i.e. a ratio > 1.0) estimate of
the error over the entire design space.

Table 6 shows that leave-one-out cross validation
also captured the magnitude of the maximum error,
with the largest difference corresponding to the M4X

kriging surrogate with 484 sample points where the
cross validation error was 3.22 times higher than the
error based on test points. The maximum leave-one-out
cross validation error was typically more conservative
for the vibratory surrogates, but tended to underpredict
the error in the yielding constraint for the 484 point
surrogates. So for the yielding surrogate, whether or not
the maximum cross validation error was a conservative
measure of error was dependent on the number of
sample points used to create the surrogate.

5.3 Robustness

In addition to the accuracy, another metric for quanti-
fying the effectiveness of the surrogates is robustness,

Table 6 Ratio of maximum
leave-one-out cross validation
errors to maximum errors
based on test points

Surrogate Sample F4X F4Y F4Z M4X M4Y M4Z J Yielding
Size Constraint

Poly. 283 1.38 1.47 1.84 1.08 1.74 1.11 1.31 1.10
RBF 283 1.29 1.21 1.55 1.45 1.33 1.08 1.25 1.08
Ord. krg. 283 1.18 1.08 1.31 1.75 1.38 1.05 1.35 1.26
Krg. 283 1.14 1.21 1.29 1.31 1.56 1.02 1.44 1.46
Poly. 484 1.04 0.90 1.02 1.33 0.89 1.03 0.94 0.60
RBF 484 1.35 1.08 1.04 3.07 1.36 1.28 1.23 0.68
Ord. krg. 484 1.07 1.08 1.16 1.62 1.33 1.41 1.37 0.76
Krg. 484 1.29 1.17 1.17 3.22 1.45 1.65 1.53 0.79
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Fig. 13 Variance of the
average and maximum error
measures (based on test
points)

i.e. the capability of the approximation methods to
accurately model different responses. The robustness
measure indicates how sensitive the performance of an
approximation method is to the type of response being
modeled. The variance of the average and maximum
error measures based on test points is used to quantify
robustness (Jin et al 2001). The lower the variance, the
more robust the approximation method. Figure 13 gives
the variance of the errors for the 8 responses considered
in this study: the 6 hub shears and moments, the overall
objective function, and the yielding constraint. Ordi-
nary kriging is the most robust approximation method,
and thus its performance fluctuates the least when
modeling the responses in this study. Furthermore, the
variance of each surrogate method, except the more
general kriging, is lowered by increasing the number
of sample points from 283 to 484. Therefore, for the
responses considered in this study, increasing the num-
ber of sample points increases the robustness of the
surrogates. This conclusion does not hold for the more
general kriging due to the ill-conditioned correlation
matrix encountered when approximating the yielding
constraint.

5.4 Optimization results

The surrogate based optimization (SBO) conducted
in this study is non-updating, otherwise known as the
“one-shot” approach, which means that the surrogate is

not updated with objective function evaluations as the
optimization progresses. While it is important to use an
updating method so that optimization does not lead to
regions of high uncertainty in the surrogate, the focus
of this study was on the effectiveness of the approx-
imation techniques and not on the search algorithm.
Optimization of the surrogate objective functions was
conducted with the Multi-Island Genetic Algorithm in
iSIGHT. Each of the approximation methods was used
to generate the surrogate yielding constraint. However,
changing the type of approximation method used to
create the surrogate constraint did not alter the optimal
design. Although the type of approximation method
used to model the yielding constraint did not make a
difference, it was necessary to include the surrogate
yielding constraint since optimizing without it led to
designs which yield at the root. Helicopter simulations
were conducted at the optimal designs to obtain the
“actual” amount of vibration reduction.

Table 7 gives the optimization results when using
the underlying hub shears and moments to build
the surrogate objective function. Note that vibration
reduction is computed relative to the vibration levels
of a baseline blade resembling an MBB BO-105 blade.
Table 7 shows that all approximation methods lead to
significant vibration reduction of over 50% and ordi-
nary kriging leads to the best designs, with vibration
reduction of 67.4% with 283 sample points and 66.1%
with 484 sample points.

