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Abstract Reliability-based design optimization (RBDO) is
a methodology for finding optimized designs that are char-
acterized with a low probability of failure. Primarily, RBDO
consists of optimizing a merit function while satisfying reli-
ability constraints. The reliability constraints are constraints
on the probability of failure corresponding to each of the fail-
ure modes of the system or a single constraint on the system
probability of failure. The probability of failure is usually
estimated by performing a reliability analysis. During the
last few years, a variety of different formulations have been
developed for RBDO. Traditionally, these have been formu-
lated as a double-loop (nested) optimization problem. The
upper level optimization loop generally involves optimizing
a merit function subject to reliability constraints, and the
lower level optimization loop(s) compute(s) the probabil-
ities of failure corresponding to the failure mode(s) that
govern(s) the system failure. This formulation is, by na-
ture, computationally intensive. Researchers have provided
sequential strategies to address this issue, where the deter-
ministic optimization and reliability analysis are decoupled,
and the process is performed iteratively until convergence is
achieved. These methods, though attractive in terms of ob-
taining a workable reliable design at considerably reduced
computational costs, often lead to premature convergence
and therefore yield spurious optimal designs. In this paper, a
novel unilevel formulation for RBDO is developed. In the pro-
posed formulation, the lower level optimization (evaluation
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of reliability constraints in the double-loop formulation) is re-
placed by its corresponding first-order Karush–Kuhn–Tucker
(KKT) necessary optimality conditions at the upper level op-
timization. Such a replacement is computationally equiva-
lent to solving the original nested optimization if the lower
level optimization problem is solved by numerically satis-
fying the KKT conditions (which is typically the case). It is
shown through the use of test problems that the proposed for-
mulation is numerically robust (stable) and computationally
efficient compared to the existing approaches for RBDO.
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Nomenclature

d design variables
p parameters in deterministic optimization
X random variables
U standard normal random variables
θθθ distribution parameters
ηηη limit-state parameters
gR failure-driven or probabilistic hard constraints
gD deterministic constraints
y deterministic state variables
Y random state variables
βi reliability index of i th failure mode
x∗ most probable point in x-space
u∗ most probable point in u-space
f merit function
grc reliability constraints
Pi probability of failure of i th failure mode
Pallowi allowable probability of failure for i th failure mode
Psys system probability of failure
dl lower bounds on design variables
du upper bounds on design variables
Nhard number of hard constraints
Nso f t number of soft constraints
βreqdi desired reliability index of i th failure mode
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1 Introduction

In a deterministic design optimization, designs are often
driven to the limit of the design constraints, leaving little or
no latitude for uncertainties. The resulting deterministic op-
timum is usually associated with a high probability of failure
of the artifact being designed, due to the influence of uncer-
tainties inherently present during the modeling and manufac-
turing phases of the artifact and due to the uncertainties in the
external operating conditions of the artifact. The uncertain-
ties include variations in certain parameters, which are either
controllable (e.g., dimensions) or uncontrollable (e.g., mater-
ial properties), and model uncertainties and errors associated
with the simulation tools used for simulation-based design
(Oberkampf et al. 2000, 2001). In this research, variational
uncertainties are modeled as continuous random variables.
Other forms of uncertainty, such as model uncertainties and
errors associated with simulation tools, are assumed to be
minimal and that the analysis tools can reasonably predict
the actual performance behavior.

Optimized deterministic designs determined without con-
sidering uncertainties can be unreliable and might lead to
catastrophic failure of the artifact being designed. Uncertain-
ties in simulation-based design are inherently present and
need to be accounted for in the design optimization process.
Reliability-based design optimization (RBDO) is a method-
ology that addresses this problem. In designing artifacts with
multiple failure modes, it is important that an artifact be de-
signed such that it is sufficiently reliable with respect to each
of the critical failure modes or to the overall system failure.
The reliability index, or the probability of failure correspond-
ing to either a failure mode or the system, can be computed
by performing a reliability analysis. In an RBDO formula-
tion, the critical failure modes in deterministic optimization
are replaced with constraints on probabilities of failure corre-
sponding to each of the failure-driven modes or with a single
constraint on the system probability of failure (Enevoldsen
and Sorensen 1994).

Traditionally, researchers have formulated RBDO as a
nested optimization problem [also known as a double-loop
method (DLM)]. Such a formulation is, by nature, compu-
tationally expensive because of the inherent computational
expense required for the reliability analysis, which itself in-
volves the solution to an optimization problem. Solving such
nested optimization problems are cost prohibitive, especially
for large-scale multidisciplinary systems, which are them-
selves computationally intensive. Moreover, the computa-
tional cost associated with RBDO grows exponentially as
the number of random variables and the number of critical
failure modes increase. To alleviate the high computational
cost, researchers have developed sequential RBDO methods.
In these methods, a deterministic optimization and a relia-
bility analysis are decoupled, and the procedure is repeated
until desired convergence is achieved. However, such tech-
niques usually lead to premature convergence and hence yield
spurious optimal designs.

