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Abstract The paper considers a classic formulation
of the topology optimization problem of discrete or
discretized structures. The objective function to be
maximized is the smallest natural frequency of the
structure. We develop non-heuristic mathematical
models paying special attention to the situation when
some design variables take zero values. These models
take into account multiple load conditions, equilibrium
of forces, constraints on compliance and volume, and
the effect of possible non-structural mass. We discuss
serious obstacles for a successful numerical treatment
of this formulation such as non-Lipschitzean behav-
ior and even discontinuity of the objective function.
As a cure, we present an equivalent reformulation as
a bilinear semidefinite programming problem without
the pitfalls of the original problem. An algorithm is
presented for finding an approximation of a globally
optimal solution up to a user-defined accuracy. The
key ingredient of this algorithm is the treatment of a
sequence of linear semidefinite programs. Numerical
examples are provided for truss structures. Examples of
both academic and larger size illustrate the theoretical
results achieved and demonstrate the practical use of
this approach. We conclude with an extension on mul-
tiple non-structural mass conditions.
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1 Introduction

The subject of this paper is topology optimization of
discrete and discretized structures with consideration
of free vibrations of the optimal structure. We consider
models where stiffness as well as mass matrices depend
linearly on a design variable, which can be thickness,
density, etc. This design variable is allowed to attain
zero values; hence, we speak about topology optimiza-
tion. The models cover, for instance, truss topology
problems, variable thickness sheet design, and certain
problems of material optimization. They do not in-
clude bending problems or the solid isotropic material
with penalization (SIMP) model with p > 1 (see, e.g.,
Bendsøe and Sigmund 2002 and the references therein).
We use the traditional physical modeling (i.e., p = 1)
instead.

Maximization of the fundamental eigenvalue of a
structure is a classic problem of structural engineer-
ing. The (generalized) eigenvalue problem typically
reads as

K(x)w = λ(M(x) + M0)w

where K(x) and M(x) are symmetric and positive
semidefinite matrices that continuously (often linearly)
depend on the parameter x, and M0 is also positive
semidefinite. The main difficulty brings the non-smooth
dependence of eigenvalues on this parameter. In fact,
we shall see below that the dependence of the smallest
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eigenvalue on x may even be discontinuous in topology
optimization problems.

The problem has been treated in the engineering
literature since the beginning of 1970s; see the pa-
per Olhoff and Rasmussen (1977) and the overview
Olhoff (1980) summarizing the early development.
See also the recent book Seyranian and Mailybaev
(2003) for up-to-date bibliography on this subject. The
general problem of eigenvalue optimization belongs
also to classic problems of linear algebra. When the
matrix M(x) + M0 is positive definite for all x, then
one can resort to the theory developed for the standard
eigenvalue problem; see Lewis and Overton (1996)
for an excellent overview. Not many papers studying
the dependence of the eigenvalues on a parameter are
available for the general case when M(x) + M0 is only
positive semidefinite; see, e.g., Bhatia and Li (1996);
Stewart (1979); Zhang et al. (1998).

The paper is organized as follows. In Section 2, we
present a formulation of the structural design problem
where we maximize the fundamental frequency, i.e.,
the smallest eigenvalue of certain generalized eigen-
value problem, subject to equilibrium conditions and
constraints on the volume and the compliance. We
illustrate several severe theoretical difficulties of this
formulation as non-Lipschitzean behavior and even
discontinuity of the involved functions. In Section 3,
we formulate this problem as a semidefinite program
(SDP) with a bilinear matrix inequality (BMI) con-
straint. This formulation, however straightforward, has
never been used for the numerical solution of the
problem, up to our knowledge. The reason for this
was the lack of available SDP-BMI solvers. We solve
the problem by a recently developed code Penbmi
(Kočvara et al. 2004). Due to the BMI, the refor-
mulated problem is non-convex. By consideration of
a related convex SDP, however, it is possible to im-
prove lower and upper bounds for the globally optimal
function value of the original problem. This, finally,
leads to an algorithm for finding an approximation of
a globally optimal solution of the original problem up
to a given accuracy. Section 5 presents some numerical
examples of different size. These examples illustrate
the formulations and theoretical results developed in
the paper and also demonstrate the solvability of the
SDP formulations, and thus, their practical usefulness.
In Section 6, the paper closes with an extension to prob-
lems with several independent non-structural masses
applied at different time points.

All formulations and theorems in the presentation
are developed for problems using discrete or dis-
cretized structural models satisfying certain proper-
ties. All numerical examples show trusses to keep the

notation and visualization fixed and simple. The the-
ory, however, also applies to discretized structures, for
instance, to the variable thickness sheet or the free
material optimization problems (see, e.g., Bendsøe and
Sigmund 2002).

This paper is based on a mathematically oriented
paper of the authors (Achtziger and Kočvara 2006).
In this paper, we want to present material and new
examples relevant for practitioners. We use standard
notation. In particular, the k × k identity matrix is de-
noted by Ik×k, and ker(A) and range(A) denote the null
space and the range space of a matrix A, respectively.
The notation “A � 0” means that the symmetric matrix
A is positive semidefinite and “A � 0” means that it is
positive definite. For two symmetric matrices A and B,
the notation “A � B” (“A � B”) means that A − B is
positive semidefinite (positive definite). Finally, x �= 0
means that at least one component of a vector x is not
equal to zero, and x > 0 says that all components of x
are greater than zero.

2 Problem definition

2.1 Basic notations, generalized eigenvalues

We consider a general mechanical structure, discrete or
discretized by the finite element method. The number
of members or finite elements is denoted by m, the total
number of “free” degrees of freedom (i.e., not fixed by
Dirichlet boundary conditions) by n. Unlike in other
approaches to eigenfrequency optimization, we include
in the optimization problem both the fundamental fre-
quency and the stiffness of the structure with respect
to multiple external loads. Note that, in practice, it is
not known in advance whether the structural stiffness
or the eigenfrequencies are the decisive factor for the
resulting design. The optimization problem introduced
below also covers the situation without external loads.

For a given set of L (independent) load vectors

f� ∈ R
n, f� �= 0, � = 1, . . . , L, (1)

the structure should satisfy linear equilibrium equations

K(x)u� = f�, � = 1, . . . , L. (2)

Here, K(x) is the stiffness matrix of the structure, de-
pending on a design variable x. We will assume linear
dependence of K on x,

K(x) =
m∑

i=1

xi Ki (3)
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with xi Ki being the element stiffness matrices. Note
that the stiffness matrix of element (member) ei is
typically defined as

xi Ki = xi Pi K̂i PT
i (4)

where Pi PT
i is a projection from R

n to the space of ele-
ment (member) degrees of freedom. In other words, K̂i

is a matrix localized on the particular element, whereas
Ki lives in the full space R

n. Further,

xi K̂i =
∫

ei

xi BT
i Ei Bi dV

where the rectangular matrix Bi contains derivatives of
shape functions of the respective degrees of freedom
and Ei is a symmetric matrix containing information
about material properties. To exclude pathological sit-
uations, we assume that

f� ∈ range

(
m∑

i=1

Ki

)
for all � = 1, . . . , L, (5)

which means that there exists a material distribution
x ≥ 0 that can carry all loads f�, i.e., there exist corre-
sponding u1, . . . , u� satisfying (2).

