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Abstract A frequent goal of the design of vibrating
structures is to avoid resonance of the structure in a given
interval for external excitation frequencies. This can be
achieved by, e.g., maximizing the fundamental eigenfre-
quency, an eigenfrequency of higher order, or the gap
between two consecutive eigenfrequencies of given order.
This problem is often complicated by the fact that the
eigenfrequencies in question may be multiple, and this is
particularly the case in topology optimization. In the
present paper, different approaches are considered and
discussed for topology optimization involving simple and
multiple eigenfrequencies of linearly elastic structures
without damping. The mathematical formulations of these
topology optimization problems and several illustrative
results are presented.

Keywords Eigenfrequency design - Multiple eigenvalues -
Topology optimization - Bound formulation

1 Introduction

Problems of passive design against vibrations and noise
were already undertaken some decades ago in the papers
(Olhoff 1976, 1977) in the form of shape optimization of
transversely vibrating beams with respect to fundamental
and higher order eigenfrequencies. By optimizing with
respect to the fundamental eigenfrequency, minimum cost
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designs against vibration resonance were obtained subject to
all external excitation frequencies within the large range
from zero and up to the particular optimum fundamental
eigenfrequency. Optimization with respect to a higher order
eigenfrequency was found to produce a considerable gap
between the subject eigenfrequency and the adjacent lower
eigenfrequency, and this approach offered even more
competitive designs for avoidance of resonance in problems
where external exitation frequencies are confined within a
large interval with finite lower and upper limits. In the
subsequent papers of Olhoff and Parbery (1984) and
Bendsee and Olhoff (1985), the design objective was
directly formulated as maximization of the separation (gap)
between two consecutive eigenfrequencies of the beam.

Topology optimization with respect to eigenfrequencies
of structural vibration was first considered by Diaz and
Kikuchi (1992), who dealt with single frequency design of
plane disks. Subsequently, Ma et al. (1994, 1995), Diaz
et al. (1994), and Kosaka and Swan (1999) presented
different formulations for simultaneous maximization of
several frequencies of free vibration of disk and plate
structures, defining the objective function as a scalar
weighted function of the eigenfrequencies. In contrast to
this, the more recent papers of Krog and Olhoff (1999) and
Jensen and Pedersen (2006) apply a variable bound
formulation that facilitates proper treatment of multiple
eigenfrequencies that very often result from the optimiza-
tion. The paper of Krog and Olhoff (1999) treats optimi-
zation of fundamental and higher order eigenfrequencies of
disk and plate structures, and the paper of Jensen and
Pedersen (2006) deals with maximization of the separation
of adjacent eigenfrequencies for bimaterial plates. The
paper of Pedersen (2000) deals with maximum fundamental
eigenfrequency design of plates and includes a technique to
avoid spurious localized modes.

@ Springer



92

J. Du, N. Olhoff

It should be noted that the separation of adjacent
eigenfrequencies as considered by Jensen and Pedersen
(2006) and in this paper is closely related to the existence of
so-called phononic (or acoustic) band gaps, i.e., gaps in the
wave band structure for periodic materials, implying that
elastic waves cannot propagate in certain frequency ranges.
Sigmund (2001) has applied topology optimization to
maximize phononic band gaps in periodic materials, and
Sigmund and Jensen (2003) have performed minimization
of the response of band gap structures (wave damping).

Methods for optimization of simple eigenvalues/eigenfre-
quencies in shape and sizing design problems are well
established and can be implemented directly in topology
optimization. However, particularly in topology optimization,
it is often found that, although an eigenfrequency is simple
during the initial stage of the iterative design procedure, later
it may become multiple because of the coincidence of this
eigenfrequency with one (or more) of its adjacent eigenfre-
quencies. To capture this behavior, it is necessary to apply a
more general solution procedure that allows for the multi-
plicity of the eigenfrequency, because such an eigenfre-
quency does not possess usual differentiability properties.

In the present paper, the topology optimization problems
involving simple and multiple eigenfrequencies is formu-
lated by a bound formulation (Bendsee et al. 1983; Taylor
and Bendsge 1984; Olhoff 1989), and the calculation of
design sensitivities of multiple eigenfrequencies is based on
results published in Seyranian et al. (1994). The problems
can then be solved efficiently by mathematical programming
(see, e.g., Overton 1988; Olhoff 1989) or the method of
moving asymptotes (MMA) (Svanberg 1987). Moreover, the
procedure of treating the multiple eigenvalues can be greatly
simplified by using the increments of the design variables as
unknowns (Krog and Olhoff 1999).

The material of the paper is organized as follows.
Section 2 gives a brief account of the SIMP (solid isotropic
microstructure with penalty) material models used in this
paper. An extended form of the SIMP model for handling
of bimaterial topology design is also included. In Section 3,
structural topology optimization subject to prescribed
volume of the material is first considered for problems of
maximizing the fundamental or a higher order eigenfre-
quency, and then problems of maximizing the distance
(gap) between two consecutive eigenfrequencies are con-
sidered. Section 3 also presents topological design sensi-
tivity results for simple and multiple eigenfrequencies, and
the computational procedure for solution of the optimiza-
tion problems is discussed. Section 4 presents several
examples of single material optimum topology designs of
beam-like 2D structures and also includes an example that
shows the superiority of the method proposed in the present
paper relative to early approaches of topological design
with respect to eigenfrequencies. Section 5 presents a
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number of both single- and bimaterial optimum topology
designs of plate-like 3D structures. Finally, Section 6
concludes the paper.

2 Material interpolation for topology optimization
of vibrating structures

Topology optimization is basically a problem of discrete
optimization, but this difficulty is avoided by introducing
relationships between stiffness components and the volu-
metric density of material p, which is a continuous variable
defined between limits 0 (corresponding to void) and 1
(corresponding to solid elastic material) over the admissible
design domain. The aim of the optimization process is to
determine the optimum zero (void)—one (solid) distribution
of a prescribed amount of the given material over the
admissible design domain. To achieve this goal, many
different material models have been developed (see, e.g.,
Eschenauer and Olhoff 2001; Bendsee and Sigmund 2003;
Bendsee et al. 2006), among which the SIMP model (see,
e.g., Bendsoe 1989; Rozvany and Zhou 1991; Rozvany et
al. 1992; Bendsee and Sigmund 1999) is a simple and
effective one, which is widely used in optimum topology
design. With a view to prevent checkerboard formation and
dependency of the optimum solutions on finite element
refinement, the mesh-independent filter developed by
Sigmund (1997), see also Sigmund and Petersson (1998),
has been applied to the sensitivities of the objective
functions in the computational models in the paper.

