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Abstract To deal with large-scale problems that often occur
in industry, the authors propose design space optimization
with design space adjustment and refinement. In topology
optimization, a design space is specified by the number of
design variables, and their layout or configuration. The
proposed procedure has two efficient algorithms for adjust-
ing and refining design space. First, the design space can be
adjusted in terms of design space expansion and reduction.
This capability is evolutionary because the design domain
expands or reduces wherever necessary. Second, the design
space can be refined uniformly or selectively wherever and
whenever necessary, ensuring a target resolution with fewer
elements, especially for selective refinement. Accordingly,
the proposed procedure can handle large-scale problems by
solving a sequence of smaller problems. Two examples show
the efficiency of the proposed approach.

Keywords Design space optimization . Topology
optimization . Design space adjustment . Design space
refinement . Large-scale optimization

1 Introduction

Topology optimization has greater impact on the down-
stream of a design process than size or shape optimization

because topology should be determined before the size or
shape. The literature features several popular methods of
topology optimization, namely, the homogenization method
(Bendsoe and Kikuchi 1988; Suzuki and Kikuchi 1991; Diaz
and Kikuchi 1992; Hassani and Hinton 1998a−c), the solid
isotropic material with penalization (SIMP) method (Bendsoe
1989; Zhou and Rozvany 1991; Yang and Chuang 1994;
Bendsoe and Sigmund 1999), and the evolutionary structural
optimization (ESO) method (Xie and Steven 1993; Querin
and Steven 1998; Kim et al. 2000). Recently, the level set
method (Sethian and Wiegmann 2000; Allaire et al. 2004;
Wang et al. 2003) that was proposed by Osher and Sethian
(1988) has been widely studied in the field of topology
optimization as well as fluid mechanics and image processing
because this method can handle complex topological changes
naturally with a level set function.

A major drawback of these methods is the computational
time, especially for the large-scale practical problems that
often occur in the automobile industry (Wang et al. 2004)
and the aircraft industry (Krog et al. 2004). Parallel
processing (Borrvall and Petersson 2001; Kim et al. 2004)
might help but that is not in the realm of topology
optimization per se and does not resolve the inherent
problem of inefficiency. The concept of the design space
optimization, which was proposed by Kim and Kwak
(2002), introduced an evolutionary method. By starting
with a small design space and advancing to a larger space
with a large number of design pixels, the method eventually
achieves an optimal design space. This original method,
however, was not implemented to its full potential in terms
of efficiency because only a single layer expansion was
possible. While endeavoring to put the evolutionary method
into practice, Jang and Kwak (2006) derived the concept of
multi-layer adjustment. This method is especially efficient
for open design domain problems.
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Mesh refinement in topology optimization was first used
by Maute and Ramm (1995). They used an adaptive mesh
refinement strategy of the finite element method (FEM) to
change the design patch for topology optimization. Costa
and Alves (2003) also proposed a layout optimization
method that relied on h-adaptive methods. They combined
topology optimization and an adaptive refinement method
to improve the definition of domain boundaries and to
restrict the strain errors. However, these methods refine all
the elements that exist inside a structure, eventually
producing a uniform refinement of the entire structure.
For efficiency, we need a method of selectively refining
elements according to some type of refinement priority,
although the elements are inside a structure.

By using the design space adjustment and refinement,
we implemented the concept of the design space optimiza-
tion (Kim and Kwak 2002; Jang and Kwak 2006) in such a
way as to develop an efficient methodology for large-scale
problems. Our procedure can be easily interfaced with a
conventional SIMP method. Both algorithms are based on
fixed grid (FG).

2 Design space optimization

2.1 Design space adjustment: from small to large

In many engineering problems, the selection of an initial
design domain is not easy for a given problem unless the
domain is fully constrained or predefined. To handle an
open domain problem in conventional optimization, we
need to ensure that the initial domain is large enough to
include the anticipated result. Thus, aside from the
difficulty of selecting an appropriate working domain, there
is a considerable computational cost due to the abundance
of unnecessary but unavoidable elements. Design space
optimization works well by allowing for domain expansion
where necessary, regardless of the shape or size of the
initial design domain (Jang and Kwak 2006). Accordingly,
the design space evolves from a small space to a large space
and can even start from a simple skeletal design space.
Thus, this evolutionary aspect makes the proposed method
efficient and suitable, especially for large-scale problems in
three dimensions. We now describe the algorithm with
reference to our previous work (Kim and Kwak 2002; Jang
and Kwak 2006).

