
Struct Multidisc Optim (2007) 33: 1–12
DOI 10.1007/s00158-006-0040-z

RESEARCH PAPER

Jimmy Forsberg · Larsgunnar Nilsson

Topology optimization in crashworthiness design

Received: 1 February 2005 / Revised manuscript received: 14 February 2006 / Published online: 21 October 2006
© Springer-Verlag 2006

Abstract Topology optimization has developed rapidly, pri-
marily with application on linear elastic structures subjected
to static loadcases. In its basic form, an approximated op-
timization problem is formulated using analytical or semi-
analytical methods to perform the sensitivity analysis. When
an explicit finite element method is used to solve contact–
impact problems, the sensitivities cannot easily be found.
Hence, the engineer is forced to use numerical derivatives
or other approaches. Since each finite element simulation of
an impact problem may take days of computing time, the
sensitivity-based methods are not a useful approach. There-
fore, two alternative formulations for topology optimization
are investigated in this work. The fundamental approach is to
remove elements or, alternatively, change the element thick-
nesses based on the internal energy density distribution in the
model. There is no automatic shift between the two methods
within the existing algorithm. Within this formulation, it is
possible to treat nonlinear effects, e.g., contact–impact and
plasticity. Since no sensitivities are used, the updated de-
sign might be a step in the wrong direction for some finite
elements. The load paths within the model will change if el-
ements are removed or the element thicknesses are altered.
Therefore, care should be taken with this procedure so that
small steps are used, i.e., the change of the model should not
be too large between two successive iterations and, therefore,
the design parameters should not be altered too much. It is
shown in this paper that the proposed method for topology
optimization of a nonlinear problem gives similar result as
a standard topology optimization procedures for the linear
elastic case. Furthermore, the proposed procedures allow for
topology optimization of nonlinear problems. The major re-
striction of the method is that responses in the optimization
formulation must be coupled to the thickness updating pro-
cedure, e.g., constraint on a nodal displacement, acceleration
level that is allowed.
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1 Introduction

Topology optimization is usually meant to be the optimal
redistribution of material within a given domain. Actually,
changing the topology of a structure is associated with chang-
ing its appearance, and unless holes or limbs are created
during the optimization, there is no change in the topol-
ogy. Topology optimization has been the subject of many
investigations mainly for static, linear elastic problems (see
Bendsøe and Sigmund 2003; Eschenauer and Olhoff (2001)
for overviews of the state of the art in topology optimization
techniques).

Another approach to topology optimization is to utilize
sizing optimization of truss or frame structures. This ap-
proach has been used in several investigations, e.g., Sigmund
(2000a,b) and Fredricson et al. (2003). Within sizing opti-
mization, nonlinear phenomena such as geometrical nonlin-
earity have been studied (see Bruns and Sigmund 2004; Buhl
et al. 2000), plasticity (see Pedersen 2004), and the formation
of plastic hinges for frame structures (see Pedersen 2003). In
Pedersen (2004), the crashworthiness property of a frame
structure is analyzed using beam elements in an implicit time
integration scheme. The gradients of the optimization prob-
lem are evaluated using direct analytical differentiation.

This work was inspired by Ebisugi et al. (1998), Soto
(2001a,b, 2002). These authors have investigated a method
with a parameterized material law to determine the material
distribution in a given spatial domain. They have also varied
the thickness of shell elements to determine the optimal topol-
ogy of a structure subjected to impact. The optimal structure
for energy absorbing in a vehicle design should fulfill sev-
eral criteria. The main objective is to absorb energy with a
minimum amount of material in a controlled way.

In this paper, a simplified topology optimization method
to be used at early design stages is presented. The Inter-
nal Energy Density (IED) distribution is investigated and
used as a measure on to which extent a certain finite ele-
ment contributes to the total internal energy and, thus, to the
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importance of the element from a topological point of view. In
the linear elastic case, a related problem is found in minimiz-
ing the maximum stress in a structure. The optimal solution
of this optimization problem is a structure with an evenly dis-
tributed internal energy density. The optimal solution found
in the two optimization formulations, i.e., minimize compli-
ance and minimizing the maximum stress, is not identical.