Table 7 Comparison of
predicted and “actual”
vibration reductions using
approximate underlying
responses, relative to MBB
B0-105 baseline values

Surrogate Sample Predicted Actual ωL1 ωF1 ωT1

Size Reduction Reduction

Poly. 283 100.0 % 66.4 % 0.671 1.062 5.036
RBF 283 100.0 % 55.2 % 0.605 1.064 3.783
Ord. krg. 283 92.6 % 67.4 % 0.611 1.060 4.583
Krg. 283 95.3 % 51.0 % 0.617 1.064 4.136
Poly. 484 100.0 % 58.9 % 0.608 1.056 3.958
RBF 484 100.0 % 57.7 % 0.600 1.059 4.165
Ord. krg. 484 94.9 % 66.1 % 0.616 1.061 4.483
Krg. 484 94.2 % 64.5 % 0.624 1.063 4.383
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Table 8 Comparison of
predicted and “actual”
vibration reductions when
directly approximating the
objective function, relative to
MBB B0-105 baseline values

Surrogate Sample Predicted Actual ωL1 ωF1 ωT1

Size Reduction Reduction

Poly. 283 394.4 % 64.4 % 0.610 1.058 4.330
RBF 283 132.8 % 51.9 % 0.600 1.060 4.054
Ord. krg. 283 144.4 % 63.8 % 0.615 1.061 4.404
Krg. 283 105.6 % 52.8 % 0.602 1.060 4.314
Poly. 484 222.4 % 45.0 % 0.627 1.060 3.960
RBF 484 136.4 % 52.2 % 0.602 1.061 3.958
Ord. krg. 484 162.8 % 54.7 % 0.613 1.061 4.283
Krg. 484 124.0 % 53.2 % 0.600 1.060 4.234

Table 8 shows that significant vibration reduction
can also be achieved when directly approximating the
objective function, however the amount of reduction
was generally less than the results in Table 7. This is
because by approximating the underlying responses,
the behavior of the vertical shear F4Z is captured,
which is important since much of the reduction in the
objective function is due to reduction of the vertical
shear. The importance of approximating the vertical
shear is illustrated in Fig. 14, in which the optimal
vibratory loads from ordinary kriging surrogates using
283 sample points are shown with the MBB BO-105
baseline values. Figure 14 shows that approximating
the underlying responses leads to 77% reduction of
F4Z , while approximating the overall objective function
results in 67% reduction of the vertical shear. It is also
clear from Fig. 14 that approximating the underlying re-
sponses results in higher values for the five other shears
and moments compared to direct approximation of the
objective function. Thus, approximating the underlying
responses led to a superior design because capturing the
behavior of the individual shears and moments leads to
a more effective reduction of the vertical shear F4Z .
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Fig. 14 Comparison of the optimal vibratory loads when using
surrogate underlying responses and when directly approximating
the objective function

Tables 7 and 8 also show that increasing the number
of fitting points did not always improve the optimal de-
signs, and in some instances resulted in worse designs.
This is probably due to the 283 sample set having a best
feasible design with 52% vibration reduction, which
was better than the 48% reduction associated with the
best feasible design in the 484 data set. The polyno-
mial surrogates were the most adversely affected by
increasing the number of sample points. Furthermore,
optimizing the surrogate did not always lead to a better
design than the best design in the set of fitting points
used to create the surrogates. This occurs because all
of the surrogates are inaccurate at the optimal designs.
For instance, Table 7 shows that optimizing the more
general kriging surrogate based on 283 sample points
led to 51% actual reduction, while the surrogate pre-
dicts 95.3% reduction. The discrepancy between the
predicted reduction and the actual reduction shows that
the surrogate is not accurate at the optimal design.
Moreover, the optimal design is worse than the best
feasible design from the OLH, which produced 52%
reduction. So optimizing the surrogate led to a region of
the design space where the surrogate was not accurate,
and the optimal design happened to be worse than
the best feasible design from the fitting data. Although
none of the surrogates accurately predict the amount of
vibration reduction at the optimal designs, optimizing
the surrogates generally led to superior designs than the
best feasible designs in the optimal Latin hypercubes.

The fundamental rotating frequencies corresponding
to the optimal designs are also given in Tables 7 and 8.
No two optimal blade designs have the same set of fun-
damental frequencies, which means that each surrogate
led to a different optimal blade design. These results
suggest that, at the flight condition characterized by
BVI induced vibrations, there are many local optima in
the design space. Table 9 gives the predicted vibration
reduction from each surrogate at all of the optimal
designs from Table 7. The results from Table 9 show
that every surrogate is able to predict that the optimal
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Table 9 Predicted vibration
reduction by each of the
surrogates at all of the
optimal designs from Table 7

Optimum Sample Predicted Predicted Predicted Predicted
Size Reduction Reduction Reduction Reduction

by Poly. by RBF by Ord. krg. by Krg.