2.1.1 Design variable sensitivity and design space
sensitivity

For structural topology optimization, we considered a
minimum compliance problem that was subject to a volume
usage constraint. The design variables were the element

densities, ρ. The number of design variables, N, was the
same as the number of elements used in the FE model.
Using this information, we formulated the optimization
problem on the basis of the FEM as follows:

Minimize f ρð Þ ¼ U ρð ÞTF ¼ U ρð ÞTK ρð ÞU ρð Þ

Subject to g ρð Þ ¼
XN
i¼1

Z
Ωi

ρidΩ� V0

0 < ρmin � ρi � 1

where ρ ¼ ρ1 ρ2 � � � ρN½ �T

ð1Þ

where U(ρ) is the nodal displacement vector, F is the nodal
external force vector, and Ωi is the domain of the ith design
variable. The stiffness matrix, K(ρ), in (1) can be expressed as

K ρð Þ ¼
XN
i¼1

ki ρið Þ ¼
XN
i¼1

Z
Ωi

BT
i D ρið ÞBidΩ ; ð2Þ

where ki is the local stiffness matrix and Bi is the strain
interpolation matrix. We then expressed the elasticity matrix,
D(ρi), for a 3D isotropic case as follows:

D ρið Þ ¼ E ρið Þ
1þνð Þ 1�2νð Þ

1� ν ν ν 0 0 0
ν 1� ν ν 0 0 0
ν ν 1� ν 0 0 0
0 0 0 1�2ν

2 0 0
0 0 0 0 1�2ν

2 0
0 0 0 0 0 1�2ν

2

2
666666664

3
777777775

ð3Þ
where υ is Poisson’s ratio. In the conventional SIMP method,
Young’s modulus, E(ρi), was penalized as

E rið Þ ¼ rni E0 ; ð4Þ

where n is a penalty exponent and E0 is a reference property
of a given isotropic material.

Using (2), (3), and (4), we easily obtained the design
variable sensitivity (DVS) equation as (Haug et al. 1986),

ψ0 ¼ df

dρi
¼ �UT

i

@ki
@ρi

U i : ð5Þ

In contrast to the DVS, the design space sensitivity
(DSS) refers to the effect of the new design variable
addition on the objective function or constraints. Because
changes in the design space are mathematically a discon-
tinuous process, Kim and Kwak (2002) calculated the DSS
by using a pivot phase and a directional derivative. Figure 1
illustrates the pivot phase of design space optimization. To
calculate the DSS, we put a layer of new elements with a
very low density near zero. The total number of elements is
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changed from N to N + m (where m is the total number of
newly created elements), but this addition makes no change
to the structural status, such as compliance or weight. The
resulting space is the pivot phase. For convenience, we
named the original existing elements before the pivot phase
as “core elements” and the elements that were newly
created for the pivot phase as “boundary elements.” With
this pivot phase, we could then obtain the DSS or the
directional derivative by taking a derivative with respect to
ρi and then taking the limits as ri ! 0þ.

For the case of compliance, we derived the DSS as

ψ0
þ; ρi!0þ ¼ df

dρi

� �
þ;ρi!0þ

¼ �UT
i

@ki
@ρi

� �
þ;ρi!0þ

U i �

ð6Þ
In (6), the stiffness is solely the function of Young’s

modulus, E, which is considered a function of density, ρ, as
in (4). Thus,

ψ0
þ; ρi!0þ¼

df

dρi

� �
þ;ρi!0þ

¼�UT
i

@ki
@E

� �
dE

dρi

� �
þ;ρi!0þ

U i �

ð7Þ
From the definition of a pivot phase and (7), we were

able to compute the DSS when the function E(ρi) had the
following properties:

E ρið Þ ¼ 0 as ρi ! 0þ
dE ρið Þ
dρi

6¼ 0 as ρi ! 0þ :

ð8Þ

Note that the typical function used for the DVS, namely
E ρið Þ ¼ ρ3i E0 , is unsuitable for the DSS because it had a
zero slope at ri ¼ 0. One of the material models to satisfy
these properties is the rational approximation for material

properties (RAMP), which was proposed by Stolpe and
Svanberg (2001). This has the alternative interpolation for
penalization as follows:

E rið Þ ¼ Emin þ ri
1þ q 1� rið Þ E0 � Eminð Þ� ð9Þ

With Emin ¼ 0 in (9), we can get the simplified form
E rið Þ ¼ ri

1þq 1�rið ÞE0. After simple arithmetic, we can check
that this model satisfies (8) as follows:

E ρið Þ ¼ 0 as ρi ! 0þ
dE ρið Þ
dρi

¼ 1

1þ q
E0 6¼ 0 as ρi ! 0þ �

ð10Þ

In this paper, we used q=3. For the theoretical aspects
and mathematical proofs, refer to the work of Stolpe and
Svanberg (2001).