The methods proposed here have been used to find an
optimal distribution of material in a structure subjected to
multiple loadcases.

In the following, we have studied the topology optimiza-
tion of 2-D plane stress problems. The methods can, however,
be generalized to 3-D.

Although a linear elastic structure never can be used as an
energy-absorbing device, we have included some linear elas-
tic cases to evaluate the implemented methods and to compare
to existing methods for this class of problems. In Section 4,
many aspects of the topology optimization procedure are de-
veloped and analyzed for a static loadcase, which is solved
both using explicit time integration and a static solver. In
Section 5, a dynamic loadcase is studied and the dynamic
loads are in for the static solver interpreted as pressure loads.

2 Theory of topology optimization in the linear
elastic case

The standard formulation of a linear elastic, finite element
(FE) discretized, topology optimization problem is to mini-
mize the external work, which in the linear elastic case cor-
responds to the minimum strain energy, i.e.

(P)


min FT u

s.t.


K(ρ)u = F
ρT A = V
ρmin ≤ ρe ≤ ρmax , e = 1, ..., nel

(1)

where F is the vector of external nodal forces acting on the
structure, u is the vector of nodal displacements, K is the
stiffness matrix, ρ = t/tmax denotes the scaled thickness of
each element or rather the relative density (the design vari-
ables), A is the area of each element and V is the total volume
of material, which is available to construct the structure.

With this formulation, an optimal thickness distribution
may be found. However, the thickness distribution may be
diffuse in certain regions. To get a more distinct material
distribution indicating material or no material, the interme-
diate values of thicknesses can be penalized. This penaliza-
tion will make the optimization problem non-unique, in the
sense that the optimal solution asymptotically moves toward
a value; however, unless the solution space is restricted some-
how, the optimal point will never be found. In this paper the
traditional SIMP penalization method was used. There are
also other mathematical problems associated with this op-
timization technique, e.g., checkerboard patterns and mesh
dependency. These issues are discussed in, e.g., Sigmund and

Petersson (1998), Petersson (1998), Borrvall and Petersson
(2001), and Bendsøe and Sigmund (2003).

3 Proposed methodology for topology optimization
in crashworthiness design

The topology optimization method presented here is based on
the Internal Energy Density in a finite element. In a topology
optimization formulation, one might use the objective to min-
imize the maximum stress, min(max(σ )), of any element in
the structure at hand. This formulation is related to finding
a structure with a uniform IED intensity. Therefore, the IED
in each element can be used as a measure of how much it
contributes to the total internal energy of the structure.

The approach in this paper is to use the IED parameter
to determine whether an element is efficient or not from an
energy point of view. If it is inefficient, the element is either
completely removed or its thickness is reduced. On the con-
trary, if the element is efficient it is either kept to the next
iteration of the optimization process or the thickness of the
element is increased.

The basic assumption of this method is that the stress
state surrounding a finite element remains the same in two
consecutive iterations to motivate the thickness update. This
is hardly true for all possible loading situations and all pos-
sible optimization histories.

The optimization formulation for the methodology with
deletion of finite elements can be stated as

(P)


max(min(I E Del))

s.t.


Mü + fint = fext

I E D ≤ I E Dmax

nel ≥ nmin

(2)

where I E Del is the internal energy density in an element
found in the structure. M is the mass matrix and ü are the nodal
accelerations, fint and fext are the internal and external nodal
load vectors, respectively. nel is the number of elements used
in the finite element model and nmin is the minimum number
of elements allowed for the solution for apparent reasons.
The internal energy density is defined as

I E D =

∫ t

0
σ : Ddt (3)

where σ and D are the Cauchy stress and rate-of-deformation
tensors, respectively, and t denotes time. The IED will in-
crease with the deformation as long as the material undergoes
hardening and no elastic unloading takes place.

Similarly, the optimization problem for the methodology
with variable finite element thicknesses is stated as

(P)


min(

∑nel
i=1(I E Di − I E Dtarget )

2

s.t.