In this research, a new unilevel formulation for perform-
ing RBDO is developed. The proposed formulation provides
improved robustness and provable convergence as compared
to a unilevel variant given by Kuschel and Rackwitz (2000).
The formulation given by Kuschel and Rackwitz (2000)
replaces the direct first-order reliability method (FORM)
problems [lower level optimization in the reliability index
approach (RIA)] by their first-order necessary KKT optimal-
ity conditions. The FORM problem in RIA is numerically
ill-conditioned (see Tu et al. (1999) for a review); the same
is true for the formulation given by Kuschel and Rackwitz
(2000). In this paper, the basic idea is to replace the inverse
FORM problem [lower level optimization in the performance
measure approach (PMA)] by its first-order KKT necessary
optimality conditions at the upper level optimization. It was
shown in Tu et al. (1999) that PMA is robust in terms of
probabilistic constraint evaluation. The proposed method is
shown to be computationally equivalent to the original nested
optimization problem if the lower level optimization problem
is solved by satisfying the KKT necessary condition (which
is what most numerical optimization algorithms actually do).
The unilevel method developed in this paper is observed to be
more robust and has a provably convergent structure as com-
pared to the one given in Kuschel and Rackwitz (2000). Both
unilevel methods are computationally efficient compared to
the traditional nested optimization formulations for RBDO.

2 Deterministic design optimization

In a deterministic design optimization, the designer seeks the
optimum values of design variables for which the merit func-
tion is the minimum and the deterministic constraints are sat-
isfied. A typical deterministic design optimization problem
can be formulated as

min f (d,p, y(d,p)) (1)

subject to gR
i (d,p, y(d,p)) ≥ 0, i = 1, .., Nhard , (2)

gD
j (d,p, y(d,p)) ≥ 0, j = 1, .., Nso f t , (3)

dl
≤ d ≤ du, (4)

where d are the design variables and p are the fixed parame-
ters of the optimization problem. gR

i is the i th hard constraint
that models the i th critical failure mechanism of the system
(e.g., stress, deflection, loads, etc.). gD

j is the j th soft con-
straint that models the j th deterministic constraint due to
other design considerations (e.g., cost, marketing, etc.). The
design space is bounded by dl and du . The merit function
and the constraints are explicit functions of d, p, and y(d,p).
y(d,p) are the outputs of analysis tools that are used to pre-
dict performance characteristics of an artifact.

The class of problems known as multidisciplinary prob-
lems are characterized by two or more disciplinary analy-
ses. These problems involve complex coupled engineering
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Fig. 1 Example of a multidisciplinary system analysis

simulation models. The solution of these coupled simulation
models is referred to as a system analysis. A multidiscipli-
nary system analysis can be illustrated by Fig. 1. Here, the
system analysis consists of three disciplines or contributing
analyses (CAs). Each contributing analysis (CA) makes use
of a disciplinary simulation code. State information is ex-
changed between the three CAs, and iteration is performed
until convergence is achieved. Coupling between the various
simulation codes exists in the form of shared design variables
and both input and output state performances. For a given
set of independent variables that uniquely define the artifact,
referred to as design variables, d, the system analysis is in-
tended to determine the corresponding set of attributes which
characterize the system performance, referred to as state vari-
ables, y. An analysis of such systems requires users to iterate
between individual disciplines until the states are converged
and consistent (Gu et al. 2000).

A deterministic optimization formulation does not ac-
count for the uncertainties in the design variables and
parameters. Optimized designs based on a deterministic for-
mulation are usually associated with a high probability of
failure because of the likely violation of certain hard con-
straints in service. This is particularly true if the hard con-
straints are active at the deterministic optimum solution. In
today’s competitive marketplace, it is very important that
the resulting designs are optimal as well as reliable. This is
usually achieved by replacing a deterministic optimization
formulation with a reliability-based design optimization for-
mulation, where the critical hard constraints are replaced with
reliability constraints.

3 Reliability-based design optimization (RBDO)

In the last two decades, researchers have proposed a variety of
frameworks for efficiently performing RBDO. A careful sur-
vey of the literature reveals that the various RBDO methods
can be divided into three broad categories, viz., double-loop
methods, sequential methods, and unilevel methods.

3.1 Double-loop methods for RBDO

Traditionally, the reliability-based optimization problem has
been formulated as a double-loop optimization problem. In a
typical RBDO formulation, the critical hard constraints from
the deterministic formulation are replaced by reliability con-
straints, as in

min f (d,p, y(d,p)) (5)

subject to grc(X,ηηη) ≥ 0, (6)

gD
j (d,p, y(d,p)) ≥ 0, j = 1, .., Nso f t , (7)

dl
≤ d ≤ du, (8)

where grc are the reliability constraints. They are either con-
straints on probabilities of failure corresponding to each hard
constraint or are a single constraint on the overall system
probability of failure. In this paper, only component failure
modes are considered. It should be noted that the reliabil-
ity constraints depend on the random variables X and the
limit-state parameters ηηη. The distribution parameters of the
random variables are obtained from the design variables d
and the fixed parameters p (see the section on “Reliability
analysis” below). grc can be formulated as

grc
i = Pallowi − Pi , i = 1, .., Nhard , (9)

where Pi is the failure probability of the hard constraint gR
i

at a given design, and Pallowi is the allowable probability of
failure for this failure mode. The probability of failure is usu-
ally estimated by employing standard reliability techniques.
A brief description of standard reliability methods is given in
the next section. It has to be noted that the RBDO formulation
given above [(5, 6, 7, and 8)] assumes that the violation of
soft constraints due to variational uncertainties is permissible
and can be traded off for more reliable designs. For practical
problems, design robustness represented by the merit func-
tion and the soft constraints could be a significant issue, one
that would require the solution to a hybrid robustness and
RBDO formulation.