Similarly to the definition of K(x), the mass matrix
M(x) of the structure is assumed to be given as

M(x) =
m∑

i=1

xi Mi, Mi = Pi M̂i PT
i (6)

with element mass matrices

xi M̂i =
∫

ei

xi NT
i Ni dV . (7)

Here, Ni contains the shape functions of the degrees of
freedom associated with the ith element.

The design variables x ∈ R
m, x ≥ 0, represent, for

instance, the thickness, cross-sectional area, or material
properties of the element. We will assume that

xi ≥ 0, i = 1, . . . , m .

Notice that the matrices K̂i, M̂i have the properties
K̂i �0, M̂i �0, and thus K(x)�0, M(x) � 0 for all x≥0.
From a practical point of view, it is worth noticing that
the element matrices Ki and Mi are very sparse with
only non-zero elements corresponding to degrees of
freedom of the ith element. That means, for each i, the
matrices Ki and Mi have the same non-zero structure
(see also Lemma 1 below). The matrices K(x) and
M(x), however, may be dense, in general.

In the sequel, we will sometimes collect the dis-
placement vectors u1, . . . , uL for all the load cases in
one vector

u = (uT
1 , . . . , uT

L)T ∈ R
L·n,

for simplification of the notation.
In this paper, we do not rely on any other proper-

ties of stiffness and mass matrices than those outlined
above. Therefore, the problem formulations and the
conclusions apply to a broad class of problems, e.g.,
to the variable thickness sheet problem or the free
material optimization problem (see, e.g., Bendsøe and
Sigmund 2002). For the sake of transparency, however,
in the examples, we concentrate on a particular class of
discrete structures, namely, trusses.

In this article, we will additionally consider free
vibrations of the optimal structure. The free vibra-
tions are the eigenvalues of the generalized eigenvalue
problem

K(x)w = λ(M(x) + M0)w . (8)

The matrix M0 ∈ R
n×n is assumed to be symmetric and

positive semidefinite. It denotes the mass matrix of
a given non-structural mass (dead load). The choice
M0 = 0 is of course included in our development. In
this case, the eigenvalues λ are invariant with respect
to scaling of x. This reflects the physics of the problem
(notice that this invariance property may not hold for
non-linear models like, e.g., SIMP with p > 1).

To exclude trivial situations, we assume that the
number of load cases L is positive if M0 = 0, i.e., equiv-
alently, M0 �= 0 if L = 0.

In the sequel, we use the notation

X := {x ∈ R
m | x ≥ 0, x �= 0}

for the set of all design variables referring to non-zero
structures.

As a consequence of the construction of K(x) and
M(x), we state a first fact that is widely known among
practitioners. However, a strictly mathematical proof,
although very simple, is difficult to find in the literature.

Lemma 1 For each x ∈ X it holds that

ker(M(x) + M0) � ker(K(x)) .
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Proof Let u∈R
n be in ker(M(x)+M0). Then uT(M(x)+

M0)u = 0, i.e. (see (6)),

0 = uT

(
m∑

i=1

xi Pi M̂i PT
i + M0

)
u

=
m∑

i=1

xi(PT
i u)T M̂i(PT

i u) + uT M0u .

Because M̂i � 0 for all i, and because M0 � 0, we
conclude that

PT
i u = 0 for all i such that xi > 0.

Hence, by the definition of K(x) and by (4),

K(x)u =
m∑

i=1

xi Kiu =
m∑

i=1

xi Pi K̂i PT
i u

=
∑

i: xi �=0

xi Pi K̂i PT
i u = 0,

and the proof is complete. ��

We now want to define a function λmin(·) that as-
signs a given structure represented by vector x ∈ X
the smallest eigenvalue λ of problem (8). Before doing
that, we mention the following dilemma hidden in the
generalized eigenvalue problem (8). If x ∈ X is fixed
and (λ, w) ∈ R × R

n is a solution of (8) with w �= 0 but
with w ∈ ker(M(x) + M0), then Lemma 1 shows that
also K(x)w = 0. Hence, (μ, w) is also a solution of
(8) for arbitrary μ ∈ R. In this situation, we say that
this eigenvalue is undefined; otherwise it is well-defined.
Because undefined eigenvalues are meaningless from
the engineering point of view, we want to exclude them
from our considerations. This leads to the following
notation.

Notation 1 For any x ∈ X, let λmin(x) denote the small-
est well-defined eigenvalue of (8), i.e.,

λmin(x) = min{λ | ∃w ∈ R
n : K(x)w = λ(M(x) + M0)w,

w /∈ ker(M(x) + M0)}.

By standard linear algebra and by Lemma 1, it is seen
that λmin(x) can be written in the form of a Rayleigh
quotient,

λmin(x) = inf
u: (M(x)+M0)u�=0

uT K(x)u
uT(M(x) + M0)u

(9)

for all x ∈ X (see, e.g., Achtziger and Kočvara 2006 or
Gantmacher 1959). This shows that the function λmin(·)
is finite and non-negative on X.

2.2 Problem definition, difficulties

Maximization of the smallest eigenvalue of a mechani-
cal structure is of paramount importance in many indus-
trial applications; see, e.g., Olhoff (1980). In this article,
we define it as the problem of maximizing the smallest
(well-defined) eigenvalue of (8) subject to equilibrium
conditions and constraints on the compliance and on
the volume:

max
x∈Rm,u∈RL·n

λmin(x)

subject to

(
m∑

i=1

xi Ki

)
u� = f�, � = 1, . . . , L

f T
� u� ≤ γ , � = 1, . . . , L

m∑

i=1

xi ≤ V

xi ≥ 0, i = 1, . . . , m .

(10)

This problem, or its minor modifications, has already
been considered at several places in the literature. It
finds valuable interest in practical applications (see
Olhoff 1980; Seyranian and Mailybaev 2003; Lewis and
Overton 1996). Notice that the inequality constraints
on compliance and/or volume can be easily replaced
with equality constraints. Equalities, however, require a
careful choice of the threshold values γ , V to guarantee
feasibility of the problem.