{
Mü + fint = fext

ρmin ≤ ρi ≤ ρmax , i = 1, ..., nel

(4)
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Fig. 1 Scheme of proposed topology optimization procedures. Observe
there are two algorithms in the pigure with many similar steps

where I E Dtarget is a user-set target value for all elements. A
volume or mass constraint for the structure can be added in
the optimization problem for a more general formulation.

3.1 Evolution of the topology

The proposed topology optimization approaches do not ex-
plicitly use gradient information to solve the problem. In-
stead, in each iteration, the IED value in each element is used
to determine whether this element is efficient or not for the
loading cases at hand. The iterative procedures are shown in
Fig. 1.

The initial model (ground structure) is created using True-
Grid (see Rainsberger 2001) and the impact analysis is solved
using the explicit FE solver LS-DYNA (see Hallquist 1998,
2004). The post-processing is done using LS-PRE/POST (see
Hallquist 2002) and different Perl scripts. Perl scripts are also
used to update the FE model.

A stop criterion of the scheme in Fig. 1 must be given.
Any criterion suitable for the purpose at hand can be used,
e.g., the maximum number of removed elements, a minimum
change in relative thickness, a minimum change in the IED
distribution, etc.

3.2 Multiple loadcases

In the case of multiple loadcases, our approach is to normalize
all element IEDs with the maximum IED value found in any
element for that particular loadcase. In this work, the IEDs
are normalized for each loadcase and the IEDs from each
loadcase are then summed for each element.

I E D( j) =

∑
LC

αLC I E DLC( j) (5)

where I E D( j) is the summed IED for element j , LC denotes
the number of loadcases, and αLC is a loadcase weighting
factor (usually αLC = 1). The summed IED is then evalu-
ated and the elements are modified/removed according to its
summed IED (see Fig. 1). This will give a small load more
influence on the final structure than is motivated through the
energy density generated by it. Ideally, every load has a set
of criteria to fulfill and the value of these criteria should be
accounted for. However, in this application, every loadcase
is given equal weight.

3.3 The FE model updating procedure

An algorithm controls the update of the topology. In the case
of removing elements, a percentage of the maximum IED
found in any finite element is used as an indicator to remove
elements with lower IEDs. This percentage has to be given
by the user.

In the case of thickness update, another approach is used.
The basic idea is to set a target value for the IED. If an element
has a higher IED summed over all loadcases, the thickness
is increased; if it has a lower IED, it is decreased. A range,
defining the maximum element thickness change within an
iteration, is used. Also a factor is defined for each element

q =
I E Di

I E Dmax
(6)

where I E Di is the summed internal energy density of
the currently updated element and I E Dmax is the maxi-
mum summed internal energy density found in any element

Fig. 2 2-D plane stress structure subjected to a point load P
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Table 1 Material parameters used for the 2-D plane stress structure

Parameters

E 210 G Pa
ν 0.3
σY 500 M Pa
Etan 1,000 M Pa
ρ 7,800 kg/m3

in the structure. Depending if q is greater or lower than
I E Dtarget/I E Dmax , a factor f is defined as

f =


I E Di

−I E Dtarget

I E Dtarget
, q ≤ I E Dtarget/I E Dmax

I E Di
−I E Dtarget

I E Dmax −I E Dtarget
, q ≥ I E Dtarget/I E Dmax

(7)

and the new element thickness is set according to

tnew = told + f ∗ range (8)

where range is a user-defined parameter. Finally, if the global
limits of the element thickness are violated, the thickness is
reset to the limit value. This kind of updating technique can
be seen as a traditional panning scheme, where the global
limits of the thickness define the design domain and the range
defines a region of interest.

Of course, the target value of the IED will determine in
which direction the optimization procedure should go. The
range parameter will affect the convergence rate of the opti-
mization problem.