2.1.2 Design space expansion based on the DSS

To accelerate the expansion of a design space, we proposed
the following expansion strategy in which multiple layers
are added in relation to the magnitude of the DSS:

Step 1: Calculate DSS for the boundary elements by
decoupling boundary elements.

Step 2: Calculate the DVS for the core elements and
select the maximum DVS as the absolute value.

Step 3: Use (11) to calculate the number of expansion
layers, ri, for the ith boundary element, and then
expand the design space around the ith boundary
element with ri. That is,

ψ'ið Þboundary
��� ���
max ψ'ð Þcore

�� �� � Vmax

vi

� �

¼ ζ � 2r2i þ 2ri þ 1
� �

in 2D case

¼ ζ� 4

3
r3i þ 2r2i þ

8

3
ri þ 1

� �
in 3D case :

ð11Þ
where ψ'ið Þboundary is the DSS of the ith boundary
element, max ψ'ð Þcore

�� �� is the maximum absolute
DVS among the core elements, Vmax is the
maximum volume allowed by the volume con-
straint, vi is the volume of the ith element, and ζ is
a scaling constant. For the scaling constant, we
used a value of 100 for two dimensions and 50 for
three dimensions when we used the sensitivity
filtering of Sigmund and Petersson (1998) to
eliminate the checkerboard pattern and mesh
dependency.

Fig. 1 The concept of pivot phase
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The value of ζ has an impact on the magnitude of the
expansion layer, ri, in (11). We suggested the value of ζ for
2D and 3D conditions by way of numerical experiments to
expedite the design space expansion in a suitable and
efficient manner. In (11), the right-hand term 2r2i þ 2ri þ 1
refers to the number of elements enclosed in the diamond
area of Fig. 2 and 4

3 r
3
i þ 2r2i þ 8

3 ri þ 1 refers to the number
of elements enclosed in the octahedron in which the
thickness of the expansion layer is ri.

The heuristic formula in (11) effectively calculates the
area or volume in terms of the number of element layers
that are influenced by the strength of the contribution of a
boundary element in comparison with the strength of the
contribution of the core element that has the maximum
sensitivity.

In this research, we used FG, or often called the
background mesh, for an easy and efficient mesh genera-
tion. It was generated by superimposing a rectangular grid
of equally sized elements on the given structure instead of
generating a mesh to fit the structure. A predetermined
systematic order was applied to the nodes and elements in
FG. So, if we know the location of an element, then we can
identify the corresponding element number and node
numbers that belong to that element. We set a FG domain
as large as possible to cover any anticipated results because
the optimal design space is not generally known. Even if
we set a FG domain quite large, it does not affect the FE
calculation time at all. The FG is imaginary for FE
modeling and is used to transfer information for selected
nodes and elements to a FE model. It is especially efficient
to adjust design space as well as to refine it in which the
number and locations of design variables are to be changed.

2.2 Design space refinement: from coarse to fine

2.2.1 Procedure of design space refinement

The most time-consuming part of a design space optimiza-
tion is searching for an optimal design space. The design
space in this paper is defined as

S � N ; LN ; b1;b2; . . . ; bN
� �� �

; ð12Þ
where LN denotes a set of layouts or configurations for N
design variables {b1, b2, ..., bN}. In (12), LN is strongly related
to N. That is, as N becomes larger, LN becomes larger.
Basically, as shown in Fig. 3, we can represent the shape of a
structure more clearly when LN is relatively large. If we start a
topology optimization with the finest mesh resolution, the
subsequent large number of design variables, N, and layouts,
LN, in the design space requires too much calculation time.

A better way is to start with a coarse mesh and to adopt a
sequence of design space refinements. Before starting such a
procedure, we set the number of refinements that will be done
during the procedure. At the beginning, we can find a rather
rough optimal design space by using a low refinement level. A
converged design space actually denotes the design space of
the optimum topology. This means there is no need to expand
or reduce the design domain, that is, an expansion would not
bring in any new structural material. When we find an optimal
design space at the refinement level, we can refine the FE
model and thereby improve the design space for the next
optimization process. This process continues until we get the
desired optimal design space at the target refinement level. For
this purpose, we used uniform refinement and selective
refinement as shown in Fig. 4.