To the knowledge of the authors, however, a rigor-
ous treatment of problem (10) with positive semidefinite
matrices K and M (i.e., permitting xi =0 for some i,
as needed in topology optimization) has not been con-
sidered, so far.

Remark 1 We mention that problem (10) is closely
related to the following minimum volume problem with
an eigenvalue constraint:

min
x∈Rm,u∈RL·n

m∑

i=1

xi (11)

subject to
(

m∑

i=1

xi Ki

)
u� = f�, � = 1, . . . , L

f T
� u� ≤ γ , � = 1, . . . , L

λmin(x) ≥ λ

xi ≥ 0, i = 1, . . . , m .
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Here, λ > 0 is a given lower bound for the minimal
eigenvalue, and γ plays the same role as in problem
(10). Among practitioners, this problem is sometimes
treated instead of (10). It should be noted, however,
that the solutions of both problems are generally not
the same, even after a suitable scaling. An example is
discussed below in Example 6.

Similarly, (10) is closely related to the problem with
the roles of λmin(·) and the function (x, u) �→ max

1≤�≤L
f T
� u�

interchanged (the worst-case minimum compliance
problem). Theoretical investigations on the interrela-
tions between (10), (11), and the latter problem can be
found in Achtziger and Kočvara (2006).

We now discuss several difficulties related to formu-
lation (10) in the light of its numerical treatment.

Difficulty 1: Nondifferentiability It is well-known that
λmin(·) generally is a non-differentiable function. At
least if x > 0, it is easy to see that problem (8) is
equivalent to

(M(x) + M0)
− 1

2 K(x)(M(x) + M0)
− 1

2 w = λw .

Then λmin(·) is differentiable if the multiplicity of the
minimal eigenvalue of the above problem is one (see,
e.g., Lewis and Overton 1996). In numerical proce-
dures, some practitioners circumvent non-smoothness
by small perturbations in the variable x to achieve dif-
ferentiability. It should be noted, however, that the use
of algorithms of non-linear (i.e., smooth) optimization
in such a methodology may lead to wrong results.

Difficulty 2: Non-Lipschitzean behavior The natural
cure to Difficulty 1 is the use of methods of Non-
smooth Optimization. These methods use generalized
gradient information instead of gradient information,
i.e., take non-smoothness into account. From the view-
point of the authors, the most general framework with
yet numerically tractable problems is provided by the
calculus of Clarke (see, e.g., Clarke 1983). This cal-
culus works with functions that are locally Lipschitz-
continuous (“l.l.c.” in short). A function f : X̃ −→ R

is defined to be l.l.c. if for each x̄ ∈ X̃ there exist some
neighborhood U(x̄) of x̄ and a constant L = L(x̄) such
that

| f (x) − f (x̄)|
‖x − x̄‖ ≤ L for all x ∈ (X̃ ∩ U(x̄)) (12)

(where ‖ · ‖ denotes, e.g., the euclidean norm). Note
that any l.l.c. function is continuous. Property (12)
shows that (maybe several distinct) limits of the quo-

tient on the left-hand side exist for x −→ x̄. These limits
then mimic the “slopes” of the non-smooth function f
at x̄ when approaching x̄ from different directions, say.
These data can be used also in a numerical approach,
e.g., building a piece-wise linear model near x̄. There
exist a few algorithms and codes for calculating a local
optimizer of an l.l.c. function f .

Hence, if λmin(·) was l.l.c., then the non-smooth
calculus of Clarke could be used and known numeri-
cal procedures could tackle problem (10). The follow-
ing numerical example, however, indicates that λmin(·)
lacks to be l.l.c. near the boundary of X. This is slightly
unexpected, given the well-known fact that the eigen-
values of the standard symmetric eigenvalue problem
are l.l.c. functions (see, e.g., Bhatia 1996).

Example 1 Consider a 3 × 3 ground structure on a
square 1 × 1 area in 2D with all nodes connected and
with a horizontal force (−1, 0) applied at the central
node (L = 1); see Fig. 1. We use (scaled) Young’s
modulus 1.0, for simplicity, in all bars. Now consider
problem (10) where we have replaced the zero lower
bound on the design variables by a parameter ε ≥ 0.

max
x∈Rm,u∈RL

λmin(x)

subject to
(

m∑

i=1

xi Ki

)
u� = f�, � = 1, . . . , L

f T
� u� ≤ γ , � = 1, . . . , L

m∑

i=1

xi ≤ V

xi ≥ ε, i = 1, . . . , m .

(13)

We choose γ := 20.0 and V := 18.0. Let us plot the
graph of the dependency of the optimal λmin on the
lower bound ε. Our goal is to show the non-Lipschitz
behavior of this function in the neighborhood of zero
for this particular example. Let (x∗

ε , u∗
ε) denote a

solution of the problem (13). We chose the interval

Fig. 1 Example 1—initial
design



186 W. Achtziger, M. Kočvara
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Fig. 2 Example 1 demonstrating apparent non-Lipschitz behav-
ior of the minimum eigenvalue function close to the boundary
of the feasible region. The graph of the function (left) and its
derivative (right) are shown

I := [0, 2.07 · 10−3] and considered the values ε0 := 0
and εk := (1.5 · 10−7) · (1.1)k ∈ I for k = 1, . . . , 100. We
numerically calculated (x∗

εk
, u∗

εk
) for k = 0, 1, . . . , 100 (it

will be shown later on how this can be done). Figure 2
shows the behavior of the objective function λmin(·)
at the optimizers x∗

εk
when εk is varied. The function

λmin(·) looks all but Lipschitz. To see its behavior more
clearly, we plot in the right-hand figure the deriva-
tive (computed by finite differences) in the interval
[ε1, 1.6 · 10−5]; this figure confirms the non-Lipschitz
behavior. For ε0 = 0, (13) becomes (10), and we obtain
the optimum value λ∗ = 0.7071068 (see Fig. 2).

Obviously, the picture is not a proof of a non-
Lipschitz behavior, but it is very indicative. The opti-
mal trusses for ε = 2 · 10−3 and for ε = 0, respectively,
are shown in Fig. 3 (left and right). In the first case,
only bars that are not equal to the lower bound ε are
presented. In both cases, the compliance constraint was
inactive.

The use of positive lower bounds is also addressed
below.