Poly. 283 100.0 % 83.3 % 15.5 % 95.2 %
RBF 283 69.3 % 100.0 % 24.4 % 72.7 %
Ord. krg. 283 21.5 % 40.9 % 92.6 % 70.7 %
Krg. 283 93.2 % 83.7 % 71.6 % 95.3 %
Poly. 484 100.0 % 84.1 % 61.3 % 74.5 %
RBF 484 63.2 % 100.0 % 34.1 % 58.0 %
Ord. krg. 484 74.1 % 62.7 % 94.9 % 72.5 %
Krg. 484 33.8 % 89.6 % 38.6 % 94.2 %

designs are reduced vibration designs. Therefore, all
of the surrogates are able to capture the fact that
the objective function has many local optima, which
would be important if it were desirable to obtain many
prospective optimum designs in addition to the global
optimum.

The optimal designs were checked for robustness to
small perturbations by perturbing each design variable
by ±3% from the optimum value, as in Murugan and
Ganguli (2005). None of the perturbed designs resulted
in more than 5% difference from the original objective
function value, and there was an average change in
objective function values of only 1.2% over all the
perturbed designs. So the optimal designs were robust
to small perturbations in the designs, which indicates
that the regions around the optimal designs are reliable
regions of reduced vibration designs.

6 Conclusions

The results in this paper demonstrate that global ap-
proximation methods, such as polynomial regression,
radial basis function interpolation, and kriging, can lead
to blade designs with significantly reduced vibration
levels. Even with local regions in the design space
where the surrogates’ predictions are unreliable, the
surrogates still captured enough of the behavior over
the entire design space such that they could be used
to find regions of improved design. Overall, ordinary
kriging performed the best in terms of accuracy over
the entire design space, robustness, and optimization.
The principal results from this study are summarized
below.

1. Among the methods considered, kriging was the
most effective method for approximating vibratory
loads over the entire design space, and for locating
an optimum blade design. Although the average
accuracies of kriging were the best, the kriging

surrogates were susceptible to high errors at certain
design points.

2. The high maximum errors suggest that none of
the approximation methods can be used for precise
predictions of vibrations everywhere in the design
space, at least without adding more interpolation
points, although they are still useful in finding more
optimal designs.

3. Allowing the parameters pk to vary in the krig-
ing fitting process resulted in surrogates which
were generally more accurate over the entire
design space, but resulted in inferior blade de-
signs compared to ordinary kriging when used in
optimization.

4. Approximating the underlying responses of the ob-
jective function, as opposed to directly approxi-
mating the objective function, resulted in superior
blade designs because of the importance of reduc-
ing the vertical shear, F4Z .

5. Ordinary kriging was the most robust of the appro-
ximation methods, and therefore the performance
of ordinary kriging was the least dependent on the
behavior of the response being approximated.

6. By using leave-one-out cross validation, the magni-
tude of the error in the surrogates can be predicted
without generating additional test points. Further-
more, leave-one-out cross validation generally gave
a conservative estimate of the error over the entire
design space.

7. While all of the approximation methods consid-
ered led to significant vibration reduction, ordinary
kriging produced the best blade design which had
vibration levels 67% less than an MBB BO-105
baseline blade.
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Table 10 Fitting parameters
for the ordinary kriging
surrogates (283 sample
points)

Parameter F4X F4Y F4Z M4X M4Y M4Z J Yielding
Constraint

ϑ1 0.354 0.354 0.300 0.354 0.317 0.329 0.317 0.057
ϑ2 0.258 0.258 0.216 0.258 0.235 0.235 0.219 0.030
ϑ3 0.188 0.188 0.087 0.188 0.175 0.175 0.151 0.028
ϑ4 0.137 0.137 0.130 0.177 0.139 0.130 0.112 0.028
ϑ5 0.100 0.100 0.145 0.100 0.096 0.096 0.078 0.009
ϑ6 0.073 0.073 0.035 0.073 0.072 0.072 0.055 0.020
ϑ7 0.079 0.079 0.100 0.079 0.549 0.059 0.122 0.018
ϑ8 0.039 0.039 0.030 0.039 0.039 0.044 0.099 0.017
ϑ9 0.028 0.028 0.060 0.028 0.029 0.033 0.039 0.015
ϑ10 0.035 0.024 0.232 0.035 0.556 0.540 0.065 0.100
ϑ11 0.015 0.015 0.011 0.015 0.016 0.019 0.010 0.019
ϑ12 0.011 0.011 0.187 0.011 0.012 0.534 0.042 0.013
ϑ13 0.016 0.016 0.259 0.016 0.531 0.010 0.034 0.100
ϑ14 0.010 0.010 0.030 0.013 0.010 0.011 0.019 0.028
ϑ15 0.010 0.010 0.060 0.010 0.010 0.010 0.019 0.009
ϑ16 0.010 0.010 0.019 0.012 0.010 0.010 0.019 0.016
ϑ17 0.010 0.010 0.013 0.010 0.036 0.036 0.011 0.094