Fig. 3 The 2-D plane stress FE model. a Ground structure, b opti-
mization results without penalization of intermediate thickness values,
c optimized result with penalization of intermediate thickness values.
Black indicates areas with a high thickness

Fig. 4 The optimized 2-D plane stress structure obtained with the two
methodologies. a Deletion of elements, b thickness optimization. Black
indicates ρ ≥ 0.6 and white indicates a ρ ≤ 0.01

4 Application problem I: the 2-D plane stress problem

The ground structure is a 2-D plane stress structure sub-
jected to a point load at its midpoint and it has two clamped
boundaries (see Fig. 2). The initial volume of the structure is
2 × 10−3 m3. The magnitude of the point load is initially set

Fig. 5 a The distribution of effective plastic strain in the initial model.
Black indicates a value of at least 40%, b the resulting topology using
element deletion, c the thickness distribution obtained with a high IED
target value (the average value of the IED in the initial structure with
the high load intensity). Black indicates a ρ ≥ 0.5 and white indicates a
ρ ≤ 0.01. d The thickness distribution obtained with a low IED target
value. Black indicates a ρ ≥ 0.9 and white a ρ ≤ 0.03
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Fig. 6 The influence of the penalty parameter on the factor used in the
updating scheme of the thicknesses

to 10 kN, but it will subsequently be increased to introduce
plastic material behavior.

The structure is made of steel and the material parameters
are given in Table 1.

This problem is solved using both the static, linear elastic
FE solver Trinitas (see Torstenfeldt 1998) and the nonlinear
FE solver LS-DYNA (see Hallquist 2004). In the 2-D linear
elastic case, this is a rather standard topology optimization
problem defined by (1). This application problem gives us
a possibility to compare the proposed solution technique to
the generally used gradient-based method. In addition, we
demonstrate the effect of plastic material behavior on the
topology evolution.

4.1 Topology optimization in the static, linear elastic case

The structure is subjected to a point load, P=10 kN, at its
midpoint, and four noded bilinear elements are used for the
mesh. The ground structure and the topology optimization

Fig. 7 The optimal structure obtained using the penalty formulation.
Black indicates ρ = 1 and white indicates ρ = 0.003. a Penalty p=8,
b Penalty p=4

Fig. 8 The optimal structure of the 2-D plane stress structure subjected
to a high load intensity and a volume constraint. Black indicates ρ ≥

0.67 and white indicates ρ ≤ 0.03

results are given in Fig. 3. The thickness of the structure is
initially set to 10 mm.

There exists some regions in this structure that are likely
to deform plastically, if the loading is sufficiently high or if
the element thicknesses in these regions are too small. These
regions are located at the fixed boundary corner points and
at the point of loading. Considered as a beam, the bending
moment at two points along its length tends to zero. These are
also two locations where it is likely that hinges are formed if
the structure can deform plastically.

Fig. 9 The ground structure of the energy absorbing device subjected
to three loadcases
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Fig. 10 Finite element model of the ground structure

4.2 Topology optimization in the nonlinear case

In this section, we utilize the techniques described in
Section 3 to optimize the topology of the 2-D plane stress
structure (see Fig. 2). The simulations are carried out with
an explicit solver and the load is ramped up to its final value.
Four noded, bilinear, plane stress elements are used. First,
two topology optimization processes are done with a low
loading intensity such that the material behaves elastically
linear. Next, the structure is subjected to a higher load inten-
sity (distributed on ten nodes around the center of gravity of
the structure). This introduces a high level of plasticity into
the material. The topology obtained with the low load inten-
sity is used as an initial model in a topology optimization
using the thickness optimization formulation. In the differ-
ent optimizations processes where the element thickness is
altered, the minimum thickness is set to 1 mm and the maxi-
mum thickness is set to 100 mm.

4.2.1 2-D plane stress structure optimized with a low
load intensity

The 2-D plane stress structure was optimized using the two
methods presented in Section 3. The obtained topologies are
shown in Fig. 4. The results clearly indicate an optimal struc-
ture similar to the one obtained when minimizing the external
work in the linear elastic case. For the thickness optimization,
the target value of the IED was set to 165 Nm/m3, which is
the average value of the IED for the elements in the structure
in the initial simulation.

