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Abstract We consider the optimal design of two- (2D)
and three-dimensional (3D) flow domains using the
lattice Boltzmann method (LBM) as an approximation
of Navier-Stokes (NS) flows. The problem is solved by
a topology optimization approach varying the effective
porosity of a fictitious material. The boundaries of the
flow domain are represented by potentially discontin-
uous material distributions. NS flows are traditionally
approximated by finite element and finite volume meth-
ods. These schemes, while well established as high-
fidelity simulation tools using body-fitted meshes, are
effected in their accuracy and robustness when reg-
ular meshes with zero-velocity constraints along the
surface and in the interior of obstacles are used, as
is common in topology optimization. Therefore, we
study the potential of the LBM for approximating low
Mach number incompressible viscous flows for topol-
ogy optimization. In the LBM the geometry of flow
domains is defined in a discontinuous manner, similar
to the approach used in material-based topology opti-
mization. In addition, this non-traditional discretization
method features parallel scalability and allows for high-
resolution, regular fluid meshes. In this paper, we show
how the variation of the porosity can be used in con-
junction with the LBM for the optimal design of fluid
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domains, making the LBM an interesting alternative
to NS solvers for topology optimization problems. The
potential of our topology optimization approach will be
illustrated by 2D and 3D numerical examples.
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Lattice Boltzmann method · Topology optimization

1 Introduction

The optimal control of fluid flows has received con-
siderable attention by engineers and mathematicians,
owing to its importance for many technical and scien-
tific applications. The reader is referred to the recent
monographs of Gunzburger (2003) and Mohammadi
and Pironneau (2001). Traditionally, the geometry of
flow domains is optimized by varying the shape of
obstacles and/or channel walls. We refer, for example,
to the body of work by Jameson (1988) and coworkers
on shape optimization for external and internal flows.
Shape optimization methods, however, allow varying
only the shape of boundaries present in the initial de-
sign. This limitation can be overcome by extending and
applying the concepts of topology optimization origi-
nally developed for design problems in solid mechanics
to flow problems. These concepts allow the generation
of complex, often nonintuitive optimal geometries and
do not require an initial, close to optimum design to
start with. We refer to the monograph of Bendsøe and
Sigmund (2003) for an overview of topology optimiza-
tion methods.

While the field of topology optimization is well es-
tablished for the optimal design of solids and structures,
little work has been done on topology optimization
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of flow problems. In their pioneering work, Borrvall
and Petersson (2003) considered the optimal design of
Stokes flow problems by distributing inhomogeneous
porous materials with a spatially varying Darcy per-
meability tensor. This approach was generalized by
Evgrafov (2005a) to include both limiting cases of
porous materials, i.e., pure solid and pure flow regions
are allowed to appear in the design domain as a result
of the optimization procedure. The Stokes theory is
only valid for flows with a small Reynolds number
Re < 1. To overcome this limitation, Gersborg-Hansen
et al. (2005) extended the approach of Borrvall and
Petersson (2003) to laminar incompressible Navier-
Stokes (NS) flows at low Reynolds numbers. Evgrafov
(2005b) studied the well-posedness of topology op-
timization problems for incompressible NS flows in
the original infinite-dimensional setting, and proposed
to relax the incompressibility constraint, among other
modifications, to achieve such a well-posedness.

Internal and external NS flows are typically approx-
imated by finite element and finite volume methods
(FVMs). These discretization methods are well estab-
lished as high-fidelity simulation tools using body-fitted
meshes. In particular, for complex three-dimensional
(3D) geometries, generating body-fitted meshes is an
often cumbersome task and the accuracy and numerical
robustness of finite element and finite volume methods
strongly depends on the quality of the fluid mesh, in
particular, as Reynolds and Mach numbers increase.
In contrast to body-fitted mesh approaches, immersed
boundary techniques represent the geometry of an ob-
stacle by imposing zero-velocity constraints inside the
obstacle and at its surface. At the cost of accuracy, these
techniques allow for the use of regular meshes, signif-
icantly simplifying the mesh generation and allowing
for simple-mesh refinement procedures and fine-tuning
of the computational performance of the flow solver.
Today’s topology optimization approaches are based
on a simple but rough immersed boundary technique
representing the geometry of obstacles with “0–1” dis-
continuous material distributions and weakly imposed
zero-velocity constraints.

In this study, we adopt an immersed boundary ap-
proach for topology optimization purposes. However,
instead of finite element or finite volume methods,
we propose to simulate the underlying flow problem
by the lattice Boltzmann method (LBM), a cellular
automata approach for simulating low Mach number
incompressible viscous flows with an inherit immersed
boundary technique. In contrast to finite element and
finite volume schemes, the LBM does not discretize
the NS equations but operates on a discrete form of
the Boltzmann equations. The geometry of obstacles

and channel walls is defined by turning off nodes in
typically structured fluid meshes. This approach allows
the description of complex geometries without the need
for generating fluid meshes aligned with the contours
of the flow domain. Transforming this on/off nature of
lattice nodes into a continuous process by varying the
effective porosity of a fictitious material, we obtain an
optimization scheme similar to structural topology op-
timization. In addition, LBM solvers can be efficiently
parallelized allowing for high-resolution fluid meshes.
The potential of the LBM has been recently recognized
for a broad range of technical applications and for
complex biological flow problems. Here, we present a
design approach that exploits the unique features of the
LBM for topology optimization purposes.

2 Problem statements

In general terms a topology optimization problem can
be written as follows:

min
( �d,�u)

F( �d, �u),

s.t.

⎧
⎨

⎩

�d, subject to design constraints,

�u, solves the governing equations for �d,

(1)

where F is a particular performance functional (objec-
tive), �d is the vector of design variables, and �u is the
corresponding state vector.

Borrvall and Petersson (2003) modified the NS equa-
tions to include a design variable, leading essentially
to the Brinkman or Darcy-Stokes equations, which de-
scribe a flow of viscous fluid through a porous medium
(Brinkmann 1947; Allaire 1990). In the current work we
show that the use of the lattice Boltzmann equation as
the governing equation leads to comparable results and
can result in several computational advantages. In the
current section we therefore first discuss the LBM, then
its application to topology optimization, and finally we
compare the lattice Boltzmann approach to the original
NS approach used by Borrvall and Petersson (2003).