3.1.1 Reliability analysis

Reliability analysis is a tool to compute the reliability index
or the probability of failure corresponding to a given fail-
ure mode or for the entire system (Haldar and Mahadevan
2000). The uncertainties are modeled as continuous random
variables, X = (X1, X2, ..., Xn)

T , with known (or assumed)
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joint cumulative distribution function (CDF), FX(x). The de-
sign variables, d, consist of either distribution parameters
θθθ of the random variables X, such as means, modes, stan-
dard deviations, and coefficients of variation, or determin-
istic parameters, also called limit-state parameters, denoted
by ηηη. The design parameters p consist of either the means,
the modes, or any first-order distribution quantities of certain
random variables. Mathematically, this can be represented by
the statements[
p,d

]
= [θθθ,ηηη] , (10)

p is a subvector of θ. (11)

Random variables can be consistently denoted as X(θθθ),
and the i th failure mode can be denoted as gR

i (X,ηηη). In the
following, x denotes a realization of the random variables X,
and the subscript i is dropped without loss of clarity. Letting
gR(x,ηηη) ≤ 0 represent the failure domain, and gR(x,ηηη) = 0
be the so-called limit-state function, the time-invariant prob-
ability of failure for the hard constraint is given by

P(θθθ,ηηη) =

∫
gR(x,ηηη)≤0

fX(x) dx, (12)

where fX(x) is the joint probability density function of
X. It is usually impossible to find an analytical expression
for the above integral. In standard reliability techniques, a
probability distribution transformation T : Rn

→ Rn is usu-
ally employed. An arbitrary n-dimensional random vector
X = (X1, X2, ..., Xn)

T is mapped into an independent stan-
dard normal vector U = (U1,U2, ...,Un)

T . This transforma-
tion is known as the Rosenblatt transformation (Rosenblatt
1952). The standard normal random variables are character-
ized by a zero mean and unit variance. The limit-state function
in U-space can be obtained as gR(x,ηηη)=gR(T −1(u),ηηη)=
G R(u,ηηη)=0. The failure domain in U-space is G R(u,ηηη)≤0.
Equation (12) thus transforms to

Pi (θθθ,ηηη) =

∫
G R(u,ηηη)≤0

φU(u) du, (13)

where φU(u) is the standard normal density. If the limit-state
function in U-space is affine, i.e., if G R(u,ηηη) = αααT u + β,
then an exact result for the probability of failure is P f =

Φ
(
−

β

‖ααα‖

)
, where Φ(·) is the cumulative Gaussian distrib-

ution function. If the limit-state function is close to being
affine, i.e., if G R(u,ηηη) ≈ αααT u + β with β = −αααT u∗, where
u∗ is the solution of the following optimization problem,

min ||u|| (14)

subject to G R(u,ηηη) = 0, (15)

then the first-order estimate of the probability of failure is

P f = Φ
(
−

β

‖ααα‖

)
, where ααα represents a normal to the mani-

fold (15) at the solution point. The solution u∗ of the above
optimization problem, the so-called design point, β-point,

or the most probable point (MPP) of failure, defines the re-
liability index βp = −

αααT u∗

‖ααα‖
. This method of estimating the

probability of failure is known as the FORM (Haldar and
Mahadevan 2000).

In the second-order reliability method, the limit-state
function is approximated as a quadratic surface. A simple
closed form solution for the probability computation using
a second-order approximation was given by Brietung (1984)
using the theory of asymptotic approximations as

P f (θθθ,ηηη) =

∫
G R(u,ηηη)≤0

φU(u) du

≈ Φ(−βp)

n−1∏
l=1

(1 − κl)
−1/2, (16)

where the κl is related to the principal curvatures of the limit-
state function at the minimum distance point u∗, and βp is
the reliability index using FORM. Brietung (1984) showed
that the second-order probability estimate asymptotically ap-
proaches the first-order estimate as βp approaches infinity if
βpκl remains constant.

The first-order approximation, P f ≈ Φ(−βp), is suffi-
ciently accurate for most practical cases. Thus, only first-
order approximations of the probability of failure are used in
practice. Using the FORM estimate, the reliability constraints
in (9) can be written in terms of reliability indices as

grc
i = βi − βreqdi , (17)

where βi is the first-order reliability index, and βreqdi =

−Φ−1(Pallowi ) is the desired reliability index for the i th hard
constraint. When the reliability constraints are formulated as
given in (17), the approach is referred to as the RIA.

It should be noted that the reliability analysis involves
a probability distribution transformation, the search for the
MPP, and the evaluation of the cumulative Gaussian distribu-
tion function. To solve the FORM problem (14, 15, and 16),
various algorithms have been reported in the literature (see
Liu and Kiureghian (1991) for a review). The solution typi-
cally requires many system analysis evaluations. Moreover,
there might be cases where the optimizer may fail to pro-
vide a solution to the FORM problem, especially when the
limit-state surface is far from the origin in U-space or when
the case G R(u,ηηη) = 0 never occurs at a particular design
variable setting.