The selective design space refinement proposed was
aimed to approximate a structure’s global property (com-
pliance in this paper) within the prescribed accuracy bound
with fewer elements for computational efficiency, as well as
for the clearness of the domain boundary, compared to the
uniform refinement. First, we refined the elements on the
border of the structure for a clearer image. This was easily
done by checking the densities of elements in the FG. Due
to a sensitivity filtering, the elements on the border of the
structure usually have intermediate densities. The set of
elements to be refined for a clearer image, S1, is given by

S1 � i ρmin � ρi � 0:7;j i ¼ 1; � � � ;Nf g: ð13Þ

Next, to check the refinement effect of each element on
the objective function, we first uniformly refined the whole
FE model as shown in Fig. 5 and then obtained the DVS of
all refined elements. Note that due to a refinement, the
number of elements and design variables change. Uniformly
refined elements that descend from the ith element are called

Fig. 2 Design space expansion around the ith boundary element with
the expansion layer ri in 2D
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sub-elements of the ith element. The FE model can be
refined adaptively on the basis of the obtained DVS
information. The underlying idea taken is that if there is
some large difference in the sensitivity values among sub-
elements, then this element is better refined further from the
empirical point of view. At the moment, its mathematical
rigor is left as a future work. To implement the idea, we
calculated the standard deviation of the DVS for sub-
elements and ranked in descending order. Denoting the
standard deviation corresponding to the ith element by σi,

s i ¼
Xn
k¼1

y
0
i

��
k
�y 0

ijk
	 
2

n
; ð14Þ

where y
0
i

��
k
is the DVS for the kth sub-element of the

ith element, y
0
ijk is the mean value of the DVS for the sub-

elements of the ith element, and n is the total number of sub-
elements for the ith element.

Instead of using a fixed threshold value, the extent of a
refinement is better controlled by the percentage of
elements that may be taken differently for various struc-
tures. That is, all the elements whose rank fraction is less
than a number α (0≤α≤1) are to be refined. The set of
elements to be refined for a compliance approximation, S2,
is given by

S2 �
�
i j Rank σi½ �

N
� α; i ¼ 1; :::;Ng ð15Þ

Fig. 3 Design space change
through a sequence of refine-
ments: refinement level 1,
refinement level 2, and
refinement level 3
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where Rank [ai] denotes the rank of ai in descending order
in the set {ai}; and a is the refinement constant that
designates the extent of the refinement. This condition means
that the top a fractions of N elements are to be refined. An
appropriate a value in (15) can be taken in relation to the
uniform refinement with a prescribed accuracy measure, β,
by the following bisectioning algorithm:

Step 1: Obtain the objective function value, =0, at the
prerefinement state, that is, when α=0.0 in (15).

Step 2: Obtain the objective function value, =target, at the
state of the uniform refinement as shown in Fig. 5
and get all the DVS values of the sub-elements of
all elements to obtain the value of σi in (15).

Step 3: In accordance with (13) and (15), refine the
corresponding elements to their next refinement
level and then obtain the objective function value,
=α, at the state of the selective refinement with
the following refinement constant:

a ¼ al þ au

2
; ð16Þ

where αl is the lower limit of refinement constant
(0.0 initially) and αu is the upper limit (1.0 initially).

Step 4: Check the following convergence requirement:

y target � ya

y target

�����
����� � b� ð17Þ

If satisfied, stop the routine. Otherwise, αl = α. Then,
return to step 3.

As mentioned earlier in this paper, the compliance is
taken as an indicator of refinement. The ratio in (17)
indicates how near the compliance of =α to =target of the
uniform refinement. The constant β denotes a preset level
for the nearness. While (14) gives an ordering of elements
for selection based on the gradient that was effectively
calculated by the finite difference of the sensitivities of the
compliance, it is found more practical to set β instead of the
percentage number of elements, α. In the following
examples, β is taken as 0.01 and shown working well.

So, the final set of elements for the selective refinement,
S, becomes

S ¼ S1 [ S2� ð18Þ
In the proposed strategy, we estimated the number of

elements after a selective refinement, Nest, as follows:

Nest ¼ N þ Nref � 2n � 1ð Þ ; ð19Þ
where N is the number of elements before a refinement, Nref

is the number of elements in the set S in (18), and n is the
dimension of the problem (2 in 2D and 3 in 3D).