2.1 SIMP model for topology optimization
of single-material structures

According to the SIMP model, the finite element elasticity
matrix E, is expressed in terms of the element volumetric
material density p. 0<p.<1, in a power p, p>1, as

E.(p.) = pE,, (1)

where E; is the elasticity matrix of a corresponding element
with the fully solid elastic material the structure is to be
made of. The power p in (1), which is termed the
penalization power, is introduced with a view to yield
distinctive “0—1" designs, and is normally assigned values
increasing from 1 to 3 during the optimization process.
Such values of p have the desired effect of penalizing
intermediate densities 0<p,<l1, as the element material
volume is proportional to p,, whereas the interpolation (1)
implies that the element stiffness is less than proportional.
Note also that the interpolation (1) satisfies E.(0)=0 and
E.(1)=E}, implying that if a final design has density 0 and
1 in all elements, this is a design for which the structural
response has been evaluated with a correct physical model.
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By analogy with (1), for a vibrating structure, the finite
element mass matrix may be expressed as

M. (p,) = pIM;, (2)

where M represents the element mass matrix corre-
sponding to fully solid material, and the power ¢g>1. Apart
from exceptions briefly discussed in the following section,
normally, g=1 is chosen.

The global stiffness matrix K and mass matrix M for the
finite element-based structural response analyses behind the
optimization can now be calculated by

Ne Ng
K=Y o/K., M=) sM. ()
e=1 e=1

In this equation, K is the stiffness matrix of a finite
element with the fully solid material for the structure, and
Ng denotes the total number of finite elements in the
admissible design domain.

2.2 Localized eigenmodes

With values assigned to p and g as stated above, application
of the SIMP model for problems of topology optimization
with respect to eigenfrequencies may lead to the occurrence
of spurious, localized eigenmodes associated with very low
values of corresponding eigenfrequencies. The localized
eigenmodes may occur in subregions of the design domain
with low values of the material density (e.g., p.<0.1), where
the ratio between the stiffness (with, say, p=3 in the
interpolation formula) and the mass (with g=1) is very
small. To eliminate these spurious eigenmodes, we may use
the method of Pedersen (2000) of linearizing the element
stiffness or the approach of Tcherniak (2002) of setting the
element mass to 0 in subregions with low material density.
Thus, following Tcherniak (2002) with a slight modification
to avoid numerical singularity, the interpolation formula (2)
for the finite element mass matrix was modified as

;.
M) = { SN

In this equation, the mass is set very low via a high value
of the penalization power 7 in subregions with low material
density. Thus, r is chosen to be about r=6, i.e., much larger
than the penalization power p for the stiffness, which is
kept unchanged at a value about p=3.

It is noted that (4) is discontinuous at the low value
p.=0.1 of the material density. Numerically, this is not a
serious problem, as the discontinuity only occurs at a single
point. However, we can always improve (4) by generating a
continuous interpolation model for the mass with respect to
any value of the material density between 0 and 1. For
example, to achieve C° continuity of the interpolation

P> 0.1
P <0.1° ()

model, we may introduce the following revised form of (4),

peM;,
COPSM:7

p. > 0.1

P, <0.17 (42)

M.(p,) = {
where the coefficient co=10> enforces the C° continuity at
the value p.,=0.1 of the material density. If we wish to
impose C' continuity on the interpolation model, we may
replace (4) by the model

p. > 0.1

pMy,

Me(pe) = { (c1p8 + c2p] )M,
where the two coefficients ¢;=6x10° and ¢,=—5x10°
ensure the C' continuity of the interpolation model. In
several of the examples presented later in this paper, for
comparison, we have applied each of the three different
interpolation models, i.e., (4), (4a), and (4b) in the
numerical solution scheme and only found negligible
differences in the final results. The reason is that the region
with lower density in all the three models has a very small
contribution to the first several eigenfrequencies of the
structure. Furthermore, all intermediate values of the
material density will approach 0 or 1 during the design
process, which implies that the changes of the interpolation
model in regions with lower density as shown in (4a) or
(4b) must have very limited influence on the final 0-1
design.

2.3 SIMP model for topology optimization of bimaterial
structures

The SIMP model for topology optimization of structures
made of two different solid elastic materials can be easily
obtained by an extension of the SIMP model for single-
material design. Following Bendsee and Sigmund (1999),
the finite element elasticity matrix for the bimaterial
problem can be expressed as

E.(p,) = pPE}' + (1 — p?)E, (5)

where E:l and E:z denote the element elasticity matrices
corresponding to the two given solid, elastic materials *1
and *2. In this equation, material *1 is assumed to be the
stiffer one. The penalization power p in (5) was assigned
the value 3 in this paper, which resulted in distinctive
optimum topology designs in the examples of bimaterial
design considered. It follows from (5) that for a given
element, p,=1 implies that the element fully consists of the
solid material *1, whereas p,=0 means that the element
fully consists of the solid material *2.

The element mass matrix of the bimaterial model may be
stated as the simple linear interpolation

Me(pe) = peM:I + (1 - pe)Mzza (6)
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where M:' and M? are the element mass matrices
corresponding to the two different, given solid elastic
materials *1 and *2.

The SIMP model formulated by (1) and (2) (or (5) and
(6)) may be regarded as an interpolation scheme for the
structural stiffness and mass with respect to material
volume density. Recently, a generalized material model
based on a polynomial interpolation was proposed by
Jensen and Pedersen (2006), and it was shown how proper
polynomials corresponding to different design objectives
can be easily obtained.

When bimaterial design is treated via the problem
formulations in Sections 3 and 4, then V" denotes the total

Ne
volume 3 p,V. of the stiffer material *1 available for the

e=1
structure, whereas the total volume of material *2 is given

by V,— V*, where V) is the volume of the admissible design
domain. In the figures in Section 4 presenting optimum
topologies of bimaterial structures, material *1 is shown in
black and material *2 in gray.

3 Formulations for eigenfrequency optimization
problems

3.1 Maximization of the fundamental eigenfrequency

Problems of topology design for maximization of funda-
mental eigenfrequencies of vibrating elastic structures have,
e.g., been considered in the papers (Diaz and Kikuchi 1992;
Ma et al. 1994, 1995; Diaz et al. 1994; Kosaka and Swan
1999; Krog and Olhoff 1999; Pedersen 2000). Assuming
that damping can be neglected, such a design problem can
be formulated as a max—min problem as follows:

max min {w.z} (7a)
Py PNg U=1d /

subject to:

K¢, = ofM¢;, j=1,---,J, (7b)
¢1TM¢k = Ojk, ]2k7 k7]: 17)‘]7 (7C)
NE

S pVe—Vi<0, V' =al, (7d)
e=1

O</_)Spe§17 ezla"'7NE' (76)

In these equations, @; is the jth eigenfrequency and
¢, the corresponding eigenvector, and K and M are the
symmetric and positive definite stiffness and mass matrices
of the finite element-based, generalized structural eigenval-
ue problem in the constraint (7b). The J candidate
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eigenfrequencies considered will all be real and can be
numbered such that

0<w <o <+ <oy, (8)

and it will be assumed that the corresponding eigenvectors
are M orthonormalized, cf. (7c) where J; is Kronecker’s
delta.

In problem (7a—e), the symbol N denotes the total
number of finite elements in the admissible design domain.
The design variables p,, e=1,...,Nj represent the volumetric
material densities of the finite elements, and (7e) specifies
lower and upper limits p and 1 for p,. To avoid singularity
of the stiffness matrix, p is not 0 but taken to be a small
positive value like p=10">. In (7d), the symbol « defines
the volume fraction V"/V,, where V, is the volume of the
admissible design domain, and V" is the given available
volume of solid material and of solid material *1,
respectively, for a single-material and a bimaterial design
problem, cf. Sections 2.1 and 2.3.