In design automation, it cannot be known a priori what
design points the upper level optimizer will visit; therefore, it
is not known if the optimizer for the FORM problem will pro-
vide a consistent result. This problem was addressed recently
by Padmanabhan and Batill (2002) by using a trust region al-
gorithm for equality-constrained problems. For cases when
G R(u,ηηη) = 0 does not occur, the algorithm provided the best
possible solution for the problem through

min ‖u‖ (18)

subject to G R(u,ηηη) = c. (19)
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The reliability constraints formulated by the RIA are
therefore not robust. RIA is usually more effective if the prob-
abilistic constraint is violated, but it yields a singularity if the
design has zero failure probability (Tu et al. 1999). To over-
come this difficulty, Tu et al. (1999) provided an improved
formulation to solve the RBDO problem. In this method,
known as the PMA, the reliability constraints are stated by
an inverse formulation as

grc
i = G R

i (ui
∗

β=ρ,ηηη) i = 1, .., Nhard . (20)

u∗

i is the solution to the inverse reliability analysis (IRA)
optimization problem

min G R
i (u,ηηη) (21)

subject to ‖u‖ = ρ = βreqdi , (22)

where the optimum solution ui
∗

β=ρ corresponds to MPP in
IRA of the i th hard constraint. Solving RBDO by the PMA
formulation is usually more efficient and robust than the RIA
formulation where the reliability is evaluated directly. The
efficiency lies in the fact that the search for the MPP of an
inverse reliability problem is easier to solve than the search
for the MPP corresponding to an actual reliability. The RIA
and the PMA approaches for RBDO are essentially inverse
of one another and would yield the same solution if the con-
straints are active at the optimum (see Tu et al. (1999) for a
review). If the constraint on the reliability index (as in the RIA
formulation) or the constraint on the optimum value of the
limit-state function (as in the PMA formulation) is not active
at the solution, the reliable solution obtained from the two
approaches might differ. Similar RBDO formulations were
independently developed by other researchers (Polak et al.
2000; Royset et al. 2001; Kirjner-Neto et al. 1998). In these
RBDO formulations, constraint (22) is considered as an in-
equality constraint (‖u‖ ≤ βreqdi ), which is a more robust
way of handling the constraint on the reliability index. The
major difference lies in the fact that in these papers, semi-
infinite optimization algorithms were employed to solve the
RBDO problem. Semi-infinite optimization algorithms solve
the inner optimization problem approximately. However, the
overall RBDO is still a nested double-loop optimization
procedure. As mentioned earlier, such formulations are com-
putationally intensive for problems where the function eval-
uations are expensive. Moreover, the formulation becomes
impractical when the number of hard constraints increase,
which is often the case in real-life design problems. To alle-
viate the computational cost associated with the nested for-
mulation, sequential RBDO methods have been developed.

3.2 Sequential methods for RBDO

Sequential RBDO methods include a variety of different ap-
proaches proposed by different researchers. Chen and Du
(2002) developed a decoupled sequential probabilistic de-
sign methodology. In this framework, the deterministic opti-
mization and the reliability assessment are decoupled from
one another. During each cycle, a deterministic optimization

problem is solved, followed by reliability assessment and a
convergence check. Chen et al. (1997) also developed a se-
quential RBDO methodology that was recently generalized
for nonnormal distributions by Wang and Kodiyalam (2002)
and extended for multidisciplinary systems by Agarwal et al.
(2003). In this methodology, the lower level optimization is
eliminated, and the MPP of failure corresponding to the prob-
abilistic constraints is estimated implicitly by using a non-
linear transformation based on the direction cosines of the
hard constraints at the mean values of the random variables.
This methodology is shown to be extremely efficient. How-
ever, for highly nonlinear limit-state functions, the estimate
of the MPP of failure given by the nonlinear transformation
might be very different from the actual MPP of failure, and
the framework may fail to converge to the true solution. The
drawback of sequential RBDO methodologies is that a local
optimum cannot be guaranteed. Such methodologies can lead
to spurious optimal designs.

It has been noted that the traditional reliability-based op-
timization problem is a nested optimization problem. Solv-
ing such nested optimization problems for a large number of
failure-driven constraints and/or nondeterministic variables
is extremely expensive. Researchers have developed sequen-
tial approaches to speed up the optimization process and to
obtain a consistent reliability-based design. To address the is-
sue of obtaining spurious optimal designs, a new sequential
optimization strategy for reliability-based design is devel-
oped in Agarwal and Renaud (2004).

3.3 Unilevel methods for RBDO

RBDO is typically formulated as a nested optimization prob-
lem requiring a large number of system analyses. The major
concern in evaluating reliability constraints is the fact that
reliability analysis methods are formulated as optimization
problems (Rackwitz 2001). To overcome this difficulty, a
unilevel formulation was developed by Kuschel and Rackwitz
(2000). In their method, the direct FORM problem [lower
level optimization—(14), (15), and (16)] is replaced by the
corresponding first-order Karush–Kuhn–Tucker (KKT) opti-
mality conditions of the first-order reliability problem. As
mentioned earlier, the direct FORM problem can be ill-
conditioned, and the same may be true for the unilevel for-
mulation given by Kuschel and Rackwitz (2000). The reason
is that the probabilistic hard constraints might have a zero
failure probability at a particular design setting, and hence
the optimizer might not converge due to the hard constraints
(which are posed as equality constraints) being not satisfied.
Moreover, the conditions under which such a replacement is
equivalent to the original bilevel formulation were not de-
tailed in Kuschel and Rackwitz (2000).