2.2.2 Nodal constraint equation for the transition elements
based on FG

When we use selective refinement in the FG as explained
above, then, as shown in Fig. 6, we inevitably get transition
elements. A simple and convenient way of preserving the

Fig. 4 The concept of uniform
and selective design space
refinement

Fig. 5 Refining all the elements uniformly to their sub-elements to
check the effect of refinement
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compatibility and continuity of transition elements is to use
the following nodal constraint equation:

uA ¼ uB þ uC
2

	 

; ð20Þ

where uA, uB, and uC are the displacements of node A, B,
and C, respectively.

Figure 7 shows the 3D transition elements, which we
considered for the sake of generalization. For compatibility
and continuity, we should express the displacement of
transition node 5 as a combination of the displacement of
nodes 1–4. During the optimization with the selective
refinement, we do not know how many and where such
transition nodes happen before the refinement procedure.
So, we proposed a systematic scheme using the shape
function of FEM to generate all the nodal constraint
equations only with the FG information.

Because linear elements are used for the finite element
analysis, the following 2D shape function is necessary for
the interfacing plane in the 3D:

ui ¼ 1

4
1� rð Þ 1� sð Þu1 þ 1

4
1þ rð Þ 1� sð Þu2

þ 1

4
1þ rð Þ 1þ sð Þu3 þ 1

4
1� rð Þ 1þ sð Þu4 ;

ð21Þ

where ui is the displacement of any transition node i; u1, u2,
u3, and u4 are the displacements of nodes 1, 2, 3, and 4,
respectively; and r and s are the local coordinates that vary
from −1 to 1. Transforming to range [0, 1], we had the
following modified shape functions:

ui ¼ 1� r0ð Þ 1� s0ð Þu1 þ r0 1� s0ð Þu2 þ r0s0u3

þ 1� r0ð Þs0u4 ; ð22Þ

where r′ and s′ are local coordinates that vary from 0 to 1.
To adopt the concept of selective design space refinement,
we introduced new local coordinates, r* and s*, for the
purpose of measuring r′ and s′ in the units of the FG. That
is,

α2 � ui ¼ α� r�ð Þ α� s�ð Þu1 þ r� α� s�ð Þu2
þ r�s�u3 þ α� r�ð Þs�u4 ; ð23Þ

where α=2m; m is the number of refinements to be made to
the target state in the current element, which includes nodes
1–4 and r* and s* are the relative orders of position of node
i as a natural number in local coordinates r and s,
respectively. For node 5 in Fig. 7, m is 2, r* is 3, and s*
is 1. By using this information and (23), we can get the
following nodal constraint equation:

16u5 ¼ 3u1 þ 9u2 þ 3u3 þ u4 : ð24Þ
As shown in (23), the geometric information in the FG is

all we need to make a nodal constraint equation. This
makes it simple and convenient to apply the selective
design space refinement to any kind of structure.

Unfortunately, the imposition of the nodal displacement
constraints in the selective refinement may cause a
significant overhead in computation cost. For example,
given the set of L linear simultaneous equations in the
unknown uj,

XL
j¼1

Kjkuj ¼ Fk 1 � k � Lð Þ ; ð25Þ

Fig. 8 A quarter model with a elliptic hole in 3DFig. 7 An example of general element transition case in 3D

Fig. 6 A four-node to four-node
element transition case in 2D
FEM
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is subject to a nodal constraint equation

XL
j¼1

Cjuj ¼ C0: ð26Þ

We normalized (26) with respect to the prime DOF, ui,
by dividing ui by Ci. From the normalization, we get

XL
j¼1

C�
j uj ¼ C�

0 ; ð27Þ

where C�
j ¼ Cj

�
Ci and C�

0 ¼ C0=Ci. After some manipu-
lation (ANSYS verification manual, ANSYS release 8.0
documentation) to consider the linear constraint, we can get
the following modified equations:

XL�1

j¼1

K�
kjuj ¼ F�

k 1 � k � L� 1ð Þ ; ð28Þ

where K�
kj ¼ Kkj � C�

j Kki � C�
kKij þ C�

kC
�
j Kii and F�

k ¼
Fk � C�

0Kki � C�
kFi þ C�

kC
�
0Kii. As the number of constraint

equations increases, the modified stiffness matrix, K�
kj, and

the load vector, F�
k , in (28) become more complex,

eventually causing a calculational overhead. However, the
reduced number of elements in the selective refinement
makes the calculation faster. The net effect of these
opposite aspects cannot be determined analytically; hence,
in the following section, we check this effect with the aid of
numerical examples. For detailed information, we used the
preconditioned conjugate gradient (PCG) method in
ANSYS as an equation solver. This requires less disk file
space and is faster than other methods for large scale
models. It is also known that it can robustly solve equations
with constraint equations. These properties fit well with the
situation in this research. Also, all element stiffness
matrices according to the FG were rebuilt in every FE
analysis.