Appendix A: Hover stability perturbation analysis
with RFA aerodynamics

The development of the perturbation equations used
in the linearized stability analysis are given in this
appendix. The process used in Yuan and Friedmann
(1995) has been modified to take into account the RFA
aerodynamic model. In Yuan and Friedmann (1995),
the blade equations of motion were only a function of
the blade response and trim parameters, i.e.,

fb (qb , q̇b , q̈b , qt) = 0 (40)

where qb is the vector of generalized modal coordinates
representing the blade degrees of freedom and qt is
the vector of trim parameters which are uniform inflow
and collective pitch for hover. In this study, the blade
equations of motion are written as

fb (qb , q̇b , q̈b , xa, qt) = 0 (41)

where xa is the vector of aerodynamic states introduced
by the RFA aerodynamic model. Correspondingly,
there is a set of governing ODE’s for the aerodynamic
state vector,

ẋa = ga(qb , q̇b , q̈b , xa, qt). (42)

Table 11 Fitting parameters
for the ordinary kriging
surrogates (484 sample
points)

Parameter F4X F4Y F4Z M4X M4Y M4Z J Yielding
Constraint

ϑ1 0.354 0.354 0.289 0.354 0.317 0.538 0.289 0.056
ϑ2 0.258 0.258 0.216 0.258 0.235 0.187 0.216 0.025
ϑ3 0.188 0.188 0.161 0.188 0.175 0.134 0.161 0.022
ϑ4 0.137 0.137 0.121 0.172 0.139 0.161 0.121 0.035
ϑ5 0.100 0.100 0.090 0.100 0.096 0.070 0.090 0.025
ϑ6 0.073 0.073 0.067 0.073 0.072 0.050 0.067 0.017
ϑ7 0.079 0.079 0.097 0.079 0.059 0.075 0.201 0.022
ϑ8 0.039 0.039 0.078 0.039 0.044 0.112 0.121 0.016
ϑ9 0.028 0.028 0.028 0.046 0.029 0.045 0.028 0.005
ϑ10 0.035 0.035 0.250 0.035 0.540 1.000 0.269 0.084
ϑ11 0.015 0.015 0.016 0.015 0.016 0.010 0.016 0.011
ϑ12 0.011 0.011 0.032 0.011 0.014 0.161 0.032 0.015
ϑ13 0.016 0.016 0.482 0.016 0.531 0.145 0.216 0.100
ϑ14 0.010 0.013 0.072 0.013 0.071 0.014 0.021 0.029
ϑ15 0.010 0.010 0.034 0.010 0.010 0.058 0.031 0.015
ϑ16 0.010 0.010 0.013 0.012 0.010 0.014 0.015 0.007
ϑ17 0.010 0.010 0.040 0.010 0.036 0.030 0.040 0.037
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Table 12 Fitting parameters
for the more general kriging
surrogates (283 sample
points)