2.1 The lattice Boltzmann method

In recent years, the LBM has become a popular alterna-
tive to conventional, NS-based computational methods
for a variety of problems in fluid dynamics. The reader
is referred to McNamara and Zanetti (1988), Succi
(2001), Chen and Doolen (1998), Lou (2000), Wolf-
Gladrow (2000), and Dupuis (2002) for an introduction
into LBM schemes and applications.
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Breuer et al. (2000), He and Doolen (1997a,b), and
Hou et al. (1994) have successfully compared the LBM
to a number of NS-based finite element, finite differ-
ence, and finite-volume methods. Inamuro et al. (1997)
and Mei et al. (2002) have compared the LBM to
analytical solutions of the NS equations. With respect
to applications, the LBM is particularly suited for the
solution of problems with complex geometries due to
its inherent use of immersed boundary techniques. It
has been primarily used to numerically approximate
low Mach number flows for a wide array of appli-
cations (see, for example, Krafczyk 2001; Succi 2001;
Hoekstra et al. 2004).

The LBM was originally derived as an extension
of the lattice gas automaton. For information on the
lattice gas automata, see, for example, Frisch et al.
(1986, 1987) and Rothman and Zaleski (1994). It can
also be directly derived from the Boltzmann equation,
or the Boltzmann equation with the Bhatnagar-Gross-
Krook (BGK) collision operator (Bhatnagar et al. 1954;
He and Lou 1997a; Abe 1997). The Boltzmann equa-
tion is based on the kinetic theory of gases and it
describes the statistical interaction of particles on the
molecular level. In contrast, the LBM is based on a
single-particle distribution function, which represents
an ensemble average of the individual particles, whose
behavior is modeled by the Boltzmann equation, thus
reducing the number of equations needed to model a
fluid while still capturing the physics of microscopic and
mesoscopic processes in the fluid. Some of the founda-
tional work on the LBM is discussed by McNamara and
Zanetti (1988), Higuera and Jiminez (1989) Higuera
et al. (1989) Koelman (1991) Qian et al. (1992), and
Chen and Doolen (1998).

The numerical scheme of the LBM can be derived
starting with the Boltzmann-BGK equation as shown
by Yu et al. (2005):

∂ f
∂t

+ ξ · ∇ f = −1

λ
( f − f eq), (2)

where f is the distribution function, ξ is the velocity
vector, λ is the relaxation time, f eq is the equilibrium
distribution function, and − 1

λ
( f − f eq) is the BGK col-

lision operator of Bhatnagar et al. (1954). Equation (2)
is discretized in the velocity space, the displacement
space, and time, resulting in the discretized lattice BGK
equation:

fα(�xi + �eαδt, t + δt) = fα(�xi, t)

− 1

τ

[
fα(�xi, t) − f eq

α (�xi, t)
]
, (3)

where �eα is the velocity vector belonging to some dis-
crete set depending on the lattice chosen, fα is the
distribution function associated with the corresponding
lattice site velocity, �xi represents the location in phys-
ical space, δt is the time step, �eαδt is the displacement
step, and τ = λ

δt is the dimensionless relaxation time.
To simplify the computations, (3) is commonly sep-

arated into a local collision and a global propagation
step, yielding the following numerical scheme:

Collision: f̃α(�xi, t) = fα(�xi, t)

− 1

τ

[
fα(�xi, t) − f eq

α (�xi, t)
]
,

Propagation: fα(�xi + δt�eα, t + δt) = f̃α(�xi, t). (4)

The exact form of the velocity vector �eα in (4) depends
on the lattice configuration. In this study, we use the
two-dimensional (2D), 9-velocity D2Q9 lattice model
(Fig. 1) and the 3D D3Q19 lattice model, with 9 and
19 velocity vectors at each lattice site, respectively. The
magnitude of the velocity vectors is derived from the as-
sumption that all particles move with a constant speed,
where the lattice speed or lattice constant is defined
as: c = δx/δt. It can be shown that the lattice speed is
related to the lattice speed of sound by cs = c/

√
3. The

corresponding equations and lattice configurations for
other 2D and 3D lattice models are given, for example,
in He and Lou (1997b).

For low Mach number flow conditions, the equilib-
rium distribution function f eq in (4) can be derived by
a Taylor series expansion of the Maxwell-Boltzmann
equilibrium distribution, as shown by He and Lou
(1997a):

f eq
α = wαρ

[

1 + 3(�eα · �u) + 9

2
(�eα · �u)2 − 3

2
�u2

]

, (5)

where the vector �u represents the macroscopic veloc-
ity, ρ is the macroscopic pressure, and wα are lattice

Fig. 1 Discretization of
velocity space for the
D2Q9 lattice
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weights that depend on the lattice geometry. For the
D2Q9 lattice model these weights are:

wα =

⎧
⎪⎨

⎪⎩

4/9, for α = 0,

1/9, for α = 1, 2, 3, 4,

1/36, for α = 5, 6, 7, 8.

The macroscopic parameters, such as density, velocity,
pressure, and viscosity, can be evaluated by taking
statistical moments of the distribution function, leading
to the following equations:

ρ(�x, t) =
8∑

α=0

fα(�x, t),

ρ �u(�x, t) =
8∑

α=0

�eα fα(�x, t),

p(�x, t) = c2
s ρ(�x, t),

ν = (τ − 1/2)c2
s δt, (6)

where p = c2
s ρ is the isothermal ideal gas equation

of state for the LBM. Thus, pressure and density in
the LBM differ only by a constant factor, leading to
only two macroscopic unknowns (density and velocity)
in the lattice Boltzmann equations compared to three
macroscopic unknowns in the NS equations (density,
pressure, and velocity). Under the low Mach num-
ber assumption, using the Chapman-Enskog expansion
(see Chapman and Cowling 1952), it may be shown
that the macroscopic quantities obtained in this man-
ner approximate solutions to the NS equations within
O((Ma)2) (see, for example, Wolf-Gladrow 2000). We
emphasize, however, that the LBM is not just another
numerical method to solve the NS system; rather, it is a
numerical method for solving the lattice BGK equation,
which, under certain flow conditions, produces a very
good approximation to NS flows.

2.2 Boundary conditions

The treatment of boundary conditions in the LBM
deserves special attention as it differs from the one of
traditional methods discretizing the NS equations. A
variety of LBM schemes for open and closed bound-
aries exist, many of which have been reviewed by Yu
et al. (2005). For the present work, a special emphasis
was placed on choosing simple boundary conditions to
benchmark the optimal designs that we obtain against
those available in the literature.