Difficulty 3: Discontinuity As already indicated in the
previous example, problem (10) inherently contains an
even more serious difficulty, which is not seen at a
first glance. First, it can be proved that λmin(·) is upper

Fig. 3 Example 1—optimal structures for xi ≥ 2 · 10−3 (left) and
xi ≥ 0 (right)

semicontinuous (“u.s.c.” in short) on X, i.e., that for
each sequence (xi)i∈N ⊂ X of structures converging to
some structure x̄ ∈ X, we have the inequality

lim sup
i→∞

λmin(xi) ≤ λmin(x̄) (14)

(for the proof, see Achtziger and Kočvara 2006). Un-
fortunately, lower semicontinuity, i.e.,

lim inf
i→∞

λmin(xi) ≥ λmin(x̄),

does not necessarily hold for structures x̄ on the bound-
ary of X. As a consequence, λmin(·) lacks to be continu-
ous at such points. This unpleasant fact is related to the
situation that some eigenvalues may become undefined
when K(x̄) becomes singular. The following example of
academic size illustrates this behavior.

Example 2 Consider the planar truss depicted in Fig. 4
with the four nodal points (0, 0), (0, 1), ( 1

2 , 1
2 ), and (1, 1

2 ).
Let the truss be symmetric with respect to its horizontal
axis, so consider only two design variables, x1 and x2,
denoting bar volumes.

Again, the Young’s modulus is 1.0 in all bars, for
simplicity. Then the corresponding stiffness and mass
matrix have the following form.

K(x) =

⎛

⎜⎜⎝

x1 · 2 0 0 0
0 x1 · 2 0 0
0 0 x2 · 32

25 0
0 0 0 x2 · 8

25

⎞

⎟⎟⎠

M(x) =

⎛

⎜⎜⎝

x1 · 2
√

2 0 0 0
0 x1 · 2

√
2 0 0

0 0 x2 · 2
√

5 0
0 0 0 x2 · 2

√
5

⎞

⎟⎟⎠

Hence, if x1 > 0 and x2 > 0, then, due to the special
situation that here K and M are diagonal, we can easily

Fig. 4 Example showing
possible discontinuity of λmin

x1

x1

x2

x2
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calculate the four structural eigenvalues by taking the
quotients of corresponding entries in the diagonals of
K and M,

2
2
√

2
x1
x1

= 1√
2

≈ 0.71, 2
2
√

2
x1
x1

= 1√
2

≈ 0.71,

32
25·2√

5
x2
x2

≈ 0.29, 8
25·2√

5
x2
x2

≈ 0.07.

Analogously, if x1 > 0 and x2 = 0, then the first two
eigenvalues are 2

2
√

2
x1
x1

≈ 0.71 as before, but the remain-
ing two eigenvalues become undefined. Summarizing,
for any design vector x = (x1, x2) with x1 > 0, we obtain

λmin(x) =
{

8
50

√
5

≈ 0.07 for x2 > 0
1√
2

≈ 0.71 for x2 = 0.

Thus, λmin(·) is discontinuous at all points x with x1 > 0
and x2 = 0. As seen, the reason for the discontinu-
ity lies in the fact that, when x2 = 0, the eigenvalue

8
50

√
5

x2
x2

becomes undefined and λmin(·) “jumps up” to
what was before the second smallest eigenvalue. This
example also nicely illustrates the upper semicontinuity
of λmin(·) mentioned above; see (14).

Note that the possible discontinuity of λmin(·) pre-
vents the use of the continuation approach already
discussed above, i.e., the use of smaller and smaller pos-
itive lower bounds on the design variables (see problem
(13)). This continuation approach is widely used in
Structural Optimization. To make this transparent, let
again (x∗

ε , u∗
ε) denote a solution of problem (13) for

each ε ∈ [0, δ] (where δ > 0 is some given number).
Assume that the solution structure x∗

ε is unique for
all ε ∈ [0, δ] and that there exists x̄ with x∗

ε −→ x̄ for
ε ↘ 0. Then, due to possible discontinuity, it might
happen that

lim
ε↘0

λmin(x∗
ε) < λmin(x̄) < λmin(x∗

0),

0 0.05 0.1 0.15 0.2 0.25 0.3
0.1115

0.112

0.1125

0.113

0.1135

0.114

0.1145

Fig. 5 Example 3 demonstrating possible discontinuity of λmin;
initial structure (left) and graph of the minimal eigenvalue as a
function of ε (right)

Fig. 6 Example 3—optimal structures for xi ≥ 2 · 10−5 (left) and
xi ≥ 0 (right)

i.e., the limiting structure x̄ is different from the solu-
tion structure of the problem (13) for ε = 0, the unper-
turbed problem (10).

The following example shows that λmin(x∗
ε) for ε ↘ 0

may converge to a value that is far below the true
optimal value λmin(x∗) of (10) (although here, x∗

ε → x∗
0).

Example 3 Consider the 2D ground structure shown
in Fig. 5, together with boundary condition and the
force applied at the central node. Figure 5-right shows
the behavior of the objective function λmin(x∗

ε) of the
problem (13), where ε lies in the interval [2 · 10−5, 3 ·
10−3]. We can observe linear behavior of the mini-
mal eigenvalue; this (multiple) eigenvalue is associated
with vibrations of the right-hand corners that are only
connected to the structure by the ε−thick bars (see
Fig. 6-left). Hence, when ε reaches zero, those bars
disappear, the corresponding entries in the stiffness
and mass matrices become zero, and the eigenvalue
becomes undefined. Using the continuation approach,
we would then use a limit of the sequence of solutions
for ε → 0, i.e., we arrive at a value around 0.113924 for
λmin(x∗) (which is λmin(x∗

ε) for ε = 2 · 10−5). However,
solving problem (10), i.e., (13) with ε = 0 (see below
how to do this. . . ) then we obtain the true solution x∗
of (10) with λmin(x∗) = 0.707107; the optimal structure
is depicted in Fig. 6-right. Here, we clearly see the
discontinuity of λmin on the boundary of the feasible
domain.

Difficulties 4 to 6 There are three other (although
minor) difficulties in the numerical approach dealing
with (10). First, problem (10) is non-convex, and thus,
we cannot expect more than local optimality of a
solution obtained by a suitable numerical approach,
whether this approach is based on descent concepts or
on optimality conditions (due to the large number of
variables, application of methods from global optimiza-
tion are not applicable in practical situations). Second,



188 W. Achtziger, M. Kočvara

the numerical calculation of λmin(x) at given points
x is expensive and delicate. Although there are well-
established numerical procedures in program libraries
to solve this problem, it is still a challenge to calculate
λmin(x) in reasonable time and with sufficient precision.
The same is true for the calculation of a corresponding
eigenvector, which is needed for the calculation of the
gradient of λmin at x (provided λmin is differentiable
at x). There are three other troubles connected to this
point. First, only the minimal eigenvalue should be cal-
culated. Due to the size of the matrix, it is not desirable
to calculate all eigenvalues and select the minimal one.
Second, accuracy is a problem, particularly for the deci-
sion whether an eigenvalue is the minimal one, whether
its multiplicity is one or bigger, and whether it is well-
defined at all. This corresponds to the third trouble, ill-
conditioning: If K(x) is (nearly) singular (and this is
often the case in topology optimization), most of the
solution procedures will break down.