3.2 Sensitivity analysis of a unimodal eigenfrequency

If the jth eigenfrequency ®; is unimodal (also called simple
or distinct), i.e., ®;—; < w; < w;;1, then the corresponding
eigenvector ¢; will be unique (up to a sign) and differen-
tiable with respect to the design variables p,, e=1,...,.Ng. To
determine the sensitivity (/lf)/pe of the eigenvalue 4; = o
with respect to a particular design variable p,, we differen-

tiate the vibration (7b) with respect to p., and get

(K=2M)(3), + (K, ~4M, — (1), M)g, =0,

9)
e=1,--,Ng,
where ();) = 9()/9p,. Premultiplying (9) by QSJT and using
the vibration equation (7b) and the normalization of ¢;
included in (7c) then gives (see also Wittrick 1962;
Lancaster 1964; Haftka et al. 1990)

(), = o] (K, ~4M, )6, e=1.---.Ne. (10)

The derivatives of the matrices K and M can be
calculated explicitly from the material models in Section 2.
Considering, e.g., the single-material model in (3), the
sensitivity of the eigenvalue A; = cuj2 with respect to the
design variable p, becomes

(), = o (el VK: = Aigp ML), )
1

e=1,,Ng

The optimality condition for the maximization of a
unimodal eigenvalue A; = (oj2 of given order j, j=1, 2, ...,
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now follows from (10) (or (11)) and usage of the Lagrange
multiplier method, and takes the form

(ﬂfi);)e_yoVL’:(L ezla"'aNE (12)

where y (>0) is the Lagrange multiplier corresponding to
the material volume constraint and the side constraints for
p. have been ignored. With this sensitivity result and
optimality condition, the design problem (7a—e) may be
solved for a unimodal optimum eigenfrequency by using an
OC (Optimality Criterion) based method, e.g., the fixed
point method (see Cheng and Olhoff 1982), or a mathe-
matical programming method, e.g., MMA (Svanberg 1987).

We may also wish to apply a gradient based method of
solution. It is then essential that the jth eigenvalue 4; = a)j2
is simple and differentiable, and thereby admits lineariza-
tion with respect to the design variables p,, e=1, ..., Ng.
Hence, if all the design variables are changed simulta-
neously, the linear increment A4; of 4; = wjz is given by the
scalar product

A =VA] Ap (13)

where Ap = {Apl, N ApNE}T is the vector of changes
of the design variables p,., e=1, ..., Ng, and

V2, = {(bjT (K;n - le,ﬂl ) Gy ’ QSJT (K//JNE —4 M;)NE) Z }T
(14)

is the vector of sensitivities (or gradients) of the eigenvalue
A; with respect to the design variables p., e=1, ..., Ng.

3.3 Bound formulations for maximization of the nth
eigenfrequency or the distance between two consecutive
eigenfrequencies

In this section, we first consider the more general problem of
maximizing the nth eigenfrequency w, of given order of a
vibrating structure, i.e., the fundamental eigenfrequency
(n=1) or a higher order eigenfrequency (n>1). Employing
a bound formulation (Bendsee et al. 1983; Taylor and
Bendsge 1984; Olhoff 1989) involving a scalar variable
[ which plays both the role of an objective function to be
maximized and at the same time a variable lower bound for
the nth and higher order eigenfrequencies (counted with
possible multiplicity), the above problem can be formulated as

S’pr]l}%g{ﬁ} (15a)
subject to:

B—w <0, j=nn+1,--J (15b)
Constraints : 7(b — e) (15¢)

In these equations, as well as in (16a, 16b, 16¢, 16d)
below, J is assumed to be larger than the highest order of an
eigenfrequency to be considered a candidate to exchange its
order with the nth eigenfrequency or to coalesce with this
eigenfrequency during the design process.

The problem of maximizing the distance (gap) between
two consecutive eigenfrequencies of given orders n and n—1
(where n>1) may be written in the following extended
bound formulation, where two bound parameters are used
(see also Bendsee and Olhoff 1985; Jensen and Pedersen
2006):

max {8, — 5}
16a
/31752apla"'7pNE (162)
subject to:
ﬂZ_w]'ZS()) j:n7n+17'“7‘] (16b)
a)jz*:BIS(L jzlv'”an*la (160)
Constraints : 7(b — e). (16d)

Note that if in (16a—d), we remove the bound variable 3,
and the corresponding set of constraints (16¢) from the
formulation, then the eigenfrequency gap maximization
problem (16a—d) reduces to the nth eigenfrequency maxi-
mization problem (15a—c) and, in particular, for n=1, to the
problem of maximizing the fundamental eigenfrequency in
(7a—e).

In problem (15a—c), the eigenfrequency @, and in
problem (16a—d), both the eigenfrequencies w, and w,,—,
of the optimum solution may very well be multiple, and the
bound formulations in (15a—) and (16a—d) are tailored to
facilitate handling of such difficulties.

It is also worth noting that the introduction of the scalar
bound variables § in (15a—) and 3; and 3, in (16a—d)
implies that even if multiple eigenfrequencies are present,
the optimization problems (15a—c) and (16a—d) are both
differentiable if they are considered as problems in all
variables, i.e., the bound parameter(s) G (or 3, [3), the
design variables p,, e=1, **, Ng, as well as the eigenfre-
quencies w; and eigenvectors ¢, j=1, -*-, J (implying that all
these variables should have been included under the ‘max’
signs in (15a) and (16a)). This type of problem is referred to
as one of ‘simultaneous analysis and design’ (SAND), cf.
Bendsee (2006), and is a very large problem in the present
context. Therefore, we refrain from solving the current
topology optimization problems in this form in our paper.

In the form written above, where only the design
variables p,, e=1, ***, Ng, and the bound parameters (3
and (4, (3, is included under the ‘max’ signs in (15a) and
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(16a); the topology optimization problems (15a—c) and
(16a—d) are nondifferentiable because the eigenfrequencies
w;, j=1, +--, J are considered as functions of the design
variables p,, e=1, -, Ng. This is a ‘nested’ formulation
that provides the basis for numerical solution by a scheme
of successive iterations where, in each iteration, the
eigenfrequencies w; and eigenvectors ¢;, j=1, -, J are
established for known design, p,, e=1, ***, Ng, by solution
of the generalized eigenvalue problem (7b) and implemen-
tation of the orthonormality condition (7c).

To accommodate for possible occurrence of multiple
eigenfrequencies, we in the subsequent Section 3.4 consider
some important sensitivity results for such eigenfrequen-
cies. In Section 3.5, we make use of these results in the
development of incremental forms of problems (15a—c) and
(16a—d), which provide the basis for construction of a
highly efficient scheme for numerical solution of the
topology optimization problems under study.