Following Ladd (1994) and Behrend (1994) for
closed boundaries, the no-slip bounce-back boundary
condition was used, which replaces the collision step

with a simple reversal of the distribution function fα
across the lattice symmetries; for example, for the
D2Q9 lattice we have:

( f1 ↔ f3, f2 ↔ f4, f5 ↔ f7, and f6 ↔ f8). (7)

This effectively creates a no-slip boundary halfway be-
tween the boundary node and the node closest to the
fluid.

For the inlet boundary condition, an equilibrium
distribution velocity inlet condition was used, where
the inlet velocity is prescribed and the density is deter-
mined from the propagated values inside the compu-
tational domain. Again, the propagation step remains
untouched and the collision step is replaced by

Collision: f̃α(�xi, t) = f eq
α , (8)

where f eq
α is a function of the inlet velocity as can be

seen from (5).
For the outlet boundary condition a simple non-

equilibrium density boundary condition was used. This
boundary condition is the LBM equivalent to pressure
boundary conditions used in NS-based flow solvers due
to the fact that pressure and density differ by a constant
factor in the LBM as discussed in Section 2.1. For
the density boundary condition the collision process
is the same as for the internal nodes, except that the
density used to calculate the equilibrium distribution
function f eq

α is prescribed and not calculated from the
propagated values.

Finally, it should be noted that due to the direct
relation between density and pressure shown in (6),
the LBM requires only two boundary conditions in
comparison to the three boundary conditions needed
in NS-based methods.

2.3 Lattice Boltzmann method based
topology optimization

For topology optimization purposes, the above LBM
scheme is augmented by a continuous optimization
model, smoothly “transforming” fluid sites into solid
and vice versa. We adopt the LBM porosity model
introduced by Spaid and Phelan (1997) for solving the
Brinkman equations for porous flows in place of the NS
equations. The porosity model requires only a minor
modification of the collision step (4) in the LBM al-
gorithm. Instead of using the macroscopic velocity (6)
when evaluating the equilibrium distribution (5), we
scale it by a factor 0 ≤ (1 − β(�x)τ ) ≤ 1, where the pa-
rameter β is related to the porosity, defined in detail
by Spaid and Phelan (1997). The parameters d(�x) =
β(�x)τ at every lattice point are then used as the design
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variables. The macroscopic velocity �̃u in a porous re-
gion can be computed as follows:

�̃u(t, �x) = (1 − d(�x)) �u(t, �x), (9)

where �̃u(t, �x) is substituted into (5). When d(�x) = 0, �x
is a pure fluid point, when d(�x) = 1, �x is a pure solid
point, and when 0 < d(�x) < 1, �x is occupied by a porous
medium. In our computational experience we obtained
better convergence results when, instead of the linear
scaling in (9), we used the following polynomial scaling:

�̃u(t, �x) = (1 − d(�x)κ) �u(t, �x), (10)

for κ > 1. We obtained best results with κ ∈ [2, 3].
This simple idea allows the control of the fluid in a

simple and continuous fashion. By using the LBM we
can thus solve the same physical system as done by
Borrvall and Petersson (2003), applying a conventional
NS-based fluid solver for the solution of the Brinkman
equation. However, whereas in the approach proposed
by Borrvall and Petersson one must drive the inverse
permeability to infinity to recover pure solid, thus lead-
ing to numerical problems, we can continuously vary
between solid and fluid by letting 0 < d(�x) < 1. A brief
discussion of the NS-based optimization problem in
Section 2.5 will further illustrate these differences.

With respect to the use of the LBM in this study, we
consider only optimization problems for steady-state
flow conditions. To write the governing equations in a
compact form, all design variables { d(�x1), . . . , d(�xL)) }
are collected into a vector �d ∈ [0, 1]L, where L ∈ N

is the number of lattice points. Similarly, all distrib-
ution functions fα(·) are collected into a vector �f ∈
R

rL, where r is the number of distribution functions at
each lattice point. The steady-state variant of the time-
dependent LBM (4) is formulated as follows:

�( �f ) − �f + �( �d, �f ) = �0. (11)

The mapping of � : R
rL → R

rL is responsible for the
“propagation” part of the discrete Boltzmann equation.
The collision operator � is the only design-dependent
part of the system and is highly nonlinear in �f .

A generic topology optimization problem for steady-
state flow conditions can now be written as follows:

min
( �d, �f )∈[0,1]L×RrL

F( �d, �f ),

s.t.

⎧
⎨

⎩

�1T �d ≥ γ L,

�f solves (11),
(12)

where F is a particular performance functional. Note
that the above optimization problem has a control in

coefficients structure. Assuming that the performance
functional and the governing steady-state equations
are smooth functions of the optimization variables, the
problem (12) can be solved by any large-scale gradient-
based optimization algorithm. In this study, we use
SNOPT by Gill et al. (2002), a commercial implemen-
tation of a penalty-based sequential quadratic program-
ming algorithm, for mid-size problems and the method
of moving asymptotes (MMA) by Svanberg (1987), a
sequential convex approximation-based algorithm, for
problems where the memory requirements of SNOPT
exceed our hardware constraints.

2.4 Objective and constraint functions

In this study, two different objective functions were
used: drag and pressure drop. The drag in a lattice
Boltzmann model can be determined via a variety of
methods (see, for example, Mei et al. 2002). However,
the summation of all momentum sinks due to the
porosity effect can be most readily applied to topology
optimization problems due to the use of the porosity
model for the entire flow domain. For this method, the
drag is determined by the following summation over all
lattice points in the flow domain:

D =
∑

L

((ρu)pre − (ρu)post), (13)

where u is the velocity in the free-stream direction,
and “pre” and “post” represent the fluid before and
after the collision process during which the porosity
momentum sink is applied.

The second objective function used is the pressure
drop across the system approximating the total pres-
sure drop and thus total mechanical energy loss in the
system. The appropriateness of this approximation is
briefly discussed in the following. Assuming uniform
inlet and outlet flows, the total pressure drop can be
expressed as

pT =
(

p + 1

2
ρV2 + γ z

)

in
−

(

p + 1

2
ρV2 + γ z

)

out
,

where γ is the specific weight, γ = ρg, and g is the grav-
ity. Assuming that the elevation change is negligible,
the equation reduces to:

pT =
(

p + 1

2
ρV2

)

in
−

(

p + 1

2
ρV2

)

out
.