2.2.3 Numerical aspects of design space refinement

The refinement procedure is basically the same as improv-
ing finite element solution in terms of compliance. The
compliance is equivalent to twice of the strain energy. In

Fig. 9 Sensitivity level plot for a quarter model with an elliptic hole using the uniform design space refinement

Fig. 10 Sensitivity level plot for a quarter model with an elliptic hole using the selective design space refinement
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finite element analysis, as a sequence of refinements is
made, the strain energy is supposed to converge to the exact
one, monotonically increasing from below (Hughes 1987)
and so must be the compliance as follows:

lim
i!1

y i;uniform ¼ y; ð29Þ

where =i,uniform is the compliance after i times uniform
refinements and = is the exact compliance.

We can rewrite the convergence requirement of the
selective refinement, (16), as

y i;uniform � y i;selective

y i;uniform

����
���� � b; ð30Þ

where =i,selective is the compliance after i times selective
refinements.

Using the monoticity of the compliance, this condition is
shown to imply that

1� bð Þy i;uniform � y i;selective � y i;uniform� ð31Þ
Therefore, as β→0 and i→∞, =i,selective converges to

=i,uniform, which in turn converges to the exact solution. As β
is taken smaller, however, more elements are to be selected
for refinement and more computational time is necessary.

For the accuracy measure, β, we used a value of 0.01.
Thus,

0:99y i;uniform � y i;selective � y i;uniform: ð32Þ
A quarter model with an elliptic hole in 3D with various

mesh resolutions was chosen as a verification example for
both the uniform refinement and the selective refinement.
Figure 8 shows the prescribed pressure on the top surface
and geometric boundary conditions for the model where
there are three symmetry planes. We based our construction
of the initial model, called model 1, with the mesh
resolution 12×12×12 on the FG. With a uniform refine-
ment, as shown in Fig. 9, we refined model 1 to model
2uniform (first refinement) and then model 2uniform to model
3uniform (second refinement). With a selective refinement, as
shown in Fig. 10, we obtained model 2selective and model
3selective. Figure 10 shows, as expected, that the mesh plot of
the selective design space refinement compares well with
the sensitivity level plot. Note that the number of nodes in
model 3selective is only 4.8% of the number of nodes in model
3uniform. However, the objective function value of compli-
ance remains within a range of 0.04% of the corresponding
value in model 3uniform. This result satisfies the prescribed
accuracy bound of 1% in (32). The numbers of iterations

Table 1 Comparison between uniform and selective design space refinement for a quarter model with an elliptic hole

Initial resolution Compliance
value

No. of constraint
equations

No. of nodes
in model 3

(No. of constraints equations)/
(reduced no. of nodes)

Calculation
time (s)

3×3×3 Uniform 56.483 0 2,152 0.263 2.797
(1.000) (1.000) (1.000)

Selective 56.336 385 396 1.109
(0.997) (0.184) (0.396)

6×6×6 Uniform 56.396 0 15,265 0.082 17.328
(1.000) (1.000) (1.000)

Selective 56.309 1,035 1,312 1.906
(0.998) (0.086) (0.111)

9×9×9 Uniform 56.473 0 49,424 0.047 56.359
(1.000) (1.000) (1.000)

Selective 56.420 2,029 2,952 3.516
(0.999) (0.060) (0.062)

12×12×12 Uniform 56.436 0 114,760 0.033 141.547
(1.000) (1.00) (1.000)

Selective 56.400 3,412 5,543 6.234
(0.999) (0.048) (0.044)

15×15×15 Uniform 56.446 0 221,328 0.026 293.188
(1.000) (1.000) (1.000)

Selective 56.422 5,210 9,493 10.844
(0.999) (0.043) (0.037)

18×18×18 Uniform 56.432 0 379,240 0.021 521.344
(1.000) (1.000) (1.000)

Selective 56.415 7,428 14,833 17.812
(0.999) (0.039)

(0.034)

The values in parentheses are the fraction ratio of the value to the corresponding value from the uniform refinement.
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needed for a in the first and second selective refinements are
all 5. The computing time is 141.4 s in the case of model
3uniform and 6.2 s in the case of model 3selective; that is, model
3selective is 22.7 times faster than model 3uniform.