As a consequence of all these difficulties, we con-
clude that formulation (10) is not useful for our
purpose, i.e., numerical solution of the topology op-
timization problem. From the authors’ point of view,
the most crucial obstacles are the non-Lipschitzean
behavior and the discontinuity of the objective function
because they are of theoretical nature and exclude the
use of standard numerical procedures. Notice that, in
meaningful topology optimization problems, many or
even most of the design variables xi will become zero
at the optimum, and thus, the treatment of singular
stiffness matrices and the related non-Lipschitzean be-
havior or discontinuity of λmin(·) is a must.

In the following section, we present an equivalent
formulation of the problem, which largely overcomes
all the difficulties explained above.

3 Reformulation as semidefinite program

Recall that problem (10) is non-convex and discontin-
uous. Furthermore, it implicitly includes the computa-
tion of the smallest eigenvalue λmin(xk) of (8) at each
iteration point xk of a certain solution procedure. In this
section, we give a reformulation of (10), which is much
easier to analyze and to solve numerically. Although
this reformulation seems to be known in the community
of Mathematical Programming, it has never been used
for the numerical solution, up to our knowledge.

We start with an auxiliary result expressing the com-
pliance constraints as so-called linear matrix equalities
based on the ordering cone of positive semidefinite
matrices. Recall the notation “�” explained at the end
of Section 1.

Proposition 1 Let x ∈ R
m, x ≥ 0, and γ ∈ R be fixed,

and fix an index � ∈ {1, . . . , L}. Then there exists u� ∈ R
n

satisfying

K(x)u� = f� and f T
� u� ≤ γ

if and only if
(

γ − f T
�

− f� K(x)

)
� 0 .

Proof Note that K(x) may be singular in our case,
so that we cannot directly use the Schur complement
theorem (see, e.g., Ben-Tal and Nemirovski 2001). We
first write the matrix inequality equivalently as

α2γ − 2α f T
� v + vT K(x)v ≥ 0 ∀α ∈ R, ∀v ∈ R

n . (15)

“⇒” As K(x) � 0, we know that u� minimizes the
quadratic functional (v �→ vT K(x)v − 2 f T

� v) with the
minimal value − f T

� u�. Thus,

vT K(x)v − 2 f T
� v ≥ − f T

� u� ≥ −γ ∀v ∈ R
n .

Using the substitution v = σw, σ ∈ R, we can write
this as

(σw)T K(x)(σw) − 2 f T
� (σw) ≥ −γ ∀σ ∈ R, ∀w ∈ R

n ,

hence,

wT K(x)w − 1
σ

2 f T
� w ≥ − 1

σ 2 γ ∀σ ∈ R \ {0}, ∀w ∈ R
n,

which is just (15) with α = 1
σ

.
“⇐” Put α = 1. Then we get from (15) that

γ − 2 f T
� v + vT K(x)v ≥ 0 ∀v ∈ R

n,

and so the convex quadratic function

q : v �→ −2 f T
� v + vT K(x)v

is bounded from below. By this, standard linear algebra
shows that q(·) possesses a global minimizer u� ∈ R

n,
i.e., the gradient of q vanishes at u�, proving

K(x)u� = f� .

Inserting this into (15) with α = 1, we have

γ − 2 f T
� u� + uT

� f� ≥ 0,

that is, γ ≥ f T
� u�, and we are done. ��

As a second step, we use a different representation
of λmin(·), based again on matrix inequalities.

Proposition 2 For all x ∈ X,

λmin(x) = sup{λ | K(x) − λ(M(x) + M0) � 0} .

Proof Let x ∈ X be given and recall representation (9)
of λmin(x).
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Let us first show the “≥” part. Take an arbitrary λ

satisfying K(x) − λ(M(x) + M0) � 0, i.e.,

uT K(x)u − λuT(M(x) + M0)u ≥ 0 ∀u �= 0 .

Consider u with (M(x) + M0)u �= 0; then we have

uT K(x)u
uT(M(x) + M0)u

≥ λ .

Because λ and u were arbitrary, we can write “inf” in
front of the fraction and “sup” in front of λ, and the
inequality remains valid. Now insert (9).

The proof of the “≤” part is similar: Let

λ̃ := inf
u: (M(x)+M0)u�=0

uT K(x)u
uT(M(x) + M0)u

.

Then

λ̃ ≤ uT K(x)u
uT(M(x) + M0)u

for all u with (M(x) + M0)u �= 0, which in turn means
that

uT Ku − λ̃uT(M(x) + M0)u ≥ 0
∀u : (M(x) + M0)u �= 0.

If (M(x) + M0)u = 0, then u ∈ ker(K(x)) by Lemma 1,
and thus, the above inequality holds as well. All in all,
K(x) − λ̃(M(x) + M0) � 0, i.e.,

λ̃ ≤ sup{λ | K(x) − λ(M(x) + M0) � 0} . ��

Proposition 1 shows that the displacement vectors
u� may be eliminated and that the compliance con-
straints may be treated by matrix inequalities, which
linearly depend on the design variable x. Similarly,
Proposition 2 shows that λmin(·) may be expressed
through a variable λ ∈ R subject to matrix inequality
as constraints. We arrive at the following problem
formulation:

max
x∈Rm,λ∈R

λ

subject to
(

γ − f T
�

− f� K(x)

)
� 0, � = 1, . . . , L

m∑

i=1

xi ≤ V

xi ≥ 0, i = 1, . . . , m

K(x) − λ(M(x) + M0) � 0 .

(16)

Here, the constants γ and V are given as in the original
problem formulation (10). Notice that the variables are
now x (as before) and λ ∈ R (new). The state variables
u�, � = 1, . . . , L, have been eliminated and are implic-
itly hidden in the first group of matrix inequalities.

Due to the matrix inequalities among the constraints,
problem (16) belongs to the class of so-called semidef-
inite programming problems (SDP). During the past
decade, this problem class has been extensively studied
by many researchers of the mathematical programming
community. For introduction to SDPs, we refer to
the monographies Ben-Tal and Nemirovski (2001) and
Nemirovski 2002.

The above problem reformulation results in the fol-
lowing theorem. It directly follows from Propositions 1
and 2.

Theorem 1

(a) If (x∗, u∗) is a global maximizer of (10) then
(x∗, λ∗) is a global maximizer of (16) and λ∗ :=
λmin(x∗). Moreover, the optimal values of both
problems coincide.