If we now consider the small Mach number restriction
of the LBM, the velocity terms become negligible in the
above equation, leading to:

pT = pin − pout.
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Fig. 2 Pipe bend design domain with inlet and outlet conditions

In general, the inlet and outlet flows are not uniform.
Therefore, we formulate the objective functions as the
difference between the sum of all inlet densities and
the sum of all outlet densities, leading to the following
objective function for the pressure drop:

pdrop =
∑

inlet

pin −
∑

outlet

pout. (14)

The only optimization constraint used in this study is
a volume constraint. We prescribe that at most a given
fraction of the control volume is allowed to be occupied
by a fluid, and the remainder must be solid.

2.5 Navier-Stokes equations-based
topology optimization

In comparison to the lattice Boltzmann-based model
discussed in Section 2.3, the original idea of Borrvall
and Petersson (2003), which was formulated for Stokes
flows, but was later extended to NS fluids, can be
explained as follows. Instead of the initial system of par-
tial differential equations (PDEs), the incompressible
NS equations in this case,

∂ �u
∂t

+ (�u∇)�u = − 1

ρ
∇ p + ν�u, (15)

one considers a modified system augmented with an
additional term, which will eventually depend on the

0 5 10 15 20 25 30 35 40 45 50
0
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RE=0.1
RE=20
RE=100

Bend Comparison
Fig. 4 Comparison between pipe bends at Re=0.1, 20, and 100

design variable. The latter system may be identified as a
system of (nonlinear) Brinkman or Darcy-Stokes equa-
tions, and it describes a flow of viscous fluid through
a porous medium (see, for example, Brinkmann 1947;
Allaire 1990):
{ −ν ��u + �u · �∇ �u + α(d)�u + �∇ p = �F,

div �u = 0

}

, in �. (16)

In system (16), �u is the flow velocity, p is the pressure, ν
is the kinematic viscosity, �F are the forces acting in the
domain, and α is the inverse permeability of the porous
medium as a function of the design variable d. � is the
2D or 3D domain on which the Brinkman system (16) is
considered, and has a regular boundary �. In addition,
appropriate boundary conditions must be prescribed.

Now by spatially varying the inverse permeability/
porosity α of the porous medium, we may control the
behavior of the fluid. Driving the porosity (α−1) to infin-

RE=0.1 RE=1 RE=10 RE=20 RE=100
Fig. 3 Pipe bend optimization results at various Reynolds numbers
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Table 1 Comparison of pipe bend optimizations at different
Reynolds numbers

Re Initial objective Final objective

0.1 0.0061 0.0001538
1 0.0607 0.0015488
10 0.6109 0.0157750
20 1.2197 0.0333344
100 3.9299 0.1903172

The objective values are the merit function values returned by
SNOPT.

ity, we hope to recover the starting NS equations; while
setting it to zero we should hopefully stop the fluid,
thus simulating a solid wall at a given point. Following
Borrvall and Petersson (2003), Evgrafov (2005a), and
Evgrafov (2005b), this can, for example, be achieved if
the permeability α−1 is related to the design variable
d using a convex, decreasing, and nonnegative func-
tion α : [0, 1] → R+ ∪ {+∞}, defined as α(d) = d−1 − 1.
Thus d(�x) = 0 corresponds to zero permeability at �x
(i.e., a solid), while d(�x) = 1 corresponds to infinite
permeability (i.e., 100% fluid).

If the design variable d is now assumed to reside in
the control set H as follows,

H =
{

d ∈ L∞(�) | 0 ≤ d ≤ 1, a.e. in �,

∫

�

d ≤ γ |�|
}

,

where 0 < γ < 1 is the maximal volume fraction that
can be occupied by the fluid, we can obtain the follow-
ing optimization problem:

min
( �d,�u)

F( �d, �u),

s.t.

{ �d ∈ H,

�u weakly solves (16),

(17)

where F is a particular performance functional (objec-
tive function). It should be stated that system (17) does
not necessarily possess a unique solution for an optimal
design �d. For further details, the interested reader is
referred to Evgrafov (2005a,b).

u(y)

u(y)

Ny

 Nx

ρ

ρ

1/4Ny

1/4Ny

1/6Ny

1/6Ny

Symmetry

Fig. 6 Two pipes design domain with inlet, outlet, and symmetry
conditions

We emphasize that driving the permeability to zero
at a given point (a solid), the inverse permeability α

must be driven to a very large value, ideally infinity.
This leads to computational challenges when finite el-
ement methods or finite volume methods are used to
numerically solve the underlying system of PDEs. As
discussed in Section 2.3, this problem can be avoided
by the LBM porosity model previously introduced.

3 Numerical implementation

In this section we briefly summarize the key compo-
nents of the numerical implementation of the proposed
optimization method. This includes finding the steady-
state solution, determining the sensitivities and paral-
lelization issues.

The standard LBM algorithm is an explicit time-
marching scheme for computing time-dependent flows.
To compute steady-state flow solutions, the flow needs
to be advanced in time until convergence, that is, the
difference between two or more successive flow states
vanishes. The steady-state condition can be written as
follows:

| �ft − �ft−1|∞ ≤ ε (18)

for a small ε > 0. Satisfying the above condition is
equivalent to finding an approximate solution to the

Iter=30Iter=20 Iter=50 Iter=2840Iter=10
Fig. 5 Bend design vs optimizer iteration (Re=1)
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Fig. 7 Illustration of the
density outlet condition for
two pipes at Re = 1.66 with
respect to the inlet diameter.
The design domain differs
slightly from Fig. 6

100 by 75 Lattice 100 by 100 Lattice 150 by 100 Lattice

fixed-point problem (11), which can be written in com-
pact form as follows:

�R(d, �f ) = �M(d, �f ) − �f = �0, (19)

where �R denotes the residual vector. Here, the opera-
tor �M performs one collision and one propagation step,
which is exactly what is needed to advance the flow to
the next time step.

The sensitivities of the performance functional F in
(12) are computed analytically by the adjoint method.
The gradient of the objective function F , with respect
to the design variables di, can be written as follows:

dF
ddi

= ∂F
∂di

+ ∂F
∂�f

t d �f
ddi

, (20)

where �f is the distribution function governed by the
fixed-point formulation (19). Due to the large number
of design variables, the gradients of F are computed by
the adjoint method as follows:

�Jt �a = ∂F
∂ �f (21)

dF
ddi

= ∂F
∂di

− �at ∂ �R
∂di

, (22)

where �Jt is the transpose of the Jacobian of the fixed-
point problem (19). For a nx × ny D2Q9 lattice, the
Jacobian �J is a sparse unsymmetric square matrix of
size (nx · ny · 9)2. In the presence of no-slip boundary

50 by 50 Lattice 
RE=16

120 by 80 Lattice 
RE=40

Fig. 8 Example of a short and long double-pipe

conditions the Jacobian �J is singular, which, in general,
precludes the use of the Implicit Function Theorem to
perform the sensitivity analysis. This problem can be
easily dealt with by excluding some of the “superfluous”
particle distributions associated with the no-slip bound-
ary conditions from the fixed-point system (19).