To check the net effect of the reduced number of nodes
and the imposition of nodal constraint equations, we tested
the same problem with different mesh resolutions. Table 1

presents the detailed results. It is noted that, as initial
resolution goes higher, the ratio of the number of constraint
equations to the reduced number of nodes goes lower. As
this ratio decreases, calculation time is reduced. From this
result, we expect that we will get a good result if we apply
the proposed scheme to the structure with low ratio of the
number of constraint equations to the reduced number of
nodes. On the other hand, if we apply the method to the
high-ratio structure, then cost gain may not be much.

These verification examples confirm that we can use the
proposed selective refinement to approximate the structural
behavior, or compliance, within the prescribed accuracy
bound with fewer elements, as well as to improve the
clearness of boundaries.

Fig. 11 Flow chart for design space optimization using design space
adjustment and refinement

Fig. 12 Initial model and boundary condition for 3D cantilever beam

Fig. 13 Optimization results of 3D cantilever beam in the case of
uniform design space refinement

Fig. 14 Optimization results of 3D cantilever beam in the case of
selective design space refinement
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2.3 Procedure of design space optimization with design
space adjustment and refinement

There are two routines in design space optimization. The
inner routine is the same as a conventional SIMP method
(the gray box in Fig. 11) and uses the optimality criterion
method. We can express the convergence criterion of the
inner routine as follows:

max
i

rmi � rm�1
i

�� �� � 0:01 ; ð33Þ

where m is the iteration number.

When the inner routine is converged, the outer routine
(the white box in Fig. 11) seeks out a better design space
for the stage. The design space adjustment, namely the
design space expansion and reduction, is made at the outer
routine, and a design space refinement is subsequently done
to achieve a target refinement level. For the design space
reduction, any element whose density is below a threshold
value (0.1 here) is simply excluded at the end of the inner
routine. A density of 0.1 has little effect on the mechanical
characteristics of the structure.

The convergence criterion of the outer routine is
expressed as follows:

PNboundary

i¼1
rið Þboundary

Nboundary
� 0:1 ; ð34Þ

where Nboundary denotes the number of boundary elements
added by the design space adjustment and (ρi)boundary is the
density of the ith boundary element. This outer routine can
be easily interfaced with the conventional SIMP as shown
in Fig. 11.

3 Numerical examples

For our computations, we used an Intel Pentium 4 PC, with
a clock frequency of 3.0 GHz and a memory of 3 GB. We
solved the examples with four node plane elements,
PLANE42 in ANSYS for 2D and eight node brick
elements, SOLID45 in ANSYS for 3D.

Fig. 15 Optimization results of 3D cantilever beam in the case of
conventional SIMP

Table 2 Comparison of optimization results for 3D cantilever beam among uniform and selective refinements and conventional SIMP

Indicators Design space adjustment

1 2 3 4 5d 6e

Number of elements Uniforma 160 1,496 1,368 1,324 9,736 73,708
Selectiveb 160 1,496 1,368 1,324 7,696 44,488
Conventionalc 204,800

Number of iterations Uniform 1 24 99 6 55 12
Selective 1 24 99 6 11 7
Conventional 54

Compliance Uniform 18863.0 89.2 84.2 84.3 115.2 179.7
Selective 18863.0 89.2 84.2 84.3 115.5 177.4
Conventional 179.5

a Design space optimization with uniform refinement (using both adjustment and refinement)
b Design space optimization with selective refinement (using both adjustment and refinement)
c Conventional SIMP
d First refinement done
e Second refinement done
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3.1 3D cantilever beam

As a test problem for the open design domain problem, we
chose a 3D cantilever structure. Figure 12 shows the initial
model and boundary conditions. The volume constraint was
V0=4Vinitial and the radius of sensitivity filtering was
R=0.4. Young’s modulus was E=210.0 GPa and Poisson’s
ratio was υ=0.3.

In the case of both uniform and selective refinements,
the initial domain was 20×4×2 with 160 elements. As the
optimization proceeded, the design domain expanded in
relation to the DSS. The optimum was reached after five
steps of design space adjustment and two refinements. The
process with the uniform refinement took 197 function calls
and 0.92 h of total run time. The maximum number of
elements used was 73,708. For the selective refinement,
there were 154 function calls, including six for two α. The
maximum number of elements was 44,488 and the total run
time was 0.52 h. Figures 13 and 14 show the optimization
process.