3.4 Sensitivity analysis of multiple eigenfrequencies

Multiple eigenfrequencies may manifest themselves in
different ways in structural optimization problems. One
possibility is that an eigenfrequency subject to optimization
is multiple from the beginning of the design process, e.g.,
because of structural symmetries, but an originally unim-
odal eigenfrequency may also become multiple during the
optimization process because of coalescence with one (or
more) of its adjacent eigenfrequencies. In this case,
sensitivities of the multiple eigenfrequency cannot be
calculated straightforwardly from (10) (or (11)) because of
the lack of usual differentiability properties of the subspace
spanned by the eigenvectors associated with the multiple
eigenfrequency. Investigations of sensitivity analysis of
multiple eigenvalues (eigenfrequencies or buckling loads)
are available in many papers (see, e.g., Bratus and
Seyranian 1983a,b; Masur 1984, 1985; Haug et al. 1986;
Seyranian 1987a,b; Overton 1988; Seyranian et al. 1994;
and papers cited therein).

Following Seyranian et al. (1994), let us assume that the
solution of the generalized eigenvalue problem (7b)
included in problems (15a—c) or (16a—d) yields a N-fold
multiple eigenvalue A,

7 j=n,---.n+N—1

(17)
associated with the N (N>1) lowest eigenfrequencies w;
appearing in the bound constraints (15b) and (16b)." In this

! Similarly, the eigenvalue problem (7b) contained in problem (16a-d)
may yield another R-fold eigenvalue 7= A= o', j=n—R, -,
n — 1, which corresponds to the R largest eigentjrequencies ®; in
(16¢). This case (for which we assume that 1 <n—R) is
completely analogous to (17).
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equation, we shall assume n+N—1<J, i.e., that the total
number J of eigenfrequencies (counted with multiplicity)
considered in problems (15a—c) and (16a—d), is chosen such
that the Jth eigenfrequency o ; is larger than the multiple
eigenfrequency corresponding to 2 in (17). The multiplicity
of the eigenvalue A in (17) implies that any linear
combination of the eigenvectors ¢;,j =n,---,n+N — 1,
corresponding to A, will satisfy the generalized eigenvalue
problem (7b) in (15a—c) and (16a—d), which implies that the
eigenvectors are not unique.

In Seyranian et al. (1994), the sensitivity analysis is
based on a mathematical perturbation analysis of the
multiple eigenvalue and the corresponding eigenvectors.
This analysis involves directional derivatives in the design
space and leads to the result that the increments AA; of a
multiple eigenvalue A= A= a)jz,j =n,---,n+N—1, as
in (17) are eigenvalues of a N-dimensional algebraic
subeigenvalue problem of the form

det [fl, Ap— 64 AL =0, s,k=n,....n+N—1,
(18)

where dy; is Kronecker’s delta, and f; denote generalized
gradient vectors of the form

b~ , -, T
£, = {qb;r (Kp] —IM, ) PR (KpNE - /IM,)NE)qbk} ,

s,k=n,....n+N —1.
(19)

According to the definition in (19), each fy is a Ng-
dimensional vector, and fzkAp in (18) is a scalar product
for each s, k=n, ..., n+N— 1. The label ‘generalized gradient
vector’ for f;; becomes apparent when comparing (19) with
the expression for the gradient vector VA; of a simple
eigenvalue 4; in (14). Note also that f;,=f;, because of the
symmetry of the matrices K and M and that the two
subscripts s and k refer to the orthonormalized eigenmodes
from which f;; is calculated.

Assuming that we know the multiple eigenvalue 2, the
associated subset of orthonormalized eigenmodes, and have
computed the derivatives of the matrices K and M, we can
construct the generalized gradient vectors f, s, k=n, ...,
n+N—1 from (19). Solving the algebraic subeigenvalue
problem in (18) for AA then yields the increments A1 =
Adj,j=mn,---,n+N — 1, of the multiple eigenvalue 2
subject to a given vector Ap = {Apl7 e ApNE} of
increments of the design variables.

The N increments Ak;,j=n,---,n+ N — 1, constitute
the eigenvalues of the subeigenvalue problem (18) and
represent the directional derivatives of the members of the
multiple eigenvalue A= A= a)jz,j =n,---,n+N—1,
with respect to change Ap, of the design variables
Pore=1,--- Ng. Attention should be drawn to the fact that
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the increments AA;,j=n,---,n+ N —1 of the multiple
eigenvalue are generally nonlinear functions of the direction
of the design increment vector Ap. Thus, unlike simple
eigenvalues, multiple eigenvalues do not admit a usual
linearization in terms of the design variables.

Finally, two important special cases should be observed.

3.4.1 Case of simple eigenfrequency

As is to be expected, for N=1, i.e., jJ=s=k=n, (17) and (18)
reduce to the case of a simple (unimodal) eigenvalue
A, = @?. In this case, (18) reduces to the simple algebraic
equation

fl Ap— A1, =0, (20)
where, according to (13), (19), and (14), we have
fnn = V/zrm (21)

i.e., f,, is simply the vector of sensitivities of the unimodal
eigenvalue 1, = ? with respect to the design variables p,,
e=1, ..., Ng, cf. (10) and (14).

3.4.2 Case of vanishing off-diagonal terms

For the case of multiple eigenvalues, cf. (17) with N>1, a
very important observation can be made. If in (18) all off-
diagonal scalar products are 0, i.c., if

fEkAp =0, s#k,

then the increment A, of an eigenvalue 4; = a)j2 becomes
determined as

s,k=n,---,n+N—1, (22)

where, according to (17) and (19),

T
T ! ! T ! !
= {0 (K, ~ 2™, )y 0 (K, —AM, o}

j=n,---,n+N —1.
(24)

Hence, if the design increment vector Ap fulfils (22),
then f; has precisely the same form as the gradient vector
V2, in (14) for a simple eigenvalue, and the eigenvalue
increments A4; in (23) are uniquely determined on the
basis of the eigenmodes ¢;, j=n,---,n+N —1. The
formulas for design sensitivity analysis of multiple eigen-
values then become precisely the same as those for simple
eigenvalues.

3.5 Computational procedure

The topology optimization problems (15a—c) and (16a—d)
can be efficiently solved by the iterative procedure

indicated in Fig. 1, which is applicable for problems with
any mix of multiple and simple eigenfrequencies. Firstly,
we specify the value of the order n of the eigenfrequency
w, to be considered, and assign initial values to the design
variables p,, e=1,---,Ng. As shown in Fig. 1, the
procedure consists of a main (outer) loop and an inner
loop, and these shall be briefly discussed in the following.

3.5.1 Main loop

In general, the first step of a given iteration in the main loop
is solely based on the given value of # and the set of values
of the design variables p,,e = 1,---, Ng, obtained at the
end of the preceding iteration. Using these values, we first
apply (3) to compute the global stiffness and mass matrices
K and M and then solve the generalized eigenvalue
problem (7b) by finite element (FE) analysis for the

0. Problem initialization.
Define value of n and

initialize design variables p,

<
<
A

A

1. Solution of the generalized eigenvalue problem (7b,c)
for eigenfrequencies and —modes by FE-analysis.

Detect possible multiplicity N of @, (and R of @,_,)

2. Computation of generalized gradients fy, if N>1 (and
R>1) or usual gradients if N=1 (and R=1)

A4

3. Iterative solution of sub-optimization problem (25)
(or (26)) for increments Ap, of the design variables

Inner loop

Increments Ap,

converged ?