In this study, we compute the steady-state flow with
the standard LBM, explicit time marching algorithm.
Although one can expect that a large number of time
steps is needed to reach steady-state, this approach
features improved numerical stability and robustness
over implicit schemes. In addition, it is well suited for
parallelization using a domain decomposition strategy.
Because the collision step occurs locally at each lattice
site and the propagation step only impacts neighbor-
ing lattice sites, only information along the boundary
of the subdomain treated by each processor must be
transferred to the corresponding neighboring proces-
sor. Thus, the computational time scales almost linearly
for parallel computations, making the LBM ideal for
parallelization.

The computation of the design sensitivities requires
solving the linear system (21). For practical reasons, we
apply a parallel direct sparse solver to this problem,
namely the parallel version of the SuperLU solver (see
Li and Demmel 2003), acknowledging that greater par-
allel scalability could be obtained with iterative solvers.

u(y) 1/3Ny ρ Ny

 Nx

Fig. 9 Diffuser design domain with inlet and outlet conditions
(cross section for 3D)
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50 by 50 Lattice
(SNOPT) (MMA)

100 by 100 Lattice

Fig. 10 Diffusers at Re = 100

4 Numerical examples

To demonstrate the viability of the LBM for topology
optimization, we consider numerical examples anal-
ogous to those presented by Borrvall and Petersson
(2003). In addition, a simple 3D topology optimization
of a diffuser will be presented.

In our two-dimensional (2D) computations we use
(nx − 1) × (ny − 1) design variables for a lattice of size
nx × ny, i.e., one design variable between four lattice
sites. In the 3D case, we place one design variable
between eight lattice points. We obtain the porosity
at each node, required by (9), through interpolating
from the four/eight surrounding design variables, which
results in a small filtering/averaging effect that leads
to a smoothing of the results. This smoothing yields
density gradients at the fluid–solid interface. Therefore,
the resulting plots of nodal densities presented below
seem a bit “blurred” at the interfaces.

4.1 Pipe bend (2D)

The first numerical example presented is that of a pipe
bend (see Fig. 2), analogous to Borrvall and Petersson
(2003). We minimize the pressure drop between inlet
and outlet, which has a comparable effect to the power
loss objective used by Borrvall and Petersson. The
volume fraction of fluid is restricted to at most 25%,
which is again equivalent to the value used by Borrvall

and Petersson. As shown in Fig. 2, a parabolic velocity
profile at the inlet and the density at the outlet are
prescribed.

Using the described setup of the pipe bend de-
sign problem and performing the optimization at var-
ious Reynolds numbers (Re=0.1, 1, 10, 20, and 100),
where Re is defined with respect to the inlet width
(L=0.2Ny), we obtain the results shown in Fig. 3.
From these results, it can be seen that the geome-
try of the pipe is almost straight for low Reynolds
numbers and gradually increases curvature for larger
Reynolds numbers, as would be expected from the
physics of the problem. In Fig. 4 we plot the wall
boundaries for three Reynolds numbers (Re=0.1, 20,
and 100). Here the wall boundaries for Re=1 and 10
were omitted because they almost coincide with the
boundary for Re=0.1. The observed increase of the
curvature for larger Reynolds numbers is due to
the following competing physical effects, which lead to
the optimal solution. First, to reduce the shear stress
along the walls (τw), the pipe must be as short and as
wide as possible. This explains the resulting straight
pipe shown by Borrvall and Petersson (2003), who use
a Stokes model where the power dissipation depends
solely on the shear. Second, to reduce the momentum
loss in the pipe due to the turning of the flow, it is
advantageous to turn the flow slowly and continuously,
rather than abruptly. Thus, the optimal solution will
result from the combined effect of minimizing the shear
stresses at the walls and minimizing the momentum loss
due to the turning of the flow. Therefore we expect a
nearly straight pipe for low Reynolds numbers (Stokes
limit) and increasing curvature of the pipe for larger
Reynolds numbers, as shown by the numerical results
in Fig. 3.

Table 1 displays the initial and final objective values
for the five different Reynolds numbers used, where the
objective values are given in lattice units. It should be
noted that the presented objective values are the merit
function values returned by SNOPT, which are equiv-
alent to the objective as the optimization converges. It
was found that it is advantageous to start the optimiza-
tion with an infeasible solution (d = 0.1 everywhere),
resulting in larger merit function values, because the
convergence to steady state in the LBM program slows

Table 2 Results from the optimization of a diffuser on a 50 × 50 lattice

Re Initial objective Final objective Opt. iterations Avg. LBM iterations

100 30.563323 30.372510 1115 20091

The objective values are the merit function values returned by SNOPT.
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Iter=1 Iter=50 Iter=200 Iter=350 Iter=825
Fig. 11 Optimization steps for a diffuser at Re = 100 on a 100 × 100 lattice using the MMA

down significantly for larger porosities due to the larger
pressure drop that must be established.

Figure 5 shows the layout of the pipe bend at dif-
ferent optimizer iterations. The reader can see from
the figure that the general topology is obtained after
only a few iterations, however, convergence to an ac-
curacy of ε = 10−8, which is the maximum achievable
accuracy given the current flow solutions, requires sig-
nificantly more iterations. Thus, based on the number
of optimizer iterations, which is 2,840 for the presented
problem, and the average number of LBM iterations,
which is approximately 20,000 for the given problem
size, it can be seen that the optimization process is
fairly costly. This is a concern because both iteration
numbers, in particular the one for the LBM steady-
state iterations, increase with increasing lattice sizes.
Because the general topology is achieved early in the
optimization process, the optimizer convergence could
be improved, for example, by switching to a shape
optimization approach once the general topology has
been found. At the costs of decreased robustness and
reduced parallel scalability, the convergence of the
LBM time-marching scheme towards steady-state flow
solutions can also be significantly improved by switch-
ing to implicit schemes, as suggested by Bernaschi and
Succi (2003).

3D Nozzle Design Boundary Vel. Contour
Fig. 12 3D diffuser optimization (Re=50)

4.2 Two pipes (2D)

The next numerical example is that of two inlet and two
outlet ports (Fig. 6), where the fluid volume is restricted
to at most 33% of the design domain. It will be shown
that if the ports are sufficiently far apart, then the
connecting pipes merge to minimize the pressure drop.