4.2.2 2-D plane stress structure optimized with a high
load intensity

In these optimizations, the load intensity is increased such
that large plastic strains develop. By deleting elements, two
main regions, which are mainly loaded in tension, are ob-
tained. A similar topology is obtained when using the thick-
ness optimization technique if a high value of the IED target
value is set. If the IED target value is set to the same value
as in the low load intensity case, 165 Nm/m3, the resulting
structure is similar to the one found by compliance mini-
mization, even though the initial structure had high plastic
strains (see Fig. 5). The opposite is also true, if the optimiza-
tion starts with the optimal results found with the low load

Fig. 11 Results from linear elastic topology optimization. Black indi-
cates thick elements and white indicates no material. a The static sym-
metric loadcase, b the static offset loadcase, c the pressure loadcase. d
All three loadcases simultaneously

intensity but now using the high load intensity, the optimal
topology shown in Fig. 5c is found.

4.3 Penalization of intermediate thickness values

From a manufacturing point of view, it is difficult and expen-
sive to construct a part with too much thickness variation.
Therefore, a thickness penalization formulation was investi-
gated to get a more distinct topology.

The factor determined in (7) can be viewed as a lin-
ear penalization depending on the IED value. Our thickness
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Table 2 Material properties used for the energy-absorbing device

Properties

E 100 G Pa
ν 0.3
σY 50 M Pa
Etan 200 M Pa
ρ 4,800 kg/m3

penalization approach modifies the factor f in (7). Each
element thickness is updated using a factor

fnew = ( fold)
1/p, (9)

where p ≥ 1 is the penalization parameter. If p is set to 1,
the linear factor is retained. If p > 1 then most of the inter-
mediate thicknesses are set toward the limits of the range. In
Fig. 6, the factor f is plotted against IED for different values
of the penalization factor.

4.3.1 Results from the penalization study

The 2-D plane stress structure with a low load intensity is
considered. The global limits of the thickness are lowered,
i.e., the minimum allowed thickness is 0.1 mm and the max-
imum is 30 mm. We are using a range of 5 mm. With the
penalization value of 4 and 8, the topologies shown in Fig. 7
are obtained after 26 iterations.

Fig. 12 The topology of the structure during the optimization process
for the symmetric frontal impact. a The initial configuration, b second
iteration, c third iteration, d fifth iteration, e sixth iteration

Table 3 The lower limit of IED and elements removed in each iteration
of the symmetric frontal impact

Iteration
lower limit

max I E D
Numbers of elements removed

1 0.5 1,316
2 0.5 200
3 1 88
4 5 78
5 5 44

4.4 Volume constraint in the nonlinear case

In the previous optimization formulations, there was no con-
straint on the available amount of material. Hence, the total
mass could increase as in the 2-D plane stress thickness opti-
mization problem. In this section the total amount of volume
is kept below a certain level. The finite element thicknesses
are updated as before. To restrict the volume material used,
however, every finite element thickness is scaled with the
factor (if the volume constraint is broken)

s = 1 −
V − Vall

V
(10)

where V is the volume after the thicknesses have been up-
dated with respect to the IED distribution and Vall is the to-
tal amount of available volume. Since some of the elements
might be on the lower global limit of the thickness value,
these thicknesses are reset to the limit value. Therefore, the
volume limit will still be broken. To minimize this constraint
violation, the new volume is calculated and a new factor is
found. Hence, we can find iteratively the thickness distribu-
tion, which also fulfills the volume constraint.

Fig. 13 The topology of the structure during the optimization process
for the offset frontal impact. a The initial configuration, b second iter-
ation, c third iteration, d fifth iteration, e seventh iteration
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Table 4 The lower limit of IED and elements removed in each iteration
of the offset frontal loadcase

Iteration
lower limit

max I E D
Numbers of elements removed

1 0.001 1,646
2 0.01 235
3 0.1 268
4 0.5 281
5 1.0 162
6 1.0 23

4.4.1 Application with an active volume constraint

The 2-D plane stress structure (see Fig. 2) with a high load in-
tensity and a low value of the target IED was used earlier. This
formulation of the topology optimization problem generated
a primarily elastic solution although the finite element thick-
nesses were increased. Hence, a heavier structure was found
(see Fig. 5). The same ground structure and topology opti-
mization formulation are used but with a volume constraint,
and the allowed volume is the volume of the ground structure.
The optimized structure is shown in Fig. 8. An issue concern-
ing the volume constraint is that all element thicknesses are
initially scaled and the lower limit is then checked. The ele-
ments having a thickness equal to the upper limit at that time
could be excluded in the scaling procedure, since the results
have been indicating that these elements are vital. Likewise,
the element with a thickness equal to the lower limit should
be excluded since this thickness will be set to the lower limit
in the next step.