4 Proposed unilevel method for RBDO

In this research, a new unilevel formulation is developed. The
conditions under which the proposed formulation is com-
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putationally equivalent to the traditional bilevel formulation
are KKT constraint qualifications and convexity assumptions.
Initial studies indicate that the proposed formulation is inher-
ently robust and computationally efficient compared to other
RBDO formulations.

The main focus of this research has been to develop a ro-
bust and efficient unilevel formulation for performing RBDO.
As mentioned earlier, the probabilistic constraint specifica-
tion using the PMA is robust compared to the RIA. However,
the methodology is still nested and is hence expensive. In
this research, the IRA optimization problem is replaced by
the corresponding first-order necessary KKT optimality con-
ditions. The KKT conditions for the reliability constraints
similar to PMA (21 and 22) are used. The treatment of (22)
is a bit subtle. No simple modification of (22) will result in
an equality constraint that is both quasiconvex and quasi-
concave, which would be required for the sufficiency of the
KKT conditions. For necessity of the KKT conditions, ob-
serve that ‖u‖ − ρ is convex and ‖u‖ − ρ ≤ 0 trivially satis-
fies Slater’s constraint qualification (feasible set has a strictly
interior point) (Mangasarian 1994). Assume that G R(u,ηηη)
is pseudoconvex with respect to u for each fixed ηηη. Now
G R(u,ηηη) pseudoconvex and ‖u‖ − ρ convex mean that the
KKT conditions are also sufficient, hence the original and
KKT formulation will be equivalent. Therefore, to facilitate
development of the current method, the inverse FORM can
be restated as

min G R
i (u,ηηη) (23)

subject to ‖u‖ ≤ ρ. (24)

The Lagrangian corresponding to the optimization prob-
lem is

L = G R(u,ηηη)+ λ(‖u‖ − ρ), (25)

where λ is the scalar Lagrange multiplier. The first-order nec-
essary conditions for the problem are

∇uG R(u∗,ηηη)+ λ∇u(‖u∗
‖ − ρ) = 0, (26)

‖u∗
‖ − ρ ≤ 0, (27)

λ ≥ 0, (28)

λ(‖u∗
‖ − ρ) = 0 (29)

where u∗ is the solution point u∗

β=ρ of the inverse reliability
optimization problem when ‖u∗

‖ = ρ. u∗
= 0 is a special

degenerate case, so assume henceforth that u∗
6= 0. From

(26), we have (assuming λ 6= 0)

u∗
= −

1

λ
‖u∗

‖ ∇uG R(u∗,ηηη). (30)

Observe that (30) implies

λ = ‖∇uG R(u∗,ηηη)‖ ≥ 0, (31)

which is consistent with (28) and is valid even if λ = 0. Sub-
stituting for λ in (30) and rearranging,

∇uG R(u∗,ηηη)

‖∇uG R(u∗,ηηη)‖
= −

u∗

‖u∗‖
. (32)

Equation (32) says that u∗ and ∇uG R(u∗,ηηη) point in op-
posite directions, which is consistent with u∗ being the closest
point in the manifold G R(u,ηηη) = constant to the origin.

Equation (32) is true for all ηηη, if u∗
= u∗

β=ρ is the solu-
tion to the inverse reliability optimization problem, because
ρ − ‖u‖ ≤ 0 satisfies the reverse convex constraint qualifi-
cation [the equality constraint (22) is equivalent to the convex
constraint (24) and ρ − ‖u‖ ≤ 0, hence constraint qualifica-
tions are satisfied and the KKT condition (32) is necessary].
In general, without the pseudoconvexity assumption on G R ,
solving (32) does not necessarily imply that u∗ is the optimal
solution to the optimization problem.

It should be noted that the KKT conditions for the direct
and inverse FORM problems differ only in terms of what
constraints are being presented as equality constraints to the
upper level optimizer. When using the KKT conditions of
the direct FORM problem in the upper level optimization,
the limit-state function is presented as an equality constraint,
and the constraint on the reliability index is an inequality
constraint. As mentioned earlier, it is possible to have cases
where the limit-state function never becomes zero. In other
words, it is associated with zero (or one) failure probability.
When such a case occurs, the formulation given by Kuschel
and Rackwitz (2000) might fail to yield a solution. In other
words, it is numerically unstable.

In this research, the first-order conditions of the inverse
FORM problem are used. The corresponding KKT conditions
for the inverse reliability problem (23 and 24) are

h1i ≡ ∇uG R
i (ui ,ηηη)+ λi

ui

‖ui‖
= 0, (33)

g1i ≡ ||ui || − βreqdi ≤ 0, (34)

h2i ≡ λi (‖ui‖ − βreqdi ) = 0, (35)

g2i ≡ λi ≥ 0. (36)

Using these first-order optimality conditions, the unilevel
RBDO architecture can be stated as follows

min
daug

f (d,p, y(d,p)) (37)

daug = [d,u1, ..,uNhard , λ1, .., λNhard ]

sub. to GR
i (u,ηηη) ≥ 0 i = 1, .., Nhard , (38)

h1i = 0 i = 1, .., Nhard , (39)

h2i = 0 i = 1, .., Nhard , (40)

g1i ≤ 0 i = 1, .., Nhard , (41)

g2i ≥ 0 i = 1, .., Nhard , (42)

gD
j (d,p, y(d,p)) ≥ 0 j = 1, .., Nso f t , (43)

dl
≤ d ≤ du . (44)