For this problem the modeling of the LBM boundary
conditions plays an important role. Using a traditional
NS-based fluid solver, one would prescribe the velocity
at both the inlet and the outlet as was done by Borrvall
and Petersson (2003). This ensures that an exit flow
occurs at both outlets. However, using the LBM, one
cannot impose these boundary conditions, and the exit
boundary must be a density outlet condition. Using the
density outlet conditions, the flow can find an optimal
solution that brings all of the flow to one exit (Fig. 7),
which is insightful from a topology optimization point,
but is not desired for the current problem.

An alternative option is to prescribe the velocity
at one of the exits and the density at the other exit.
However, this condition forces the two pipes to join and
thus does not lead to the desired results. Thus, given
the LBM boundary conditions, this problem can only
be solved analogous to the NS solution, if a constraint

Ny

 Nx

ρU 0.2Ny

0.25Ny

0.25Ny

Fig. 13 External flow design domain with corresponding bound-
ary conditions
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Design

Velocity

RE=1 Re=10 RE=50 RE=100 RE=500
Fig. 14 Optimal design solutions and corresponding velocity profiles with isolines for an object in external flow at different Reynolds
numbers on a 75 × 50 lattice

is added that forces the flow rate to be equivalent
at both outlets, or if symmetry boundary conditions
are used between the top and bottom portion of the
design domain. For the presented data, the symmetry
boundary conditions were used due to their ease of
implementation and reduced computational effort.
However, the symmetry boundary condition restricts
the topology optimization to symmetric solutions. Re-
sults for this computation can be seen in Fig. 8 for both
a short and a long domain.

4.3 Diffuser (2D/3D)

The next example is that of a diffuser minimizing the
pressure drop over the system while the volume frac-
tion of fluid is restricted to at most 25%, which is equiva-
lent to the value used by Borrvall and Petersson (2003).
As shown in Fig. 9, a parabolic velocity inlet boundary
condition and a density outlet boundary condition are
used. This problem has been studied by Cabuk and
Modi (1992), leading to similar results; however, due
to the use of differing boundary conditions, a detailed
comparison of the results cannot be made.

The optimized design of the diffuser at a Reynolds
number of 100 is compared for two different lattice
sizes, 50 × 50 and 100 × 100 in Fig. 10. From Fig. 10
one can see that the results are similar to those ob-
tained by Borrvall and Petersson (2003). The initial
objective value (pressure drop), final objective value,
number of optimizer iterations, and average number
of LBM iterations to steady state per optimization are
presented in Table 2 for the nozzle on the 50 x 50
lattice (the objective values are given in lattice units).
Snapshots of the optimization process for the diffuser
on the 100 × 100 lattice are shown in Fig. 11. From
these one can see that the optimization process does not
occur symmetrically. However, the final result for the
100 × 100 lattice is a symmetric diffuser. In addition,
one sees that the topology is clearly visible after 50
iterations and that the remaining iterations are used to
determine the exact shape of the nozzle. This trend was
already observed for the bend in Section 4.1.

Having shown the viability of the LBM-based topol-
ogy optimization approach for the 2D diffuser prob-
lem, we illustrate the applicability of the method to
the 3D formulation of the same design problem, as
shown in Fig. 12. For practical purposes we use a
coarse 10×16×16 lattice at a Reynolds number of 50,

Table 3 Comparison of optimization results for different Reynolds numbers on a 75 × 50 lattice

Re Initial objective Final objective Opt. iterations Design circumference Design height

1 0.000622574 0.000064718 391 76.90 8.098
10 0.006333201 0.000660479 578 77.58 8.092
50 0.039016299 0.004019155 88 77.84 8.092
100 0.10103713 0.009828596 736 79.14 9.049
500 0.1147103 0.099731694 246 84.33 8.064

The objective values are the merit function values returned by SNOPT
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Fig. 15 Design circumference vs Reynolds number on a 75 × 50
lattice

minimize the pressure drop between inlet and outlet,
and restrict the volume fraction of fluid to at most 50%.
As shown by the velocity contour plot in Fig. 12, the
3D application of the lattice Boltzmann-based topology
optimization leads to a result similar to the one
achieved for the 2D case.

4.4 External flow (2D)

The final example is the optimization of the topology
of an object in an external flow (Fig. 13) such that
the drag caused by the object is minimized, leading
to a rugby ball shape at low Reynolds numbers and
a symmetric airfoil for larger Reynolds numbers. A
similar minimum-drag problem was treated analytically
by Pironneau (1973, 1974), where the optimal shape
of the front and back angles of a rugby ball-shaped
object were investigated in Stokes flow, leading to a
front and back angle of 90◦ at the optimum. It will

be shown that comparable results are obtained with
topology optimization.

For the current problem the boundary conditions
at the inlet, top, and bottom were set to a constant
velocity in the x-direction and zero velocity in the
y-direction. The outlet boundary condition is the den-
sity condition. For these problems the fluid volume was
restricted to at most 93.3%, which is equivalent to the
90% used by Borrvall and Petersson (2003), given that
our design domain is rectangular. Because the outlet
velocity cannot be prescribed, more space must be
allowed behind the airfoil to allow the flow to develop.
It should be noted here that for exact solutions, the
upstream, downstream, top, and bottom boundaries
should be separated much further away from the object.

4.4.1 Optimal designs on a small lattice

Figure 14 shows how the optimized shape and corre-
sponding velocity profile vary for different Reynolds
numbers. Table 3 shows the corresponding initial drag,
optimized drag, convergence data, design circumfer-
ence, and design height. It should be noted at this point
that to obtain the solution at Re=500, a restart from an
intermediate solution at Re=100 was needed to avoid
divergence problems due to large Mach numbers in the
lattice Boltzmann algorithm. Here the critical length
used for the Reynolds numbers is the length of the
design domain. From the results it can be seen that
the optimization process leads to rugby ball-like shapes
at all Reynolds numbers. However, the designs at low
Reynolds numbers are more blunt and short, whereas
the designs at larger Reynolds numbers take a more
streamlined and elongated form, similar to that of an
airfoil.