Fig. 14 Successive topologies of the structure during the optimization
process for the pressure loadcase. a Ground structure and initial con-
figuration, b second iteration, c third iteration, d fifth iteration, e sixth
iteration

Table 5 The lower limit of IED and elements removed in each iteration
of the pressure loadcase

Iteration
lower limit

max I E D
Numbers of elements removed

1 0.001 401
2 0.005 431
3 0.01 164
4 0.02 247
5 0.03 168

5 Application problem II: energy absorbing device

The task is to develop an energy absorbing frontal underrun
protection device for a truck. The structure can occupy a
well-defined region in space and it is fixed to the front of the
truck. The ground structure and other data are given in Fig. 9.
The structure is subjected to three loadcases: two dynamic
loadcases, i.e., symmetric frontal impact and offset frontal
impact, respectively. In addition, it is subjected to one static
transversal uniform pressure loadcase.

5.1 Topology optimization in the linear elastic case

Since an elastic structure cannot absorb energy, the main ob-
jective with the topology optimization assuming static load-
ing and linear elastic behavior is to compare these results to
results obtained from the topology optimization methodolo-
gies applied with impact loading and nonlinear structure.

In this section, all loadcases were interpreted as pres-
sure loadings and six noded triangular elements are used.
The topology optimization problem is solved by minimizing
the compliance assuming linear elastic material. Six noded
triangular elements are used. A penalty formulation is used
to penalize the thicknesses between zero and the maximum
value for each element, i.e., either material or no material in
different areas of the structure is obtained.

5.1.1 Results from the linear elastic case

The ground structures mesh is shown in Fig. 10. The re-
sults from the topology optimization subjected to the three

Fig. 15 The topology of the structure during the optimization process
for the multiloadcase optimization. a Second iteration, b third iteration,
c fifth iteration, d sixth iteration
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Table 6 The lower limit of IED and elements removed in each iteration
of the multiload optimization

Iteration
lower limit

max I E D
Numbers of elements removed

1 0.01 597
2 0.1 177
3 0.5 169
4 0.75 106
5 2.0 125

different loadcases separately and the result from a topology
optimization subjected to all three loadcases simultaneously
are shown in Fig. 11.

5.2 Topology optimization in the nonlinear case—deletion
of elements

The ground structure consists of a uniformly distributed ficti-
tious material. The main reason of using a fictitious material
is to ensure that reasonable plastic deformations do occur in
order to absorb the applied energy. The material is selected
to behave like an elastoplastic material (see Table 2 for the
material parameter values used).

The structure is subjected to symmetric and offset load-
ings and a static pressure as shown in Fig. 9. The main scheme
of this optimization procedure follows the scheme shown in
Fig. 1. To determine if an element should be removed or kept,
a percentage of the maximum IED found among the finite el-
ements is used as a lower IED limit. If an element has a lower
value of the IED, the element is removed in the next iteration
of the optimization process.

The lower limit varies depending on the loadcase and on
the stage of the optimization process. If the lower limit is
too high, many elements may be deleted and elements that
constitute important load paths may also be deleted. Since,
there is no way to determine a maximum of the lower limit,
its value should be kept low. One idea to determine an appro-
priate value might be to investigate and limit the number of
elements removed in each iteration.