If d∗ is a solution of (5), (6), (7), and (8), then there
exist u∗

i and λ∗

i such that [d∗,u∗

1, ..,uN ∗

hard
, λ∗

1, .., λ
∗

Nhard
] is a

solution of (37), (38), (39), (40), (41), (42), (43), and (44).
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The converse is true under the mild assumption that all the
functions G R

i (u,ηηη) are pseudoconvex in u for each fixed ηηη.
It should be noted that the dimensionality of the problem

has increased as in the unilevel method given in Kuschel
and Rackwitz (2000). The optimization is performed with
respect to the design variables d, the MPPs of failure, and
the Lagrange multipliers, simultaneously. At the beginning
of the optimization, ui does not correspond to the true MPP at
the design d. The exact MPPs of failure u∗

i and the optimum
design d∗ are found at convergence.

5 Test problems

The proposed method is implemented for a simple analytical
problem to illustrate the method. A higher dimensional mul-
tidisciplinary structures control problem is used to illustrate
the efficacy of the method for real engineering problems. The
double-loop methods (DLM) for RBDO, which use the RIA
or the PMA for reliability constraint evaluation, are com-
pared to the unilevel methods on the analytical problem. The
unilevel method developed by Kuschel and Rackwitz (2000)
is referred as unilevel-RIA, and the method developed in this
paper is referred as unilevel-PMA. The proposed methodol-
ogy (unilevel-PMA) is also compared with the double-loop
PMA approach on the structures control problem.

5.1 Analytical problem

The method is illustrated with a small analytical multidisci-
plinary test problem. This problem is chosen to illustrate the
robustness of the proposed formulation compared to other
methods. Even though the problem is just two-dimensional,
it is sufficiently nonlinear and has the attributes of a general
multidisciplinary problem. This problem has two design vari-
ables, d1 and d2, and two parameters, p1 and p2. There are
two random variables, X1 and X2. The design parameters, p1
and p2, are the means of the random variables, X1 and X2, re-
spectively. This problem involves a coupled system analysis
and has two CAs. The problem has two hard constraints, gR

1
and gR

2 . The RBDO problem in standard form is as follows.

Minimize : d2
1 + 10d2

2 + y1

subject to : gR
1 = Y1(X, η)

/
8 − 1 ≥ 0

gR
2 = 1 − Y2(X, η)

/
5 ≥ 0

−10 ≤ d1 ≤ 10

0 ≤ d2 ≤ 10

where d1 = η1, d2 = η2

and p1 = µx1 = 0, p2 = µx2 = 0

C A1 : Y1(X, η) = η2
1 + η2 − 0.2Y2(X, η)+ X1;

y1(d,p) = d2
1 + d2 − 0.2y2(d,p)+ p1;

C A2 : Y2(X, η) = η1 − η2
2 +

√
Y1(X, η)+ X2;

y2(d,p) = d1 − d2
2 +

√
y1(d,p)+ p2.

It is assumed that the random variables X1 and X2 have
a uniform distribution over the intervals [−1, 1] and [−0.75,
0.75], respectively. The desired value of the reliability index
βreqdi (for i = 1,2) is chosen as 3 for both the hard constraints.

Figure 2 shows the contours of the merit function and the
constraints. The zero contours of the hard constraints are plot-
ted at the design parameters, p1 and p2 (mean of the random
variables, X1 and X2). It should be noted that in determin-
istic optimization, two local optima exist for this problem.
At the global solution, only the first hard constraint is active,
whereas at the local solution, both the hard constraints are ac-
tive. They are shown by star symbols. Both of these solutions
can be located easily by choosing different starting points in
the design space.

Similarly, two local optimum designs exist for the RBDO
problem as well. Both reliable designs get pushed into the
feasible region, characterized with a higher merit function
value and a lower probability of failure. They are shown by
the shaded squares in Fig. 3.

To locate the two local optimal solutions of this problem,
two different starting points, [−5, 3] and [5, 3], are chosen.
The results corresponding to the starting point [−5, 3] are
listed in Table 1.

Starting at the design d = [−5, 3], the proposed unilevel
method, which uses the KKT conditions of the PMA to pre-
scribe the probabilistic constraints, converges to the reliable
optimum point without any difficulty. The proposed unilevel
method requires 24 system analysis evaluations as compared
to 225 when using the traditional double-loop PMA method.
Analytical gradients were used in implementing this prob-
lem for all methods. Note that the DLM that uses the RIA
to prescribe the probabilistic constraints does not converge.
For the designs that are visited by the upper level optimizer
(say, dk at the k th iteration), the FORM problem does not
have a solution (because of zero failure probability at these
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Fig. 3 Plot showing two reliable optima

designs). Similar conclusions can be drawn for the unilevel-
RIA method. Starting from the design [−5, 3], the optimizer
tries to find the local design [−3.006, 0.049]. However, it
turns out that at this design, the second hard constraint, gR

2 , is
never zero in the space of uniformly distributed random vari-
ables, X. Because in the unilevel-RIA method the limit-state
function is enforced as an equality constraint, the optimizer
does not converge.