Parameter F4X F4Y F4Z M4X M4Y M4Z J Yielding
Constraint

ϑ1 0.009 0.043 0.890 0.195 0.691 1.899 1.475 0.152
ϑ2 0.006 0.006 0.006 0.012 0.071 0.026 0.016 0.152
ϑ3 0.007 0.055 0.152 0.016 0.007 0.071 0.152 0.016
ϑ4 0.691 1.475 0.152 1.475 2.445 0.251 1.475 0.152
ϑ5 0.016 0.118 0.417 0.071 0.071 0.324 0.152 0.016
ϑ6 0.033 0.043 0.006 0.118 0.417 0.071 0.152 0.152
ϑ7 1.899 3.149 0.417 1.475 4.054 0.324 1.475 0.152
ϑ8 0.152 0.251 0.055 0.071 0.016 0.152 0.152 0.016
ϑ9 0.152 0.251 0.152 0.118 0.091 0.152 0.152 0.016
ϑ10 0.152 0.324 1.899 0.324 4.054 1.475 1.475 1.475
ϑ11 0.007 0.006 0.007 0.007 0.007 0.007 0.016 0.152
ϑ12 0.016 0.007 0.324 0.007 0.091 0.324 0.152 0.016
ϑ13 0.691 0.890 1.899 1.146 1.899 0.071 1.475 1.475
ϑ14 0.016 0.055 0.091 0.033 0.152 0.007 0.152 0.152
ϑ15 0.033 0.033 0.251 0.007 0.055 0.152 0.152 0.016
ϑ16 0.016 0.071 0.033 0.152 0.033 0.009 0.016 0.152
ϑ17 0.152 0.152 0.195 0.152 0.417 0.007 0.152 0.152
p1 1.660 1.953 1.073 1.880 1.953 1.220 1.000 1.000
p2 0.780 1.953 0.120 0.120 0.927 1.000 1.660 1.660
p3 1.880 1.880 1.880 0.340 1.440 1.880 1.000 1.000
p4 1.880 1.953 0.340 1.953 1.880 1.880 1.660 1.000
p5 1.220 1.000 1.440 1.880 1.220 0.340 1.000 1.000
p6 0.340 1.953 1.220 1.880 1.953 0.340 1.000 1.000
p7 1.880 1.880 1.953 1.953 1.953 1.880 1.660 1.660
p8 1.880 1.953 1.220 1.293 1.880 1.953 1.000 1.660
p9 1.880 1.733 1.293 1.000 0.633 1.660 1.000 1.000
p10 1.220 1.147 1.000 1.220 1.953 1.440 1.000 1.000
p11 0.120 1.293 1.513 1.220 1.000 1.880 1.660 1.000
p12 1.220 1.953 1.953 1.220 1.880 1.073 1.000 1.000
p13 1.660 1.953 1.293 1.880 1.733 0.340 1.000 1.660
p14 1.880 1.953 1.953 1.880 1.953 0.120 1.000 1.000
p15 0.120 1.220 1.953 1.000 1.880 1.880 1.000 1.000
p16 1.000 0.267 0.780 1.880 1.880 0.120 1.000 1.000
p17 1.953 0.780 1.953 0.120 1.880 1.880 1.660 1.000

Equations 41 and 42 represent the coupled set of ordi-
nary differential equations that govern the rotor blade
system. The components of (41) and (42) are formed
numerically as part of the helicopter simulation, and
detailed equations for the components can be found in
Myrtle (1998) and Liu (2005). Since these equations are
coupled, the combined system must be linearized. The
linearization process is now discussed.

Following the development in Myrtle (1998), (41) is
rewritten as

fb = gb (qb , q̇b , xa, qt) + M(qb , qt)q̈b = 0 (43)

where

M ≡ ∂fb

∂q̈b
. (44)

Dependence on q̈b in (42) is eliminated by using (43)
and (44), yielding

ẋa = gaR(qb , q̇b , xa, qt). (45)

Perturbing (41) about the static equilibrium and ne-
glecting higher order terms gives

[
∂fb

∂q̈b

]

y0

�q̈b +
[
∂fb

∂q̇b

]

y0

�q̇b +
[
∂fb

∂qb

]

y0

�qb +
[
∂fb

∂xa

]

y0

�xa =0

(46)

where y0 is the static equilibrium vector and is given by

y0 =
⎡

⎣
qb0

q̇b0

ẋa0

⎤

⎦ (47)
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Table 13 Fitting parameters
for the more general kriging
surrogates (484 sample
points)