Fig. 16 Thickness distribution in the structure during the optimization
process of the symmetric frontal impact. a Second iteration, b eighth
iteration, c 16th iteration, d: 26th iteration

Fig. 17 IED distribution in the structure for the initial (a) and final
state (b) for the symmetric frontal impact. Black indicates that I E D ≥

100 k Nm/m3

5.2.1 Results symmetric impact—deletion of elements

The ground structure and initial configuration of the problem
are given in Fig. 12. The topologies of the energy-absorbing
device at selected iteration steps are also shown in Fig. 12.
The similarity with the result obtained in the linear elastic
case is obvious. The lower limits of IED are kept low in
order not to remove too many elements in one iteration.

In Table 3, the percentage of maximum IED found dur-
ing the iterations and elements removed in each iteration are
given.

5.2.2 Results offset impact—deletion of elements

The topologies obtained for this loadcase is similar to that
obtained by minimizing the compliance in the linear elas-
tic case. When comparing the topology in Fig. 11 with the
topology in Fig. 13, we note that they are very close to each
other.

In Table 4, the lower limit of IED and elements removed
in each iteration are given.

5.2.3 Results pressure loadcase—deletion of elements

Due to the nature of this loadcase, the IED is high at different
discrete load points, i.e., at least relative to other parts of
the structure. Therefore, it is in this case necessary to use a
low lower limit of the IED such that just a few elements are
deleted in the first iterations. Note that the deformations of
the initial structure in this loadcase primarily were elastic;
hence, it is the opposite to the previous two loadcases.

Comparing the topology obtained from the minimization
of compliance with the topology obtained from the nonlinear

Fig. 18 Thickness distribution in the structure during the optimization
process for the pressure loadcase. a Second iteration, b tenth iteration,
c 18th iteration, d 26th iteration
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Fig. 19 IED distribution in the structure for the initial (a) and final state
(b) for the pressure loadcase. Black indicates that I E D ≥ 1 k Nm/m3

structural problem, similar structures are obtained, although
not as similar as in the impact loadcases, see Fig. 14.

In Table 5, the lower limit of IED used and elements
removed in each iteration are given.

5.2.4 Results multiloads—deletion of elements

In this section, the three previous loadcases are combined in
a topology optimization, see Fig. 15. The results are similar
to the one obtained when minimizing the compliance in the
linear elastic case. However, in the nonlinear case the final
structure seems to have holes at other locations than in the
linear elastic case. In Table 6, the lower limit of IED used
and elements removed in each iteration are given.

5.2.5 Conclusions from the topology optimization—deletion
of elements

The topologies obtained by minimizing the compliance as-
suming a linear elastic behavior found to be similar to the
topologies obtained by the nonlinear methodology. Thus, if
the internal energy density for every element of the structure
is maximized (and at the same level), the compliance of the
structure will be minimized. This is also true for a nonlinear
system.

In the case of the energy-absorbing frontal underrun pro-
tection device studied here, the dynamic behavior is shown
as less important than the final deformation.

Fig. 20 The thickness distribution in the structure during the optimiza-
tion process for the multiloadcase optimization. The static pressure load-
case and symmetric frontal impact case are used. a Second iteration, b
tenth iteration, c 18th iteration, d 26th iteration

Fig. 21 The thickness distribution in the structure during the optimiza-
tion process for the multiloadcase optimization. All three loadcases
are used. a Second iteration, b tenth iteration, c 18th iteration, d 26th
iteration

5.3 Topology optimization in the nonlinear
case—modifying thickness of elements

The main advantage of modifying the thickness of an element
instead of deleting it is that an element with a small thickness
is kept in the model and its thickness can grow at a later stage
of the optimization process. If an element is deleted, as in the
previous formulation, that load path is removed and cannot
be reintroduced.

The objective in the present optimization methodology is
to find a structure with an evenly distributed IED. A target
value for this IED level has to be selected. In the optimization
processes presented here, we have used the average value
found in the initial FE model. The thickness may be altered
within the interval of 1 to 200 mm.

5.3.1 Results symmetric loadcase—modifying thickness
of elements

The thickness distributions at four iterations of the topology
optimization process are shown in Fig. 16. The maximum al-
lowed change in thickness within an iteration is set to 50 mm.
After some initial oscillations, the major topology is revealed.
In the following iterations, the thickness distribution moves
toward a similar structure as obtained with the element dele-
tion method. The IED target level is set to 2.12 M Nm/m3,
which is the average value of the IED for the initial
simulation.