The results corresponding to the starting point [5, 3] are
listed in Table 2. Note that the DLM that uses the RIA for
probabilistic constraint evaluation fails to converge for this
starting point, too. Again, the reason for this is that there is
zero failure probability (infinite reliability index) at the de-
signs visited by the upper level optimizer and therefore the
lower level optimizer does not provide any true solution. All
the other methods converge to the same local optimum solu-
tion. The computational cost associated with the two unilevel
methods is comparable. However, the unilevel-PMA method
developed in this study is numerically robust compared to
the unilevel-RIA method. Both unilevel methods show re-
markable computational savings as compared to the DLMs.

Table 1 Starting point [−5, 3], solution [−3.006, 0.049]

Cost measure Double-loop Unilevel
RIA PMA RIA PMA

SA calls Not converged 225 Not converged 24

Table 2 Starting point [5, 3], solution [2.9277, 1.3426]

Cost measure Double-loop Unilevel
RIA PMA RIA PMA

SA calls Not converged 184 24 21

5.2 Control-augmented structures problem

Figure 4 shows the control-augmented structure as proposed
by Sobieszczanski-Sobieski et al. (1990). This test problem
has been used by Padmanabhan and Batill (2002) for test-
ing RBDO methodologies. For the sake of completeness, the
problem as described in Padmanabhan and Batill (2002) is
given here. There are two coupled disciplines (CAs) in this
problem. They are the structures subsystem and the controls
subsystem. The structure is a five-element cantilever beam,
numbered 1–5 from the free end to the fixed end, as shown
in the Fig. 4. Each element is of equal length, but the breadth
and height are design variables. Three static loads, T1, T2,
and T3, are applied to the first three elements. The beam is
also acted on by a time varying force P , which is a ramp
function. Controllers A and B are designed as an optimal lin-
ear quadratic regulator to control the lateral and rotational
displacements of the free end of the beam, respectively. The
analysis is coupled because the weights of the controllers,
which are assumed to be proportional to the control effort,
are required for the mass matrix of the structure, and one re-
quires the eigenfrequencies and eigenvectors of the structure
in the modal analysis for designing the controller as shown in
Fig. 5. The damping matrix is taken to be proportional to the
stiffness matrix by a factor c for the dynamic analysis of the
structure. This damping parameter is also a design variable.
The constraints arise due to constraints on static stresses, sta-
tic and dynamic displacements, and the natural frequencies.
The main objective is to minimize the total weight of the
beam and the controllers.

5.3 Computation of sensitivities of the SA

Sensitivities for the control-augmented system analysis can
be estimated using a finite difference scheme, or one can
use analytic techniques. The sensitivities obtained from the
analytical techniques are superior to those calculated from
finite difference techniques especially when used for coupled
systems because the use of finite difference techniques can
give inaccurate and “noisy” derivatives and also because it
is difficult to obtain accurate sensitivities for certain outputs

Fig. 4 Control-augmented structures problem
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Fig. 5 Coupling in control-augmented structures problem

like the natural frequencies and the mode shapes using finite
differencing.

Because the problem being considered is coupled, one
needs to use global sensitivity equations, which are based
on the implicit function differentiation rule. Sensitivities of
the outputs of the structures’ module can be found using an-
alytic and numerical techniques (Haftka et al. 1990). The
sensitivities of the static displacements and stresses are quite
easy to compute, but the computation of sensitivities of nat-
ural frequencies and corresponding mode shapes is more in-
volved and can be done using various methods like Nelson’s
method, the modal method, and the modified modal method.
Sutter et al. (1988) compare these methods in terms of compu-
tational costs and rate of convergence. Analytic sensitivities
of the controls’ output require the computation of sensitivi-
ties of the solution of an algebraic Riccati equation used for
obtaining a linear quadratic regulator as described by Khot
(1994).

The design variables for this test problem are

d = [b1, b2, b3, b4, b5, h1, h2, h3, h4, h5, c]T , (45)

where

bi , hi = breadth and height of the i th element, respectively,
and

c = damping matrix to stiffness matrix ratio (scalar).

The random variables in the problem are

ρ = density of the beam material,
E = modulus of elasticity of the beam material, and
σa = ultimate static stress.

The constraints for the problem are formulated in terms
of the allowable displacements (lateral and rotational), the
first and second natural frequencies, and the stresses. They
are

gi = 1 −

(
dli

dla

)2

, i = 1, .., 5,

gi+5 = 1 −

(
dri

dra

)2

, i = 1, .., 5,

g11 =
ω1

ω1a
− 1,

g12 =
ω2

ω2a
− 1,

g2i+11 = 1 −
σ r

i

σa
, i = 1, .., 5,

g2i+12 = 1 −
σ l

i

σa
, i = 1, .., 5,

gi+22 = 1 −

(
ddli

dla

)2

, i = 1, .., 5,

gi+27 = 1 −

(
ddri

dra

)2

, i = 1, .., 5,

where

dli , dri = static lateral and rotational displacements of
i th element, respectively,

dla, dra = maximum allowable static lateral and rota-
tional displacements,

ω1, ω2 = first and second natural frequencies,
ω1a , ω2a = minimum required value for the first and sec-

ond natural frequencies,
σ r

i , σ l
i = maximum static stresses at the right and left

ends of i th element,
σa = maximum allowable static stress,

Table 3 Statistical information for the random variables

Random variable Mean Standard deviation

σa (psi) 30,000 3,000
ρ (lb/ in3) 0.1 0.01
E (ksi) 10,500 1050
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Table 4 Merit function at the initial and final designs

Initial design Final design

b1−5 3 3
h1 3.703 3.5805
h2 7.040 8.5816
h3 9.807 12.136
h4 11.998 14.863
h5 13.840 17.162
c 0.06 0.06
f 1493.97 1753.5

ddli , ddri = dynamic lateral and rotational displacements
of i th element, and

ddla, ddra = maximum allowable dynamic lateral and ro-
tational displacements.