4. Update values of the design variables
Pei=p. HAp,.
l Main loop

p, converged ?

lapl<e

Fig. 1 Flow chart of the iterative solution procedure

ie.,
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eigenfrequencies ; and eigenmodes ¢;,j = 1,---,J. In this
equation, J must be chosen to be sufficiently large to
capture all members of a possible N-fold eigenfrequency
®, =+ = WyyN—1. If not done by the FE program, we
orthonormalize ¢;,j = 1, --,J according to (7c).

As an important part of the first step, we finally detect
the possible multiplicity N of the eigenfrequency w, =
<o =, n_1 (as well as multiplicity R of w, g =---=
w,_ if problem (16a—d) is considered). In this context, the
term ‘multiplicity’ is used if the numerical value of the
relative difference between eigenfrequencies in question is
within a predefined, very small tolerance.

In the second step of the main loop, we set A= w? (17)
(and A= a)nz_1 for problem (16a—d)), and on the basis of the
iterates K, M, qu, N (and/R) obtained in the first step, we
now compute K, and M, and subsequently establish the
generalized gradient vectors fy,s,k=n,---,n+N —1,
from (19). If problem (16a—d) is considered, fy,s,k =
n—R,---,n—1 also needs to be computed. Note that
according to (21), we have fy =f,, = V(0?) if o, is
simple (N=1) and the analogous result if @,_; is simple
(R=1).

In addition to the values of the design variables
poe=1,--- Np used in the first step, all the iterates
determined in this and the second step, i.e., K, M, w;, and
¢, (G=1,---,J), N, R, 1, 2, and the f,; vectors mentioned
above are kept fixed in the third step of the main loop.

As indicated in Fig. 1, the third step of the main loop
consists of an inner loop that solves a suboptimization
problem. Upon convergence, this inner loop delivers
optimum values of increments Ap,,e =1,---,Ng of the
design variables subject to the fixed values of the above
mentioned iterates. The inner loop is discussed below.

In the fourth step of the main loop, the design variables
Pos €=1,--- Ng, are updated by addition of the incre-
ments Ap,, and subsequently, a check for convergence of
p, 1s performed by investigating whether the norm of the
vector Ap = (Apy,- -+, Apy, ) of design increments is less
than a small, predefined value €. If the design variables p,
have converged, the optimum topology design has been
obtained—otherwise, the updated vector of design variables
is used as a basis for a subsequent iteration in the main
loop.

3.5.2 Inner loop

Inspired by the results (18) and (19) of the sensitivity
analysis of a multiple eigenfrequency in Section 3.4, we
shall now develop a scheme to be used in the third step of
the main loop in Fig. 1 for optimum values of increments
Ap,,e=1,--- Ng of the design variables subject to the
known values of iterates that are fixed in the third step. To
this end, we rewrite the bound formulations (15a—) and
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(16a—d) in terms of the vector Ap of increments
Ap,, e=1,---,Ng, of the design variables and
corresponding increments of the squared eigenfrequencies
A)L_,-:A(agi%,j:n,n-,n—l—N—l (and j=n—R,---,
n—1, for problem (16a—d)). Hereby, we obtain the
following subproblems to be solved for optimum incre-
ments in the third step of the main loop of the computa-
tional procedure for:

(1) Maximization of the nth eigenfrequency:

max

ﬂaAl’la"'aA/’Nh {5} (253)
subject to:
8- [@F +174p] <0, forj=J=n+N, (25b)
ﬂ—[aﬁ—}—ﬂ(wfﬂgo, j=n,....n+N—1  (25¢)
det [fl, Ap — 64 ()] =0, s;k=n,....n+N—1,

(25d)

Ne
S (oo + Ap Ve~V <0, Vx=ali, (25¢)
e=1
0<p<p+2p. <1, e=1,--- N, (25f)

(2) Maximization of the gap (distance) between the nth
and (n—1)st eigenfrequencies:

A - 26a

ﬁl,ﬁz,Apl_..,ApNE{ﬁz B} (26a)
subject to:

By — [“’Jz + f;Ap} <0, forj=J=n+N, (26b)

By — {wjz—i—A(cojz)} <0, j=n,...,n+N—1, (26¢c)

[wf—&—A(w})}—ﬁ]SO, j=n—R,....n—1, (260

(R<n-1)

{CO}HEA;)} ~B,<0, forj=n—R—1,
(26e)
(if R <n—2)
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det M{AP—(Ssk(wz)} =0, s,k=n,...,n+N —1,

(26f)
det [fl, Ap — 64 (0?)] =0, s,k=n—R,....n—1,
(26g)
Ne
> po+ Dp Ve =V <0, V' =al, (26h)
e=1
0<p<p,+4Q, <1, e=1,-- Ng (261)

Note that we have not transferred to (25a—f) and (26a—i),
respectively, the constraints in (15a—c) and (16a—d) con-
taining the generalized eigenvalue problem (7b) and
orthonormality conditions (7c); these constraints have been
already implemented through the structural FE analysis in
step 1 of the main loop of the iterative solution procedure,
cf. Section 3.5.1 and Fig. 1. Note also that in the
suboptimization problems (25a—f) and (26a-i), the only
unknowns are the bound variables 3 and (5;, 3,) and the
increments of the design variables Ap,, e =1, ---, Ng,
which play the role as independent variables, and the
dependent variables are the increments A(w/.z), j=n,
---,n+ N —1 of the N-fold eigenfrequency wnz =...=
a)n2 " v—1 (in problems (25a—f) and (26a-i)) together with the
increments A (@7 ),j=n—R,---,n—1 of the R-fold
eigenfrequency @> , =--- = w? | (in problem (26a-i)).
All other iterates in (25a—f) and (26a-i), i.e., the material
volume densities p,, the eigenfrequencies wj, the general-
ized gradient vectors fy, and the multiplicities N and R
have been determined in steps 1 and 2 of the main iteration
loop and are kept fixed in the current step 3 of this loop.

Earlier, we defined J as the highest order of an
eigenfrequency to be considered and subjected to the
variable bound constraints (15b) and (16b) in problems
(15a—c) and (16a—d). In the current computational proce-
dure, we have chosen J to be the order J=n+N of the
closest eigenfrequency that is greater than the multiple
eigenfrequency w;,j =n+ N — 1. Assuming that the Jth
eigenfrequency is simple, it immediately follows from
Section 3.4.1 that the variable bound constraint for the
incremented form of the Jth eigenfrequency can be written
as (25b) and (26b) in problems (25a—f) and (26a—i). A
corresponding constraint for the closest eigenfrequency
@,_g—1 that is smaller than the multiple eigenfrequency
®?,j=n—R,---,n—1 takes the form (26e), if 0, r1 is
simple.