(b) If (x∗, λ∗) is a global maximizer of (16) then there
exists u∗ such that (x∗, u∗) is a global maximizer of
(10). Moreover, the optimal values of both prob-
lems coincide, i.e., λ∗ = λmin(x∗).

We emphasize that, due to the SDP reformulation,
the originally discontinuous problems became continu-
ous; a fact of big practical value. Moreover, the numer-
ically difficult evaluation of λmin(·) is circumvented, but
matrix inequalities must be treated instead. Also note
that (16) is an SDP problem with a BMI constraint,
i.e., is generally non-convex. We remark, however,
that problem (16) hides a quasiconvex structure; see
Achtziger and Kočvara (2006).

By using the Propositions 1 and 2, we may also clarify
the existence of solutions of our problems.

Theorem 2 Problem (16) (or, equivalently, problem
(10)) possesses a solution if and only if it possesses
feasible points.

Proof By Proposition 1, problem (16) can be written in
the form

max{ λmin(x) | x ∈ F } (17)

with the feasible set

F :=
{

x∈R
m
∣∣∣
(

γ − f T
�

− f� K(x)

)
� 0 ∀�; x≥0;

m∑

i=1

xi ≤ V
}
.

Because the cone of positive semidefinite matrices is
closed, the set F is compact. Moreover, 0 /∈ F due to
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assumption (1), i.e., F ⊂ X. Hence, because λmin(·) is
u.s.c. on X (see, e.g., Achtziger and Kočvara 2006),
it is u.s.c. on F . Now, each u.s.c. function attains
its supremum on a non-empty compact set (see, e.g.,
Luenberger 1997, Theorem 2.13.1). ��

4 Calculation of global maximizers

Instead of using methods from global optimization for
the calculation of a global maximizer of problem (16),
we may use the close relation of (16) to certain convex
SDPs. In the following, we propose a practical frame-
work for finding the global solution of (16) (or (10);
see Theorem 1) based on the solutions of a sequence
of convex SDPs.

For fixed λ ≥ 0 and fixed δ ≥ 0, consider the follow-
ing linear SDP:

min
x∈Rm,V∈R

V (18)

subject to
(

γ − f T
�

− f� K(x)

)
� 0, � = 1, . . . , L

m∑

i=1

xi ≤ V

V ≤ V

xi ≥ 0, i = 1, . . . , m

K(x) − (λ + δ)(M(x) + M0) � 0 .

We mention that an SDP of this type has first been
formulated and studied in Ohsaki et al. (1999). It
represents a problem where volume is minimized sub-
ject to compliance constraints (see Proposition 1) and
eigenvalue constraints. Note that by Proposition 2, the
matrix inequality constraint

K(x) − (λ + δ)(M(x) + M0) � 0

simply means that λmin(x) ≥ λ + δ. Problem (18) is
therefore just an extension of the problem (11) men-
tioned above in Remark 1.

In the following, the feasible set of problem (18) is
denoted by F (λ, δ), for simplicity. Notice that (18) is
a linear SDP, i.e., a convex optimization problem for
which a global maximizer can be calculated, provided
F (λ, δ) �= ∅. Moreover, because (18) is a convex SDP,
modern solution procedures are able to recognize (up
to numerical accuracy) whether F (λ, δ) = ∅ or not.

The following proposition gives a tool for the es-
timation of the (globally) optimal objective function
value of problem (16). Its proof is easy because the con-
straints in the considered problems are almost identical.

Proposition 3 Let (x̃, λ) be feasible for (16) and let λ∗∗
denote the (globally) optimal function value of problem
(16). Moreover, let δ > 0 be arbitrary and consider the
problem (18) with the parameters γ and V copied from
(16). Then the following assertions hold:

(a) If F (λ, δ) �= ∅ then for each (x, V) ∈ F (λ, δ) the
point (x, λ + δ) is feasible for (16), i.e.,

λ < λ + δ ≤ λ∗∗. (19)

(b) If F (λ, δ) = ∅ then

λ ≤ λ∗∗ < λ + δ. (20)

The practical value of this proposition lies in the
possibility to improve upper and lower bounds for λ∗∗,
which can be numerically calculated through solutions
(or only feasible points) of the convex linear SDPs of
the type (18).

As a pre-processing step, we first calculate initial
lower and upper bounds λL

0 , λU
0 on λ∗∗. For this, first

compute a feasible point (x, λ) of (16) and choose
arbitrary δ̄ > 0. Then find the smallest k ∈ N such that
F (λ, 2kδ̄) = ∅ by treating (18) repeatedly. Set

λL
0 := λ + 2k−1δ̄ and λU

0 := λ + 2kδ̄ .

Then Proposition 3 shows that

0 ≤ λL
0 ≤ λ∗∗ < λU

0 . (21)

With these bounds, it is easy to construct a bisection
type algorithm, which, in each step, reduces the gap
(λU

k − λL
k ) by a factor of (at least) 1

2 . On the next page
we present such an algorithm (see Algorithm 4).

The proof of the following proposition is a straight-
forward exercise.

Proposition 4 Let (16) possess a global solution
(x∗∗, λ∗∗) (see Theorem 2). Then the following assertions
hold.

(a) Algorithm 4 is well-defined, and after each itera-
tion, we have

λL
k ≤ λk ≤ λ∗∗ < λU

k

and

λU
k − λL

k ≤ 2−k (
λU

0 − λL
0

)
.
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Algorithm 4 Choose an accuracy η > 0 and a feasible
point (x0, λ0) for (16). Put δ0 := 1

2 (λU
0 − λL

0 ) and k := 0.
Go to Step 2.

1. Calculate a feasible point [or even a local maxi-
mizer] (xk, λk) of (16) with the additional constraint
“λ ≥ λL

k ”.
2. If λk > λL

k , then update λL
k by λL

k := λk.
3. If λU

k −λL
k ≤η, then EXIT with the result (x∗, λ∗) :=

(xk, λk).
4. Put δk := 1

2 (λU
k − λL

k ) and consider problem (18)
with (λ, δ) := (λk, δk).
If F (λk, δk) �= ∅, then:

4A. Put λL
k+1 := λL

k + δk, k := k + 1, and go to
Step 1.

Otherwise, if F (λk, δk) = ∅, then:

4B. Put λU
k+1 := λU

k − δk, k := k + 1, and go to
Step 1.

(b) Algorithm 4 terminates after a finite number K of
iterations, and

K ≤
⌈

ln(λU
0 − λL

0 ) − ln(η)

ln(2)

⌉

(where �α� = min{N | N ∈ N, α ≤ N}, as usual).
At termination, the result (x∗, λ∗) is feasible for
(16) with

λ∗∗ − λ∗ ≤ η .