These results are expected due to the competing
effects of form/pressure drag and friction drag, which
combine to the total drag, the objective function for the
current problems. As implied by the definition of the
Reynolds number (inertia force/viscous force), one can

Design

RE=1 Re=10 RE=100
Fig. 16 Optimal design solutions for an object in external flow at different Reynolds numbers on a 225 × 150 lattice
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Table 4 Comparison of optimization results for different Reynolds numbers on a 225 × 150 lattice

Re Initial objective Final objective Opt. iterations Design circumference Design height

1 0.00018045865 0.000019369667 288 227.42 26.96
10 0.0018404837 0.00019789287 180 233.02 26.05
100 0.029503281 0.0029714002 306 249.27 23.89

The objective values are the merit function values returned by SNOPT.

see that viscous forces (friction drag) dominate at low
Reynolds numbers, whereas inertia forces (pressure
drag) dominate as the Reynolds number is increased.
Because friction drag is generally related to the exposed
surface area of an object and pressure drag is related to
how streamlined an object is (often tied to the cross-
sectional area of a body that is facing in the direction
of the flow), one would expect the following design
features at the different Reynolds numbers. For low
Reynolds number flows, we expect a minimum drag
design that minimizes the friction drag by reducing
the surface area of the object, leading to fairly blunt
objects. At larger Reynolds numbers, we expect a mini-
mum drag design that focuses on reducing the pressure
drag by streamlining the object, leading to an increased
surface area.

From Fig. 14 one can clearly see that the optimal
design progresses from a blunt rugby ball-shaped object
toward a streamlined airfoil-like object as the Reynolds
number is increased. In addition, Table 3 and Fig. 15
show that the circumference of the optimal designs in-
creases with increasing Reynolds number as predicted
above. However, it can also be seen from Table 3 that
while the optimal designs become increasingly stream-
lined at larger Reynolds numbers, their cross section
(height) facing the direction of the flow remains con-
stant or increases with increasing Reynolds numbers
for the designs on a 75 × 50 lattice. While a decreased
cross section is not required for a streamlined design, it

was expected for the current designs. A reason for this
counterintuitive result could be the limited resolution
possible on the small lattice, warranting a study of the
optimal designs on a larger lattice.

4.4.2 Optimal designs on a large lattice

Increasing the lattice size yields better defined geome-
tries. This is illustrated in Fig. 16, which shows the
optimized material distributions at Re = 1, 10, and 100
on a 225 × 150 lattice. Table 4 shows the corresponding
initial drag, optimized drag, convergence data, design
circumference, and design height. The higher resolu-
tion of the material distribution leads to a much clearer
defined airfoil in comparison to the design on the
75 × 50 lattice and it can be seen from the results in
Table 4 that the height of the optimal designs decreases
with increasing Reynolds number. The clearly defined
geometries shown in Fig. 16 for the 225 × 150 lattice
are well suited for comparison with the analytically
determined minimum-drag designs by Pironneau (1973,
1974), who obtained front and back angles of 90◦ at the
optimum. Figure 17 shows the outlines of the optimal
designs with a superimposed 90◦ angle at the front
and back of the designs. One can see that the designs
obtained with topology optimization agree closely with
the analytical shape optimization results obtained by
Pironneau (1973, 1974). At Re = 1 the front and back
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Fig. 17 Optimal design outlines with superimposed 90◦ angles at the front and back of the design for different Reynolds numbers on a
225 × 150 lattice
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Fig. 18 Resolution increase at Re = 100

of the design closely match the Stokes flow solution,
which predicts a 90◦ angle. With the exception of the
back of the optimal solution at Re = 100, which is “cut
off” by the limited design domain length, the larger
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Fig. 19 Degrees of freedom vs scaled final objective at Re = 100

Reynolds number designs also seem to follow the 90◦
Stokes flow result. However, for the designs at larger
Reynolds numbers, the angle narrows sooner than at
Re = 1, leading to more streamlined results.

The differing results between the small and large
lattice sizes warrant an analysis of the influence of
the domain size on optimization results. To do so, we
consider three scenarios. First, we simply scale up the
complete problem, improving its resolution by increas-
ing the lattice size and the size of the design domain.
Second, we keep the size of the design domain and its
relative position constant while increasing the lattice
size, thereby testing the effect of the boundaries on the
solution. Third, we keep the lattice size constant, but
increase the design domain to investigate the effect of
the design domain size on the optimal design.

4.4.3 Resolution increase

Figure 18 and Table 5 show the effect of increasing the
lattice size on the optimized design solution for three
lattices (75 × 50, 150 × 100, and 225 × 150) at Re =
100. Based on the results shown, we can reemphasize
the observation made in Section 4.4.2 that the design
geometries become clearer defined due to the improved
resolution at the boundary. Furthermore, Fig. 19 shows

Table 5 Comparison of optimization results for different lattice sizes at Re = 100

Lattice size Final objective Optimizer iterations Degrees of freedom

75 × 50 0.009828596 736 33,750
150 × 100 0.009075002 580 135,000
225 × 150 0.008914201 306 303,750

The objective values are the merit function values returned by SNOPT and were scaled to the result on the 75 by 50 lattice.
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Fig. 20 Pressure isolines for a drag-minimized object in external
flow at Re = 100 on a 150 × 100 lattice

a good convergence pattern of the objective function at
the optimum as the number of degrees of freedom of
the optimization problem is increased. For the largest
lattice, more then 300,000 degrees of freedom are used,
which is currently the maximum problem size solvable
with the direct solver for the linear system in the sensi-
tivity analysis on our computer system. Table 5 shows
that the number of optimizer iterations also decreases
for the larger design domain, most likely due to the
smoother boundaries, which in turn lead to improved
sensitivities and a faster convergence. Finally, Fig. 20
shows the pressure isolines for the 150 × 100 lattice.
While the general pressure distribution around the
airfoil is correct, the pressure contours in the bound-
ary layer around the airfoil indicate that the lattice is
still not fine enough to show smooth pressure isolines.
However, despite the improved clarity of the optimal
designs with increasing lattice size, the similarity be-
tween the designs on different lattices can be clearly
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Fig. 21 Increased lattice size/constant design domain

Table 6 Comparison of optimization results for different lattice
sizes with constant design domains at Re = 100

Lattice size Final objective

75 × 50 0.0098326583
100 × 50 0.0094531925
200 × 50 0.0091260563
400 × 50 0.0091550179
200 × 100 0.0060621081

The objective values are the merit function values returned by
SNOPT.

seen in the last plot of Fig. 18. Thus, while an increased
resolution produces more accurate and better defined
optimal designs, the obtained shapes for the various de-
sign domain sizes are similar. Therefore, the choice of
the size of the computational domain strongly depends
on the user’s objective. If one simply wants to generate
concept ideas for designs, a smaller lattice size might be
sufficient. However, if accurate results are needed for
analysis purposes, a large domain size is preferable.