3.5.3 Remarks

It is seen that relative to (15a—c) and (16a—d), (25d), (26f),
and (26g) have been included in the formulations of
problems (25a—f) and (26a—i). These equations stem from
(18) and represent the coupling between the independent
variables Ap, and the dependent variables A a)j2
corresponding to multiple eigenfrequencies. This coupling
is nonlinear in general. Each of (25d), (26f), and (26g)
represent an algebraic subeigenvalue problem with A(w?) as
an eigenvalue that furnishes a number of solutions A a)j2 ,
which correspond to the possible multiplicity N of the
eigenvalue (17) in problems (15a—) and (16a—d) and the
possible multiplicity R of the additional similar eigenvalue
that may occur in problem (16a—d) and is defined in the
earlier footnote. The increments A(w JZ) obtained this way
are seen to enter the variable bound constraints (25¢), (26c¢),
and (26d) for the incremented multiple eigenfrequencies.
Note that if N and/or R have been found to be equal to unity
in step 1 of the main (outer) loop in Fig. 1, it follows directly
from the results in Section 3.4.1 that each of (25d), (26f),
and/or (26g) reduce to the pertinent single algebraic equation
for the increment of a simple eigenfrequency.

This means that the computational procedure developed
in the present Section 3.5 and outlined in Fig. 1, can be
applied for automatic solution of problems (15a—) and
(16a—d) in Section 3.3 independently of whether the subject
eigenfrequencies of order n in (15a—c) and (16a—d) and of
order n—1 in (16a—d) are members of a multiple eigenvalue
or are just a simple eigenvalue.

The suboptimization problems (25a—f) and (26a—i) of
problems (15a—c) and (16a—d), respectively, can be solved
by using a mathematical programming method. In this
paper, the MMA method (Svanberg 1987) has been used.

Finally, it is worth noting that if we introduce the
additional constraints fSTkAp =0, for s #k, s, k=n, ..,
n+N—1, i.e., if we impose vanishing of the off-diagonal
terms in (18), then the increments A; = A(wjz) are
determined in a linearized form with respect to the incre-
ments Ap, of the material volume densities for both simple
and multiple eigenvalues. As a result, the suboptimization
problems (25a—f) and (26a—i) reduce to linear programming
problems (see Krog and Olhoff 1999) and can be solved
using a linear programming algorithm.

4 Numerical examples: single material topology design
of beam-like 2D structures
4.1 Maximization of the fundamental eigenfrequency

As a first example, we consider the topology optimization
of a single-material beam-like structure modeled by 2D

@ Springer



100

J. Du, N. Olhoff

C
Fig. 2 a—c Admissible design domains (a=8, b=1) of beam-like 2D
structures with three different sets of boundary conditions. a Simply
supported ends. b One end clamped, the other simply supported. ¢
Clamped ends. The fundamental eigenfrequencies of the three initial
designs (uniform distribution of material with density p=0.5) are all
unimodal with values of, = 68.7, ®}, = 104.1, and &’ = 146.1

plane stress elements. The admissible design domain is
specified, and three different cases a, b, and ¢ of boundary
conditions as shown in Fig. 2 and defined in the caption are
considered. The design objective is to maximize the
fundamental eigenfrequency for a prescribed material
volume fraction a=50%, and in the initial design, the
available material is uniformly distributed over the admis-

b
j C ’
Fig. 3 a—c Optimized single-material topologies (50% volume
fraction) for the three different sets of boundary conditions defined
in Fig. 2a—c. The optimum fundamental eigenfrequencies are all found
to be bimodal and have the values a 0>’ = 174.7, b &} = 288.7,

and ¢ @} = 456.4, implying that they are increased by a 154, b 177,
and ¢ 212% relative to the initial designs
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Fig. 4 a—c Iteration histories of the first three eigenfrequencies
associated with the design process leading to the results in Fig. 3a—c.
It is seen that for each of the three cases, the fundamental
eigenfrequency is simple for the initial design but soon coalesces
with the second eigenfrequency. Thus, the maximized fundamental
eigenfrequencies for all three cases are bimodal
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sible design domain. The material is isotropic with Young’s
modulus £=10, Poisson’s ratio v=0.3, and mass density
pm=1 (SI units are used throughout). The fundamental
eigenfrequencies of the initial designs with the three cases
(a), (b) and (c) of boundary conditions are given in the
caption of Fig. 2. The optimized topologies are shown in
Fig. 3a—c, and the corresponding optimum fundamental
eigenfrequencies are all bimodal with values given in the
caption of Fig. 3. TIteration histories of the first three
eigenfrequencies for each of the three cases of boundary
conditions are given in Fig. 4. Figure Sa—c depicts the first
three eigenmodes of the optimized 2D structure with simply
supported ends as shown in Fig. 3a. The results indicate
that the first two eigenmodes (corresponding to the bimodal
fundamental eigenfrequency) of the structure are typical
simply supported beam-type vibration modes, and the third
one is a more general 2D vibration mode.

4.2 A comparison of the present approach with early
attempts of topology optimization with respect
to eigenfrequencies

In early attempts to extend the original static compliance
topology design methodology pioneered by Bendsee and
Kikuchi (1988) and Bendsee (1989) to eigenvalue optimi-
zation problems, the authors (see, e.g., Diaz and Kikuchi
1992; Ma et al. 1994, 1995; Diaz et al. 1994; Kosaka and
Swan 1999) developed different design objective functions
defined as weighted sums or other combinations of
eigenfrequencies. These objective functions were con-

a o =1747

b w,, =0 =174.7

la

¢ o, =284.9
Fig. 5 a—c The three first eigenmodes of the simply supported
structure in Fig. 3a with a bimodal optimum fundamental eigenfre-
quency. a and b depict the two modes associated with the optimum
fundamental eigenfrequency, and ¢ shows the subsequent mode

P o T e N e W e
2 DB .,

Fig. 6 Single-material topology design (50% volume fraction)
obtained by maximizing the first eigenfrequency of the simply
supported beam-like structure in Fig. 2a by the using the mean
eigenvalue approach. The design may be compared with the optimum
design in Fig. 3a

structed with a view to avoid switching of orders of subject
eigenfrequencies during the optimization process because
of multiple eigenfrequencies, which gave rise to severe
discontinuities in the sensitivity of the objective function
and lack of convergence of the computations.

In this section, we briefly present an example for
comparison of the method developed in the present paper
and a method based on a specially developed objective
function of the type mentioned above. For a fair compar-
ison, we choose one of the best of these methods, namely,
the so-called mean-eigenvalue approach (see Ma et al.
1995), where the design objective is defined as a mean
eigenvalue 2", which is a combination of several consec-
utive eigenfrequencies of the structure. A typical form of
such a mean eigenvalue is

Lol g -1
1= Z — 1 . (27)
' @;
Jj=n J
where @; (j=n, n+1, ..., n+L—1) are the eigenfrequencies

considered. From (27), it is seen that the lowest eigenfre-
quency (i.e., @,) plays the dominant role in the objective
function 2", and maximization of " will normally yield the

1,000

Eigenfrequencies

0 ! ! !
0 20 40 60 80

Iteration number

Fig. 7 Iteration history of the first three eigenfrequencies associated
with the design process leading to the topology design in Fig. 6. Note
that that the variations of the second and third eigenfrequencies are
quite different from those in Fig. 4a for the optimum design
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C
Fig. 8 a—c Optimized single-material topologies (50% volume fraction)
for the three different sets of boundary conditions in Fig. 2a—c. The
optimum second eigenfrequencies are found to be a a)g‘: = 598.3,
b @5 = 732.8, and ¢ @3 = 849.0, and are all bimodal