Notice that the additional constraint “λ ≥ λL
k ” in

Step 1 of Algorithm 4 does not cause any trouble
because it is linear. But it guarantees that the sequence
(λk)k is monotonically increasing. Moreover, the cal-
culation of global maximizers (in Step 4A), resp. local
maximizers (in Step 1), instead of just feasible points,
should significantly speed up the algorithm. In this case,
the update of λU

k in Step 4B, resp. of λL
k in Step 2, may

lead to a much bigger reduction of the gap λU
k − λL

k .
For the numerical treatment of the SDP problems

(16) and (18), one must resort to methods of semidef-
inite programming. Such methods, and corresponding
codes, are nowadays available for linear SDPs. We
mention Internet pages http://www.plato.la.asu.edu/
bench.html, which includes the list of available SDP
solvers and also benchmarks of SDP software, and
neos.mcs.anl.gov/neos/solvers/, which can be used for
on-line solution of SDP problems. The limiting factor
of these codes is, however, the problem size, which,
compared to general nonlinear programs, is restricted
to problems of medium size. The problem (16) even

requires a method that can deal with BMIs. We will use
such a method to solve example problems in the next
section. It should be noted, however, that algorithms
and codes for SDPs with BMIs are on the edge of
current research and are not yet standard.

5 Numerical examples

In this chapter, we present numerical examples that
will, on the one hand, illustrate some of the theoretical
results and, on the other hand, demonstrate the practi-
cal use of the SDP problem formulation.

The code we have used for the solution of the non-
linear SDP formulations is Penbmi, version 2.1 (see
Kočvara and Stingl 2006). This code implements the
generalized Augmented Lagrangian method, as de-
scribed in Kočvara and Stingl (2003) and Stingl (2005).
In particular, Penbmi can treat BMIs as is necessary for
problem (16) (see Kočvara et al. 2004).

The examples were solved on a Pentium 4-M 2 GHz
PC running Windows XP. All problems were formu-
lated and solved in Matlab using the Yalmip parser
(Löfberg 2004) to Penbmi. Apart from the CPU time
needed to solve the examples, we will also give the
number of inner iterations of Penbmi. One inner iter-
ation basically amounts to the solution of a system of
linear equations of dimension m.

Example 4 Consider a 3-by-3 truss with all nodes con-
nected by potential bars. The nodes on the left-hand
side are fixed in both directions, a horizontal force
(−1, 0) is applied at the right-middle node; see Fig. 7-
left. No non-structural mass is considered, i.e., M0 = 0.
The Young’s modulus of all bars in this and all subse-
quent examples is set to one. When solving the prob-
lem of maximizing the minimum eigenvalue (16) with
V = 1.2 and γ = 1, we obtain λ∗ = 4.9691 · 10−2 and an
optimal design x∗ shown in Fig. 7-right.

Figure 8 shows the influence of the optimal design on
V; we solve the same problem but with different bounds

Fig. 7 Three-by-three truss (Example 4): initial layout and opti-
mal topology for V = 1.2

http://www.plato.la.asu.edu/bench.html
http://www.plato.la.asu.edu/bench.html
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Fig. 8 Three-by-three truss (Example 4): optimal topology for
V = 1.5 and V = 2.0

on the available volume, V = 1.5 and V = 2.0. The
corresponding optimal eigenvalues are λ∗ = 6.9899 ·
10−2 and λ∗ = 10.811 · 10−2, respectively. In all three
problems, Penbmi needed about 130 inner iterations to
find the optimal solution. The solution time was below
1 s.

Example 5 This academic example illustrates the pos-
sible non-uniqueness of solution to the problem (16).
Consider a 2 × 3 ground structure with boundary condi-
tions and load (1, 0) as depicted in Fig. 9-left. Put M0 =
0, γ = 10, and V = 10. The computed optimal structure
x∗ is presented in Fig. 9-right; the optimal objective
function value of (16) is λ∗ = λmin(x∗) = 0.70711.

Although the volume constraint is active at x∗, the
compliance constraint is inactive (more precisely, after
calculating some u∗ corresponding to x∗, we have γ ∗ :=
f Tu∗ = 0.1 < γ = 10). Proposition 2.10 from Achtziger
and Kočvara (2006) suggests that, if we scale the
solution x∗ by a certain factor μ, we will still get a
solution to problem (16). For instance, if we solve the
same problem but with V = 1.0, then we will obtain a
solution with the same λ∗ and with γ ∗ = 1.0, i.e., still
within the γ limits. Table 1 summarizes these numbers.
It also presents the results for the case when M0 = 10.
In this case, the optimal solution is no longer scalable.

Example 6 Here, we demonstrate the possible non-
uniqueness of solutions to the minimum volume prob-
lem (11). The purpose is to show that problems (11) and
(16) are indeed not equivalent and one cannot assume
to get a solution of the (non-linear) problem (16) be
solving the (linear) SDP counterpart to problem (11).

Fig. 9 Example
demonstrating possible
non-uniqueness
of solution of problem (19)

Table 1 Results of
Example 5 for different data M0 V γ ∗ λ∗

0 1 1 0.70711
0 10 0.1 0.70711
10 1 1 0.08761
10 10 0.1 0.41421

Consider the same ground structure and bound-
ary conditions as in Example 4 (see Fig. 7-left). The
load vector, however, has changed to a single vertical
force(0, 1) applied at the bottom-right node. Let fur-
ther γ := 0.5 and consider the single-load min-volume
problem without vibration constraint

min
x∈Rm, u∈Rn

m∑

i=1

xi (22)

subject to

K(x)u = f,

f Tu ≤ γ ,

xi ≥ 0, i = 1, . . . , m.

This problem can be formulated as a linear program
(Achtziger et al. 1992), and thus, the set

X ∗
((22)) = {x∗ | ∃u∗ : (x∗, u∗) solves (22)}

of solution structures of (22) is given by the set of all
convex combinations of the most-left and most-right
structure in Fig. 11, i.e., by the set

X ∗
((22)) = {(1 − μ)x1∗ + μx2∗ | μ ∈ [0, 1]}

where x1∗ denotes the most-left and x2∗ the most-right
structure in Fig. 11.
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Fig. 10 Example 6—graph of λmin on interval between two
structures of the same volume and compliance
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Fig. 11 Example 6—structures corresponding to points 1–5 on
the graph in Fig. 10

We have
∑

x∗
i = 18 and f Tu∗ = 1 for all x∗ ∈ X ∗

((22))
and corresponding optimal displacement vectors u∗.
Figure 10 shows the dependence of the minimum
vibration eigenvalue on the parameter μ of this convex
combination, i.e., a plot of the function

μ �→ λmin((1 − μ)x1∗ + μx2∗), μ ∈ [0, 1].
The points 1–5 in the plot correspond to the structures
in Fig. 11, left to right. We observe that λmin is maxi-
mized at μ ≈ 0.0536, i.e., at structure number 3. Let us
now add the vibration constraint to problem (22); thus,
we arrive at problem (11). For example, put λ := 0.037,
which is the value of λmin for structure number 2 in
Fig. 11. Then it is clear from the plot in Fig. 10 that
any structure between truss number 2 and number 5 is
a solution to problem (11), and the vibration constraint
will be inactive for the structures strictly in between.