For comparison, the same problem was solved with a
conventional SIMP method without a sequence of refine-
ments. The initial domain was 80×16×160 to ensure that
the mesh resolution and aspect ratio were the same as those
of our final solution. So, the number of elements was
204,800, which is much larger than the number in the
design space optimization, and the process involved 54
function calls and lasted 6.67 h. Figure 15 shows the
optimization results. Note that, although the number of
function calls in our approach is larger, the total run time is
13.8% of conventional SIMP in the case of the uniform
refinement and 7.8% in the case of the selective refinement.

Table 2 summarizes the comparative optimization
results of the following: design space optimization with
uniform refinement; design space optimization with
selective refinement; and a conventional SIMP method.
The number of elements in the step of design space
adjustment, where most iterations are needed, was 1,368,
1,368, and 204,800, respectively. These numbers show
that we can search for an approximate optimal design
space with fewer elements by using either uniform
refinement or selective refinement, thereby, considerably
shortening the total run time.

3.2 MBB beam

The second example is the MBB beam shown in Fig. 16,
with the symmetry line at the center and vertical load at the
middle of the upper side. A volume constraint was
V0=0.5 Vinitial, and the radius of sensitivity filtering was
R=1.0. Young’s modulus and Poisson’s ratio were
E=210.0 GPa and υ=0.3, respectively. In contrast to the
first example, the FG boundary has prescribed lines

Fig. 16 Initial model and boundary condition for the MBB beam.

Fig. 17 Optimization results of
the MBB beam

Table 3 Comparison of optimization results for the MBB beam
among uniform and selective refinements, and conventional SIMP

Indicators Design space adjustment

1 2 3d 4e

Number of
elements

Uniforma 675 595 2,470 9,747
Selectiveb 675 595 1,886 6,226
Conventionalc 10,800

Number of
iterations

Uniform 89 12 13 10
Selective 89 12 10 7
Conventional 106

Compliance Uniform 8.971 8.981 8.944 9.059
Selective 8.971 8.981 8.903 8.877
Conventional 9.049

a Design space optimization with uniform refinement (using both
adjustment and refinement)
b Design space optimization with selective refinement (using both
adjustment and refinement)
c Conventional SIMP
d First refinement done
e Second refinement done
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considering fully constrained design domain that may make
the procedure of design space adjustment ineffective. In
open design domain problems, one of the major functions
of design space optimization, design space adjustment is
especially useful to search unknown optimal design space,
while in fully constrained design domain, this procedure
seems useless. We will check how efficiently the proposed
scheme with design space refinement works even in a fully
constrained design domain.

In the case of both uniform and selective refinements,
the initial design space had 675 elements. Starting from
this, we reached an optimal result after four steps of design
space adjustments and two refinements. The process with
the uniform refinement took 124 function calls and
5.55 min of total run time. The maximum number of
elements was 9,747. For the selective refinement, there
were 124 function calls, including six for two α. The
maximum number of elements was 6,226, and the total run
time was 4.91 min.

For comparison, the same problem was solved with a
conventional SIMP method. The number of elements was
10,800 to ensure that the mesh resolution was the same as
those of our final solution. The process involved 106
function calls and required 14.70 min. As before, the total
run time is 37.8% of a conventional SIMP in the case of the
uniform refinement and 33.4% in the case of the selective
refinement. This example shows that even for a fully
constrained design domain problem, design space optimi-
zation with both design space adjustment and refinement
can be one of the best solution methods. Detailed results are
summarized in Fig. 17 and Table 3.

4 Conclusion

We implemented the concept of design space optimization
to significantly improve the efficiency and capability of
dealing with large-scale problems. Our method involves
design space adjustment, which is an evolutionary process
of design space expansion and reduction, and design space
refinement, which can be done uniformly or selectively
whenever and wherever necessary. Moreover, selective
refinement is effective for obtaining a target resolution
with much fewer elements. With the proposed method of
implementation, we first find an approximate design space
at a low refinement level, and then increase the refinement
level to achieve a more detailed design space. As shown
with a 3D cantilever beam, the total computational costs
were 13.8 and 7.8% in the case of uniform and selective
refinements, respectively, compared to the conventional
SIMP with no refinements, and with the MBB beam, they
were 37.8 and 33.4%, respectively.
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