1200,

1000

800}
600} #

400f

Eigenfrequencies

200f

0 20 40 60 80 100
lteration number
C
Fig. 9 a A clamped beam-like 2D structure with a concentrated mass
attached at the midpoint of the lower edge. b Optimized topology of
the beam-like structure. The gap between the second and the third
eigenfrequencies is maximized. ¢ Iteration histories for the first five
eigenfrequencies associated with the process leading to the design (b)
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Fig. 10 Quadratic plate-like 3D structure (=20, =20, and t=1) with
three different cases of boundary conditions and attachment of a
concentrated nonstructural mass. a Simple supports at four corners
and concentrated mass m, at the center of the structure (m. = mq/3,
my the total structural mass of the plate). b Four edges clamped and
concentrated mass m. at the center (m, =mp/10). ¢ One edge
clamped, other edges free, and concentrated mass m, attached at the
mid-point of the edge opposite to the clamped one (m. = mg/10). The
fundamental eigenfrequencies for the three initial designs (uniform
distribution of material with density p=0.5) are @9 = 8.1,
@), =31.1,and &, = 3.5
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largest relative increase in the lowest eigenfrequency o, in
comparison with the other eigenfrequencies considered.
Thus, maximization of the objective function (27) can be
used to obtain an approximation to the optimum value of
the nth eigenfrequency ®,,.

Figure 6 shows the result of applying the mean
eigenvalue approach to “optimizing” the topology of the
simply supported beam-like structure (with the initial
design in Fig. 2a), with respect to its fundamental
eigenfrequency. The design objective 4~ is defined as the
combination of the first three eigenfrequencies in (27); that
is, we have set n=1 and L=3 in (27). We see that that the
design is different from the optimum design in Fig. 3a
obtained by the method presented in the present paper, in
the sense that some thin beam or truss components appear
in the middle part of the structure.

As a result, we find that the first eigenfrequency of the
structure in Fig. 6 is simple and has the value w; = 161.7,
which is lower than the (bimodal) first eigenfrequency

@"" = 174.7 of the optimum structure in Fig. 3a, which

confirms the superiority of the approach presented in the
present paper.

Figure 7 shows the iteration history of the first three
eigenfrequencies of the structure in Fig. 6 obtained by the
mean eigenvalue approach. Relative to the iteration history of
the corresponding eigenfrequencies in Fig. 4a of the optimum
solution in Fig. 3a, it is seen that a coalescence of the first
and second eigenfrequencies does not occur by using the
mean eigenvalue approach because of quite large increases of
the second (and also the third) eigenfrequency during the
computational procedure (see Fig. 7). Actually, the second
and third eigenfrequencies of the structure in Fig. 6 are found
to be w, =444.5 and w; = 805.6, respectively, which are
substantially larger than the corresponding eigenfrequencies
W, = @]" = 174.7 and 3, = 284.9 of the optimum design
in Fig. 3a, cf. the captions of Fig. 5b,c.

Examples of maximizing higher order eigenfrequencies
by usage of the mean eigenvalue approach have also been
carried out. These also confirmed the superiority of the
method presented in this paper.

Fig. 11 a—c Optimized
single-material topologies (50%
volume fraction) for the three
different cases of boundary
conditions and mass attachment
in Fig. 10a—c. The optimum
fundamental eigenfrequencies
are found to be a w‘fzt =164,
bW = 65.4, and ¢ i = 9.7,
implying that they are increased
by a 101, b 111, and ¢ 179%
relative to the initial designs
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4.3 Maximization of the second eigenfrequency

In the remainder of the paper, we return to applications of
the formulations and methodology developed in the present
paper and now present an example of topology optimiza-
tion of single material beam-like structures for maximum
value of the second eigenfrequency. The initial data and the
three sets of boundary conditions in this example are the

90

80f
Admissible design

domain 70r

a

601

(Maximized)

50r

Eigenfrequency

40r

30/, Multiple eigenfrequency

20 : : : :
0 10 20 30 40 50
lteration number
b

Fig. 13 a Optimized topology (50% volume fraction, single-
material design) associated with the maximum fundamental eigenfre-
quency @™ = 60.3, which is bimodal. b Tteration history for the first
three eigenfrequencies

same as for the first example in Section 4.1. The resulting
topologies are shown in Fig. 8a—c.

4.4 Maximization of the distance (gap) between two
consecutive eigenfrequencies

In this example, we consider the design objective of
maximizing the distance (gap) between two consecutive

Fig. 14 a—¢ Optimized single-material topologies (50% volume P>
C fraction) corresponding to the three different cases of boundary
Fig. 12 Quadratic plate-like 3D structure (¢=20, =20, and t=1) with conditions and mass attachment in Fig. 10a—c. The values and
simple supports at its four corners and center. a Admissible design multiplicities of the optimum second eigenfrequencies are a w‘z’zt =
domain. b—c¢ The eigenmodes of the initial design associated with the 46.0 (trimodal), b w‘z’gt = 155.4 (bimodal), and ¢ a)‘z)i’t =39.8

bimodal fundamental eigenfrequency @) = w9 = 24.6 (bimodal)
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Fig. 15 Iteration histories of eigenfrequencies associated with the
design process leading to the results in Fig. 14a—c. For case ¢, it is
seen that the second eigenfrequency is simple for the initial design but
soon coalesces with the third eigenfrequency
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4 Fig. 16 Optimized topologies of the bimaterial plate with all edges

clamped and a concentrated mass attached to the center, cf. Fig. 10b.
The topologies correspond to maximum values of the a fourth, b fifth,
and c sixth eigenfrequency. The stiffer and the weaker materials are
indicated by black and gray, respectively, and the volume fraction of
the stiffer material *1 is 50%

eigenfrequencies (the second and the third eigenfrequen-
cies) of the clamped beam-like structure shown in Fig. 9a.
A concentrated, nonstructural mass m, is attached at the
midpoint of the lower edge of the design domain as shown
in Fig. 9a. The attached mass has the value m.=1/2my,
where my, denotes the given mass of total structural material
for the beam. We use the same admissible design domain,
boundary conditions, structural material, and volume
fraction as in the example shown in Fig. 2c.

The optimum topology and the corresponding iteration
histories of the eigenfrequencies of the present example are
depicted in Fig. 9b and c. It is seen that the second
eigenfrequency is decreased, whereas the third eigenfre-
quency is increased. We find that the design ends up with a
maximized gap between the second and the third eigenfre-
quencies that is equal to 810, which is no less than 548%
larger than the difference between the corresponding
eigenfrequencies of the initial design. Figure 9¢ shows that
already from the first few iterations, the third and fourth
eigenfrequencies form a bimodal eigenfrequency, which, at
the end of the iteration history, coalesces with the fifth
eigenfrequency and thereby becomes a trimodal eigenfre-
quency in the final optimum design.

5 Numerical examples: topology design of plate-like 3D
structures

In this section, we present examples of topology optimiza-
tion of both single and bimaterial plate-like structures. The
structures are modeled by eight-node 3D continuum finite
elements with Wilson-incompatible displacement models to
improve precision.