Example 7 We now present an example with multiple
loads. Consider a 7 × 3 nodal grid with the ground
structure, boundary conditions, and loads as depicted
in Fig. 12a. Each of the forces f1 = (−1, 0) and f2 =
(0, 1) represent an independent load case. The result of

(a)

(b)

(c)

(d)

Fig. 12 A medium-sized multiple-load example (Example 7):
initial layout (a); optimal topology without (b) and with (c)
vibration constraints; single-load optimal result with vibration
constraints (d)

Fig. 13 Example 8—a medium-sized problem, initial layout and
optimal topology

the standard minimum volume multiple-load problem
(no vibration constraints) with γ = 0.01 is shown in
Fig. 12b. When we consider both forces as a single load
and solve a problem with no vibration constraints, we
would obviously get a result consisting of a single rod
between the two opposite forces. The volume of this
structure is V∗ = 35.485. Figure 12c shows the result
of the multiple load minimum eigenvalue problem (16)
with bounds γ = 0.01 and V = 40.0. The optimal small-
est eigenvalue is λ∗ = 6.2216 · 10−3. For a comparison,
we also show a result of the single-load problem (both
forces considered as a single load) with γ = 0.02 and
V = 40.0; the optimal structure with λ∗ = 8.1674 · 10−3

is presented in Fig. 12d. All solutions were obtained by
Penbmi in less than 10 s.

Example 8 We consider the same problem scenario as
in Example 4 but with a 7 × 7 full ground structure with
1,176 potential bars; see Fig. 13-left. In addition, we
assign non-structural mass of size 10 at the loaded node,
i.e., M0 �= 0. We solve the problem (16) with γ = 1 and
V = 3.0. Figure 13-right shows the calculated optimal
design x∗. The optimal eigenvalue is λ∗ = 4.2383 · 10−2.
To solve the non-linear SDP problem by Penbmi, we

needed 143 inner iterations and 10 min 5 s of CPU time.
Note that the optimization problem had 1,177 variables,

Fig. 14 Example 9—a medium-sized 3D problem, initial layout
and optimal topology from different angles of view
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Fig. 15 Example 9—a medium-sized 3D problem, optimal topol-
ogy for γ = 0.05

2 matrix constraints of sizes 85 × 85 and 84 × 84 (one
linear and one bilinear), 1 linear inequality constraint,
and bounds on all variables.

Example 9 Finally, we present a result of a three-di-
mensional example. The initial configuration is indi-
cated in Fig. 14-left: a ground structure of 5 × 3 × 3
nodes, each of them connected by a potential bar,
resulting in 990 potential bars. All nodes on the left-
hand side are fixed, and the vertical force (−1, 0, 0)

is applied at the central right-hand side node. There
is also a non-structural mass of size 50 assigned to
this node. We solve the problem (16) with γ = 1 and
V = 1.0. Figure 14 shows the optimal structure from
different viewpoints. The optimal value of the smallest
eigenvalue is 2.4460 · 10−4. Note that, at the optimum,
the value of the compliance is γ = 0.184, so the compli-
ance constraint is inactive.

When we decrease the bound on compliance to γ =
0.05, we get the simple design shown in Fig. 15; this
time, the optimal eigenvalue is 2.1753 · 10−4.

The optimization problems were again solved by
Penbmi; to get a solution, it needed about 200 inner
iterations and 10 min of CPU time.

6 An extension: the multiple-mass problem

Here, we propose an extension of the original problem
formulation (10) and its SDP reformulation (16), re-
spectively. Assume that we have N matrices M(k)

0 , k =
1, . . . , N, corresponding to N different non-structural
masses that can be applied independently. For each
mass, we obtain a different minimal well-defined eigen-
value that is denoted by

λmin(x, M(k)
0 ) = min{λ | ∃w ∈ R

n :
K(x)w = λ(M(x) + M0)w,

w /∈ ker(M(x) + M(k)
0 )} .

Here, we simply distinguish with respect to the par-
ticularly considered non-structural mass; compare to
Notation 1 in Section 2.

Then the objective function λmin(·) in problem (10)
may be generalized to the worst-case minimal eigen-
value, i.e., to the function

x �→ min
1≤k≤N

λmin(x, M(k)
0 ),

which is to be maximized. Problem (10) becomes

max
x∈Rm,u∈RL·n

min
1≤k≤N

λmin(x, M(k)
0 ) (23)

subject to
(

m∑

i=1

xi Ki

)
u� = f�, � = 1, . . . , L

f T
� u� ≤ γ , � = 1, . . . , L

m∑

i=1

xi ≤ V

xi ≥ 0, i = 1, . . . , m .

By the same steps as above, we transform (23) into
an equivalent SDP and arrive at the following gen-
eralization of (16), for which theorems analogous to
Theorem 1 and Theorem 2 hold.

max
x∈Rm,λ∈R

λ (24)

subject to
(

γ f T
�

f� K(x)

)
� 0, � = 1, . . . , L

m∑

i=1

xi ≤ V

xi ≥ 0, i = 1, . . . , m

K(x) − λ(M(x) + M(k)
0 ) � 0, k = 1, . . . , N .

Because the mathematical structure of this formula-
tion is the same as that of problem (16), we may use
again the code Penbmi to solve this problem numeri-
cally; we may also construct an algorithm analogous to
Algorithm 4.

Fig. 16 A multiple-mass problem (Example 10: initial layout
(left), a “single-mass” result (middle), and a multiple-mass op-
timal structure (right)
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Example 10 Consider a 3-by-3 truss with all nodes con-
nected by potential bars. The nodes on the left-hand
side are fixed in both directions, two non-structural
masses are placed in the corners on the right-hand side;
see Fig. 16-left. An external load is not applied, i.e.,
L = 0. Figure 16-middle shows the optimal design for
formulation (16) when both masses are considered a
“single” non-structural mass. Figure 16-right presents
the result of the multiple-mass formulation (24), where
the two non-structural masses are considered being
independent from each other. The volume bound in
both problems was V := 1, and the resulting optimal
eigenvalues were λ∗ = 4.758 · 10−3 in the single-mass
case and λ∗ = 7.365 · 10−3 in the multiple-mass case.
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