4.4.4 Increased lattice size/constant design domain

Figure 21 and Table 6 show the effect of using varying
lattice sizes with a constant design domain of 40 × 25
lattice units located at a constant relative position with
respect to the lattice size. From the results in Table 6
one can see that an increase of the lattice size leads to
improved objective values due to the decreased effect
of the boundaries on the optimal design. Here it should
be pointed out that increasing the height of the domain
has a significantly larger effect than a simple elonga-
tion of the domain, showing that the upper and lower
boundaries have a stronger impact on the objective
values than the inflow and outflow regions. However,
despite the different objective value results, the final
design topologies for the different lattice sizes were
similar, as is shown in Fig. 21. Thus, an increased lattice
size will produce a more accurate flow model, but not
necessarily a significantly improved optimal design.
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Fig. 22 Constant lattice size/increased design domain)
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Table 7 Comparison of optimization results for different design
domain sizes at Re = 100

Lattice size Design domain size Final objective

100 × 50 40 × 25 0.0098326583
100 × 50 65 × 25 0.0091845327

The objective values are the merit function values returned by
SNOPT.

4.4.5 Constant lattice size/increased design domain

Figure 22 and Table 7 show the effect of an increased
design domain on the design for a 100 × 50 lattice.
It can be clearly seen that for the elongated design
domain in Fig. 22, the design is longer and thinner than
for the original design domain. This is expected due
to the used objective function. As mentioned previ-
ously, at increasing Reynolds numbers, pressure drag
produces the dominating forces on an object, thus it
is advantageous to generate more streamlined bodies
with reduced cross sections normal to the direction of
flow. Whereas the short domain restricts the elongation
of the optimal design, leading to a design that is pushed
against the boundary of the design domain, the larger
design domain provides for an enlarged design space
from which the optimal solution is selected. As Table 7
shows, this leads to an improvement of the objective
function value. Thus, one should be aware that the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–8

–6

–4

–2

0

2

4

6

8

10

Percentage Difference of Drag for 
Design Variable Cutoff Values

Design Variable Cutoff Values

D
ra

g 
(P

er
ce

nt
ag

e 
D

if
fe

re
nc

e)

Fig. 23 Effect of the design parameter cutoff value on the drag
of an optimal design at Re = 100 on a 75 × 50 lattice

choice of the design domain size can significantly im-
pact the topology of the optimum design.

4.4.6 Design convergence analysis (cutoff value
analysis)

Typically all design variables converge toward their
upper and lower bounds with only a small percentage of
variables having intermediate values in the final design.
To study the effect of the intermediate variables on
the predicted performance, we set all variables to their
upper or lower bounds depending on a cutoff value,
meaning that if d ≤ cutoff, d := 0.0, otherwise, d :=
1.0. Varying the cutoff value, the drag of the resulting
minimum drag designs for the external flow example is
analyzed at Re = 100 on a 75 × 50 lattice. The results
of this study are shown in Fig. 23. One can see that
the design converges fairly well because the resulting
drag values are within less than ±10% of the drag
obtained during the optimization process for a range
of 0.0001 ≤ cutoff ≤ 1.0. Based on the results shown
for larger lattice sizes in Fig. 18, which show a much
improved geometry resolution and smoothness in the
boundary region, we can conclude that the effect of the
intermediate variables in the boundary region is further
reduced for increased lattice sizes.

4.4.7 Comparison between lattice Boltzmann
and Navier-Stokes flow solution

As the final component of the analysis of minimum drag
designs for external flows, we compare the solutions
obtained with the lattice Boltzmann algorithm to the
flow solutions of a finite-volume-based NS solver. At
this point it should be emphasized that we are com-
paring flow solutions of the optimal design generated
with the lattice Boltzmann-based topology optimiza-
tion algorithm, not solutions of separate LBM- and
NS-based topology optimizations. In addition, it should
be noted that top and bottom boundary conditions
were modified from those shown in Fig. 13. Instead of
velocity boundary conditions, slip boundary conditions
were applied to simplify implementation in our NS
solver. Finally, to compare the two flow solvers, we
used a cutoff value of 0.5 with the LBM and used
the corresponding design contour line to generate a
boundary fitting mesh for the NS solver.

From Fig. 24 one can see that the corresponding
velocity plots for both flow solvers are almost identical.
In addition, Table 8 shows the corresponding coeffi-
cients of drag for both flow solvers, which differ by
approximately 2.3%. It should be noted that at least
part of this difference between the two solutions stems
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Fig. 24 Comparison between
the flows obtained using the
lattice Boltzmann and the
finite volume methods at
Re=100 on a 225 × 150 lattice

Finite Difference Lattice Boltzmann Finite Volume Navier–Stokes

from the different meshes used. Inherently, the LBM
uses an immersed boundary method leading to a stair-
step type mesh, whereas the NS solver uses a body-
fitted mesh. Thus, given these results, it has been shown
that for low Mach number flows, the solutions obtained
with the LBM compare well to those obtained with a
NS flow solver.

5 Conclusions

In this first study of a formal optimization methodology
and sensitivity analysis with the LBM, we have pre-
sented a novel approach to flow topology optimization.
A numerical study has illustrated how the LBM can
be employed to solve topology optimization problems
arising in fluid mechanics. The results obtained in this
study indicate that the LBM suites well for topology
optimization owing to its ability to compute flows in
complex geometries represented by discontinuous ma-
terial distributions, ease of parallel implementation,
and scalability. Furthermore, the variation of the
porosity in the lattice Boltzmann formulation avoids
theoretical and computational issues of varying the
permeability in NS-based approaches.

While the present study renders the proposed LBM-
based topology optimization method an interesting al-
ternative to NS-based flow optimization at low Mach
numbers, the efficiency of the steady-state solver and
convergence problems in the optimization process need

Table 8 Comparison between the flows obtained using the lattice
Boltzmann and finite volume methods at Re=100 on a 225 × 150
lattice

Flow solver Coefficient of drag

Lattice Boltzmann 0.869771
Navier-Stokes 0.890198

to be addressed before the methodology can be used to
solve problems of practical engineering interest.

Finally, we want to emphasize that the potential
of the LBM goes beyond traditional fluid mechanics
because it can be used to solve fundamental transport
problems, leading to a multitude of applications. To the
best of the authors knowledge, the present work is the
first study on integrating the LBM into a formal de-
sign optimization approach, including design sensitivity
analysis.
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