5.1 Maximization of the fundamental eigenfrequency
of single-material structures

In this section, we consider topology optimization of
single-material, initially quadratic plate-like structures with
the same admissible design domain, but three different
cases a, b, and ¢ of boundary conditions and attached
concentrated, nonstructural masses as shown in Fig. 10 and
defined in the caption of this figure. The design objective is
to maximize the fundamental eigenfrequency for a pre-
scribed material volume fraction «=50%, and in the initial
design, the available material is uniformly distributed over
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4 Fig. 17 lteration histories of eigenfrequencies associated with the
design process leading to the results in Fig. 16a—c. The maximized
fourth, fifth, and sixth eigenfrequencies are a wzgt = 243.8 (bimodal),
b 0l = 249.7 (unimodal), and ¢ &%y = 353.2 (bimodal). The graphs
for @?w, and w?w; are omitted in figures in order to make these less
crowded

the admissible design domain. The material is isotropic
with Young’s modulus £=10"", Poisson’s ratio v=0.3, and
mass density p,,=7,800 (SI units are used throughout). The
fundamental eigenfrequencies of the initial designs with the
three cases a, b, and ¢ of boundary/mass conditions are

a
80
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o) s Wo——o |
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g (Maximized) Gap: w;- 0,
£ ]
(0]
2 0,5
w 2 I
20t , ]
1 o 4,// L L L L
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Fig. 18 a Optimized topology of a bimaterial, quadratic plate-like
structure with simple supports at four corners and a concentrated mass
at the center, cf. Fig. 10a. The design objective is to maximize the
distance between the second and the third eigenfrequencies. b Iteration
histories for the first five eigenfrequencies associated with the
optimization process leading to the design (a). Note that the second
and third eigenfrequencies of the initial design form a double
(bimodal) eigenfrequency but that they split very early in the design
process and have a large distance in the optimum design. It is also
seen in b that the initially distinct third and fourth eigenfrequencies
very early coalesce and form a bimodal eigenfrequency of the
optimum design
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given in the caption of Fig. 10. The optimized plate
topologies are shown in Fig. 11a—c, and the corresponding
optimum fundamental eigenfrequencies are all unimodal
with values given in the caption of Fig. 11.

As a next example, single-material topology optimiza-
tion of an initially quadratic plate-like structure with simple
supports at its four corners and center is considered
(Fig. 12a). The admissible design domain and the material
are the same as in the foregoing example. Because of the
structural symmetry, the fundamental eigenfrequency of the
initial design is bimodal with modes shown in Fig. 12b—c.
The optimized topology is shown in Fig. 13a (50% volume
fraction). The corresponding optimum fundamental eigen-
frequency is also bimodal.

5.2 Maximization of higher order eigenfrequencies
for single- and bimaterial structures

In this section, we first present an example of topology
optimization of initially quadratic single-material structures
with respect to the second eigenfrequency. The initial data
for the example are the same as for the first example in
Section 5.1. Thus, we choose the same volume and type of
available material, the same admissible design domain, and

Fig. 19 a Optimized topology
of the plate-like structure de-
fined in Fig. 10c with the upper
horizontal edge clamped, other
edges free, and a concentrated
mass attached at the midpoint of
the lower horizontal edge. b—d
The first, second, and third
eigenmodes of the optimized
bimaterial plate topology. The
gap between the second and the
third eigenfrequencies is maxi-
mized, (W3—w2)op=31.7

Clamped edge

¢ w, =184

@ Springer

again consider the three different cases a, b, and ¢ of
boundary conditions and attached concentrated masses as
shown in Fig. 10, but we now maximize the second
eigenfrequencies. The resulting optimum topologies and the
frequency iteration histories for the three cases of boundary
conditions and mass attachment in Fig. 10 are given in
Figs. 14 and 15.

In the next example, we consider topology optimization
of bimaterial structures with respect to higher order
eigenfrequencies. Both of the two materials are isotropic.
The stiffer material *1 with elasticity and mass matrices
E:',M}', see Section 2.3, is indicated by black in Fig. 16
and is the same as that used for optimization with a single-
material in the preceding examples. The weaker material *2
is indicated by gray in Fig. 16 and has the properties E:Z =
0.1E!" and M:? = 0.1M:!. We take the volume fraction of
material *1 to be 50% and present results of optimizing
the topologies of a bimaterial quadratic plate with the
same boundary conditions and attachment of a concen-
trated mass as shown in Fig. 10b. Figure 16a—c shows the
optimized plate topologies associated with maximum
values of the fourth, fifth, and sixth eigenfrequencies, and
Fig. 17a—c shows the corresponding iteration histories of
the eigenfrequencies.

Clamped edge

d o, =501
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5.3 Maximization of the distance (gap) between two
consecutive eigenfrequencies of bimaterial structures

In this section, we present two examples of topology
optimization of bimaterial plate structures, using the same
materials and volume fractions as in the previous example.
The design objective considered is to maximize the
distance (gap) between the second and third eigenfrequen-
cies of the structures. We use the same admissible quadratic
design domain as in Fig. 10 for the plate structures and
choose the cases a and c¢ of boundary conditions and
concentrated mass attachment as shown in Fig. 10. The
results of the two examples are given in Figs. 18 and 19,
respectively.

The result shown in Fig. 18 of the topology optimization
of the quadratic, bimaterial plate structure in Fig. 10a with
an initially uniform distribution of a homogeneous mixing
of equal amounts of the two materials is particularly
interesting. Because of the symmetries of the initial design,
see Fig. 10a, the difference between the third and second
eigenfrequencies is 0 for the initial design. However, the
optimum topology of the plate depicted in Fig. 18a has a
large gap between its third and second eigenfrequencies, cf.
Fig 18b, which implies that the relative increase in the
difference between these eigenfrequencies is infinitely large
relative to the initial design!

6 Summary

Problems of topology optimization with respect to
eigenfrequencies of free vibrations of structures are
presented in this paper. The design objectives are
maximization of specific eigenfrequencies and distances
(gaps) between two consecutive eigenfrequencies of the
structures. A method has been developed to handle
topology optimization problems associated with multiple
eigenfrequencies and has been implemented in such a
way that it can be applied independently of whether the
subject eigenfrequencies are multiple or just simple
(unimodal). Several numerical examples of topology
optimization of single- and bimaterial 2D and plate-like
3D structures are carried out and presented in the paper,
where they validate the approaches proposed. The results
demonstrate that the creation of structures with multiple
optimum eigenfrequencies is the rule rather than the
exception in topology optimization of vibrating structures
and that this feature needs careful attention. The results
also witness that the techniques enable us, in a cost-
efficient manner, to move structural resonance frequencies
far away from external excitation frequencies and thereby
avoid high vibration and noise levels. We show in two
sequential papers that the same desirable effects can be

achieved by topological design for minimum dynamic
compliance (Olhoff and Du 2007) and for minimum
sound radiation (Du and Olhoff 2007), respectively, of
continuum structures subjected to given excitation fre-
quencies of forced vibration.
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