The random variables for this problem, σa , ρ, and E ,
are assumed to be independent and normally distributed with
statistical parameters given in Table 3.

For RBDO test studies, constraints g1, g6, g14, g16, g18,
g20, g22, and g28 are considered to be more important and
therefore only these are considered as hard constraints. The
rest of the constraints are considered as soft (deterministic)
constraints. The system probability of failure (Pallowsys ) was
required to be 0.001, which was equally distributed among
the eight failure modes. This gives a desired reliability index

of βreqdi = −Φ−1
(

Pallowsys

8

)
= 3.6623 for each failure mode.

The RBDO was performed using two different meth-
ods, the DLM that uses the PMA approach to prescribe the
probabilistic constraint and the unilevel-PMA method de-
scribed earlier in the paper. The unilevel-PMA method for
this test case results in nontrivial problem. Because there
are eight failure modes and three random variables for each
failure mode, there are 32 equality constraints imposed by
the unilevel method. Also, because the unilevel method is
solved in an augmented design space consisting of the origi-
nal design variables, the MPP of failure for each failure mode,
and the Lagrange multipliers for each failure mode, the di-
mensionality of the design vector for this test case is 43. It
should be noted that the sensitivities of the first-order KKT
conditions (26) require calculation of second-order informa-
tion for the failure modes with respect to the augmented de-
sign variable vector. In the present implementation, a damped

Table 5 Hard constraints at the final design

gi Value at optimum

g1 0.2232
g6 4.7 ×10−8

g14 0.1794
g16 1.1 ×10−16

g18 1.1 ×10−16

g20 1.1 ×10−16

g22 3.3 ×10−16

g28 0.3749

Table 6 Comparison of computational cost of RBDO methods

Method SA Calls

DLM-PMA 493
Unilevel-PMA 261

BFGS update is used to obtain the second-order information
(Nocedal and Wright 1999). This method is defined by

rk = ψk yk + (1 − ψk)Hksk, (46)

where the scalar

ψk =


1 : sT

k yk ≥ 0.2sT
k Hksk

0.8sT
k Hksk

sT
k Hksk − sT

k yk
: sT

k yk ≤ 0.2sT
k Hksk

 , (47)

and yk and sk are the differences in the function and gradient
values of the previous iteration from the current iteration,
respectively. The Hessian update is

Hk+1 = Hk −
HksksT

k Hk

sT
k Hksk

+
rkr T

k

sT
k rk

. (48)

The values of the hard constraints at the final design
are given in Table 5. It should be noted that the constraints
g6, g16, g18, g20, and g22 dictate the system failure. The reli-
ability constraints corresponding to these constraints are the
only active constraints in the RBDO. The other hard con-
straints have a value greater than zero, which means that the
reliability index corresponding to those constraints is much
higher than the desired index.

The starting and the final designs for RBDO are given
in Table 4. The deterministic optimum design was chosen
to be the starting design for RBDO. It was noted that this
significantly reduces the required number of system analysis
evaluations. For the proposed method, the designer has to
choose a starting point for the MPPs in the augmented design
vector. Different choices for the initial MPPs may lead to
different final designs. In this study, an IRA was performed
at the design d to identify a suitable starting point for the MPP
of failure for each hard constraint. At the initial design, g1 is
active. Both the DLM-PMA and the unilevel-PMA methods
yield the same final design. Note that the value of the merit
function (weight of the beam) has increased considerably at
the final design. This is expected for a more reliable structure
to account for the variation in the random variables.

The computational cost of the two methods is compared
in Table 6. The proposed method is observed to be twice as
fast as the nested approach. Therefore, the proposed method
is not only a robust formulation for RBDO problems but is
also computationally efficient.

6 Conclusions

In this research, a new unilevel formulation for RBDO is de-
veloped. The first-order KKT conditions corresponding to the
probabilistic constraint (as in PMA) are enforced directly at
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the system-level optimizer, thus eliminating the lower level
optimizations used to compute the probabilistic constraints.
The proposed formulation is solved in an augmented design
space that consists of the original decision variables, the MPP
of failure corresponding to each failure-driven mode, and the
Lagrange multipliers. It is computationally equivalent to the
original nested optimization formulation if the inner opti-
mization problem is solved by satisfying the KKT conditions
(which is effectively what most numerical optimization algo-
rithms do). Under mild pseudoconvexity assumptions on the
hard constraints, the proposed formulation is mathematically
equivalent to the original nested formulation. The method
is tested using a simple analytical problem and a multidis-
ciplinary structures control problem and is observed to be
numerically robust and computationally efficient compared
to the existing approaches for RBDO.
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