Parameter F4X F4Y F4Z M4X M4Y M4Z J Yielding
Constraint

ϑ1 0.016 0.016 0.890 0.537 0.417 4.054 1.475 0.016
ϑ2 0.016 0.016 0.043 0.043 0.537 0.007 0.016 0.152
ϑ3 0.152 0.152 0.152 0.033 0.071 0.417 0.016 0.016
ϑ4 1.475 1.475 0.537 2.445 4.054 0.417 0.152 0.152
ϑ5 0.152 0.152 0.118 0.071 0.006 0.152 0.152 0.152
ϑ6 0.152 0.152 0.007 0.043 0.055 0.152 0.152 0.016
ϑ7 1.475 1.475 0.691 3.149 1.475 0.691 1.475 0.152
ϑ8 0.152 0.152 0.043 0.118 0.033 0.417 0.152 0.016
ϑ9 0.152 0.152 0.152 0.324 0.043 0.152 0.152 0.152
ϑ10 0.152 0.152 2.445 1.475 4.054 4.054 1.475 0.152
ϑ11 0.016 0.016 0.118 0.033 0.007 0.071 0.152 0.152
ϑ12 0.016 0.016 0.007 0.071 0.091 0.251 0.152 0.152
ϑ13 0.152 0.152 1.899 0.890 1.475 0.691 1.475 0.016
ϑ14 0.152 0.152 0.417 0.152 0.324 0.016 0.152 0.152
ϑ15 0.016 0.152 0.324 0.026 0.016 0.006 0.152 0.152
ϑ16 0.016 0.016 0.324 0.043 0.091 0.016 0.016 0.152
ϑ17 0.016 0.152 0.152 0.033 0.020 0.043 0.152 0.152
p1 1.000 1.660 1.440 0.340 1.293 1.807 1.000 1.000
p2 1.000 0.340 1.953 1.880 1.660 1.953 0.340 1.000
p3 1.000 1.000 1.807 0.340 0.707 1.880 1.660 1.000
p4 1.660 1.660 0.560 1.953 1.733 1.953 1.000 1.000
p5 1.000 1.660 1.660 1.440 1.660 1.880 1.000 1.000
p6 1.660 1.660 1.880 0.780 0.927 0.120 1.660 1.000
p7 1.660 1.660 1.293 1.880 1.293 1.953 1.000 1.000
p8 1.000 1.000 1.733 1.880 1.367 1.880 1.000 1.000
p9 1.000 1.660 1.953 1.880 1.880 0.340 1.000 1.000
p10 1.000 1.000 1.880 1.733 1.953 1.953 1.000 1.000
p11 1.000 1.660 0.487 1.513 1.880 0.633 1.000 1.000
p12 1.000 1.660 1.880 1.880 1.953 1.293 1.000 1.000
p13 1.660 1.000 1.660 1.953 1.953 1.587 1.660 1.000
p14 1.000 1.000 1.807 0.707 1.000 1.293 1.000 1.000
p15 1.000 1.660 1.880 1.220 1.220 1.440 1.660 1.000
p16 1.660 1.000 0.340 1.880 1.807 1.807 1.000 1.000
p17 1.000 1.000 1.880 1.880 1.880 1.953 1.000 1.000

The “0” subscript denotes static equilibrium solution.
From (43),

[
∂fb

∂q̇b

]

y0

=
[

∂gb

∂q̇b

]

y0

(48)

[
∂fb

∂qb

]

y0

=
[

∂gb

∂qb

]

y0

(49)

[
∂fb

∂xa

]

y0

=
[
∂gb

∂xa

]

y0

. (50)

Substituting (48)–(50) and (44) into (46) gives

[M]y0
�q̈b +

[
∂gb

∂q̇b

]

y0

�q̇b +
[

∂gb

∂qb

]

y0

�qb

+
[
∂gb

∂xa

]

y0

�xa = 0 (51)

Solving for �q̈b yields

�q̈b = −M−1

[
∂gb

∂q̇b

]

y0

�q̇b − M−1

[
∂gb

∂qb

]

y0

�qb

−M−1

[
∂gb

∂xa

]

y0

�xa. (52)

Similarly, (45) can be linearized, yielding

�ẋa =
[
∂gaR

∂q̇b

]

y0

�q̇b +
[
∂gaR

∂qb

]

y0

�qb +
[
∂gaR

∂xa

]

y0

�xa. (53)

Combining (52) and (53) with the trivial perturbation
equation �q̇b = �q̇b into first-order state space form
gives

ż = [A(y0)]z (54)
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where

[A(y0)] =

⎡

⎢⎢
⎣

0 I 0

−M−1
[

∂gb

∂qb

]

y0

−M−1
[

∂gb

∂q̇b

]

y0

−M−1
[

∂gb

∂xa

]

y0[
∂gaR

∂qb

]

y0

[
∂gaR

∂q̇b

]

y0

[
∂gaR

∂xa

]

y0

⎤

⎥⎥
⎦

(55)

and

z ≡ �y =
⎡

⎣
�qb

�q̇b

�xa

⎤

⎦ (56)

As mentioned, the stability of the system is determined
by the eigenvalues of A.

Appendix B: Comparison of Kriging fitting parameters

A comparison of the final fitting parameters for the
two kriging models is given in Tables 10, 11, 12, 13.
The difference in fitting parameters shows that the
two methods of kriging resulted in completely different
surrogates.
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