The distribution of altered IED is shown in Fig. 17.

5.3.2 Results pressure loadcase—modifying thickness
of elements

The thickness distribution at four stages of the thickness op-
timization of the pressure loadcase are shown in Fig. 18. A
maximum change of 10 mm in thickness of an element was
allowed. The IED target value is set to 42.8 k Nm/m3, which
is the average value of the IED for the initial simulation.

The IED distribution is shown in Fig. 19.
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5.3.3 Topology optimization with combined
loadcases—modifying thickness of elements

In these optimizations, firstly, the two loadcases investigated
earlier with the thickness topology optimization process were
evaluated in a combined optimization process according to
Section 3.2 see Fig. 20. Secondly, all three loadcases are used
in a combined optimization process, see Fig. 21.

The maximum thickness change in one iteration is set to
30 mm throughout the optimization process. The IED target
value is set to the sum of the average IED for the individual
loadcases.

5.3.4 Conclusions of the procedure with modifying
the thickness of elements

The results found with the thickness topology formulation are
similar to the results found with the method using deletion of
elements. By keeping all elements in the FE model, load paths
not important in the early optimization process can reappear.
Therefore, the thickness topology optimization process has
more capabilities than the method with deleting elements
(cf. Bendsøe and Sigmund 2003).

6 Conclusions

We have presented two topology optimization methods that
can be applied to nonlinear structures subjected to dy-
namic loading. Several different loadcases can be com-
bined in the optimization process even if they have different
characteristics.

Concerning the optimization method based on deletion
of finite elements, it gives an indication of where to put ma-
terial. Since finite elements are removed, the design space is
made smaller as the optimization process proceeds, and we
have not allowed the reintroduction of finite elements. An-
other important issue is the number of elements that can be
deleted in one iteration. If too many elements are deleted, im-
portant load paths may disappear and, therefore, the number
of elements deleted within one iteration should be limited.

To avoid a decreasing design space, an optimization pro-
cedure based on the finite elements thicknesses was intro-
duced. Using this approach, we have shown that it converges
toward the minimum compliance solution in the linear elastic
case. In the impact loading application, it converges toward a
similar topology as found using the method with deleting ele-
ments. A penalty formulation was introduced, with the intent
of achieving more distinct topology results and it is shown to
work properly.

With the thickness update methodology, there are some
steering parameters to be set and some general observations
can be made. The range parameter highly influences the con-
vergence rate of the procedure. If it is set too low, the topology
optimization process converges rather slowly but in a linear
way. If it is set too high, oscillations in the element thick-

nesses are observed during the iterations, which also decrease
the convergence rate of the optimization process.

With the target value of the IED, the optimization process
pushes the solution toward a predefined load intensity in each
finite element. A proper value for the IED parameter can be
determined from the material properties.

We have observed that the penalty parameter seems to
work better if the range parameter (see (8) defines a larger
part of the global design domain.

There are issues that were not fully addressed. The influ-
ence of the range, target value of the IED, the penalty factor,
and the global limits on the thickness are all factors that need
further investigations to make the optimization procedures
more efficient.

7 Future work

In the thickness optimization formulation, there are several
other features that should be introduced, e.g., displacement
constraints on selected nodal degrees of freedom and a gen-
eralized stop criterion.

Furthermore, it is possible to introduce a parameter that
defines the range of the element thickness for each individual
finite element and, thereby, also an individual updating of the
parameters for each finite element. For instance, by adding
a memory to the optimization process, the range parame-
ter can be reduced for an element thickness if that thickness
starts to oscillate. Also the problems used in this paper were
mainly tension/compression problems, although with a non-
linear material model. However, the thickness approach may
also be useful in a situation where, e.g., buckling is at hand.
Therefore, investigation of how to utilize this method in a
buckling problem should be investigated.

The influence of the volume constraint on the optimal
topology in a dynamic loadcase needs to be further analyzed.
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