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Abstract Band gaps, i.e., frequency ranges in which waves
cannot propagate, can be found in elastic structures for which
there is a certain periodic modulation of the material prop-
erties or structure. In this paper, we maximize the band gap
size for bending waves in a Mindlin plate. We analyze an in-
finite periodic plate using Bloch theory, which conveniently
reduces the maximization problem to that of a single base cell.
Secondly, we construct a finite periodic plate using a number
of the optimized base cells in a postprocessed version. The
dynamic properties of the finite plate are investigated theoret-
ically and experimentally and the issue of finite size effects
is addressed.

Keywords Elastic band gaps · Topology optimization ·

Experimental investigation · Dynamics

1 Introduction

Infinite plates with a periodic modulation of the material
properties or voids, also called sonic crystals (SC), may pro-
hibit propagation of elastic waves in certain frequency in-
tervals, commonly referred to as the elastic (or phononic)
band gap phenomenon (Sigalas and Economou 1994). This
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can, in turn, lead to very low vibration levels of finite struc-
tures exposed to harmonic loads at these frequencies. Such
a phenomenon can be exploited effectively within important
practical areas, such as vibration insulation of sensitive equip-
ment from surrounding vibrations or vibration insulation of
noisy machinery from the surroundings.

The phenomenon raises a number of interesting and im-
portant design problems such as how to design crystals with
maximum band gap sizes and how large should the crystals
be in terms of number of periodic repetitions to maintain the
desired band gap properties. Typically, such design problems
are treated by introducing a number of design variables and by
defining a cost function to measure the performance of the
design, thus resulting in a minimization problem. Methods
of solutions include genetic algorithms, other global heuris-
tic approaches, and gradient-based algorithms. The heuristic
approaches are most suitable for problems with a small num-
ber of design variables and nonsmooth objective functions.
Gradient-based topology optimization has gained increasing
popularity during the last decade (see Bendsøe and Sigmund
2003 for an overview). An important reason is the possibility
of working with a large number of design variables and, in
principle, the unlimited design freedom.

In this work, we use the topology optimization method to
design an infinite single-material Mindlin plate with maxi-
mized band gap size for bending waves. Then the vibrational
response of a corresponding finite structure is investigated.
This is an extension of an earlier work (Halkjær et al. 2005)
where we optimized an infinite bimaterial Mindlin plate con-
sisting of a base material (PMMA) and an inclusion material
(aluminum) with respect to maximum relative band gap size
for bending waves. Other works on topology optimization of
phononic band gaps include the study of Sigmund and Jensen
(2003) who were the first to topology optimize sonic band gap
structures and Diaz et al. (2005) who optimized the band gap
properties of grillage structures. Sigalas et al. (2005) reviews
the area of SC.

The topology optimization method has likewise received
increasing attention in the closely related research area of
photonic crystals due to the potentially large application
possibilities for using these in optical circuits (Jensen and
Sigmund 2004; Borel et al. 2004). Band gap optimization of
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infinite structures are found in, e.g., Cox and Dobson (1999)
and Kao et al. (2005).

2 Theory

Classical (thin) plate theory for bending waves becomes in-
accurate when the wavelength is less than five to ten times the
plate thickness (Mindlin 1951). Anticipating wavelengths of
this order or smaller, we use Mindlin plate theory (moderately
thick plates) in our bending wave study.

2.1 The infinite periodic plate

For bending waves in up to moderately thick plates, the gov-
erning equations are (Graff 1991; Leissa 1993):
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Here, d is the plate thickness, ρ the mass density, ν the Pois-
son’s ratio, G the shear modulus, D ≡ Ed3/(1 − ν2) the
flexural rigidity, E the Young’s modulus, and k the shear
correction factor (here, k = 1/1.2). The variable w denotes
the deflection normal to the plane of the plate, 2x denotes the
angle between the x-axis and a cross section in the yz-plane,
and similarly for 2y .

We assume that the plate is infinite and periodic (a crys-
tal), described by a base cell and two lattice vectors R1 and
R2. For a plane wave traveling with wave vector, k Bloch
theory (Matthews and Walker 1964) states that

w(r + R j ) = eiR j ·kw(r), j = 1, 2 (4)

with similar relations for the other two variables 2x and 2y .
Condition (4) can be enforced directly in the governing
equations (1–3) (c.f. Cox and Dobson 1999). Here, we use a
simpler implementation of the boundary conditions (4) im-

posed directly in the finite element (FE) equations with a
standard penalization technique.

In the analysis, we assume time-harmonic displacements
with angular frequency ω. A FE discretization of (1–3) on the
base cell domain using (4) results in the standard generalized
eigenvalue problem formulation:

(K − ω2M)u = 0 (5)

where K and M are the usual stiffness and mass matrices,
respectively. The vector u contains all the discretized nodal
values of the original continuous variables w, 2x , and 2y .

The dispersion relation ω = ω(k) is the solution to (5).
For infinite homogeneous plates, all frequencies are allowed,
i.e., each frequency corresponds to at least one real wave vec-
tor. However, frequency band gaps may be introduced in the
corresponding dispersion plot when voids are introduced in
the base cell. Mathematically, these gaps consist of frequen-
cies with corresponding complex wave vectors in the disper-
sion relation. From (4) it is seen that the amplitude of such
a wave decreases exponentially in space. It is these (relative)
gaps that we wish to study and maximize in the following
subsection.

2.2 The optimization problem

The present optimization problem concerns optimized distri-
bution of a single (base) material1 with respect to maximum
frequency band gap size. We introduce element-wise constant
design variables

0 ≤ ζe ≤ 1, e = 1, . . . , N . (6)

where N denotes the total number of elements. Letting %e

denote an element-wise property (such as Young’s modulus
or the mass density), we define the material interpolation
scheme as

%e = (1 − ζe)%0 + ζe%1 (7)

where subscript 0 refers to the properties of the (nearly) void
material and subscript 1 refers to the properties of the chosen
solid material. We use nonzero properties of the void mate-
rial to ensure positive definite stiffness and mass matrices.
It is well-known in static compliance problems concerning
the optimized distribution of a single material (Bendsøe and
Sigmund 2003) that raising the design variable in (7) to a
power p larger than 1 is typically necessary to force the de-
sign variable to one of its extreme values to obtain a de-
sign amenable to fabrication. A study similar to the present
(Sigmund and Jensen 2003) but concerned with planar wave
propagation showed that one obtains high contrast designs
without the need for penalization. In our experience with the
bending wave case presented in this paper, however, we found
out that gray elements do appear. Unfortunately, the usual
solid isotropic material with penalization (SIMP) scheme as-
sumes a volume constraint in order to work because it is based

1 Chosen a priori
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Fig. 1 Irreducible Brillouin zone for a rhombic base cell

on making the use of intermediate densities uneconomical.
Hence, when optimizing band gaps, the SIMP scheme will
not work. Instead, we apply an explicit mesh-independent
penalization scheme as an extra constraint as suggested by
Borrvall and Petersson (2001).

With the purpose of maximizing the relative band gap
size, the topology optimization problem is formulated by
defining a cost function 8 (Sigmund and Jensen 2003) equal
to the relative band gap size between band j and band j + 1

max
ζ∈[0,1]N

: 8(ζ ) =
1ω

ω0
= 2

min
k
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ω j
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k
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where the band gap size is found as the difference between the
lowest point on the upper band j + 1 and the highest point on
the lower band j . The wave vector k should take any value
within the first Brillouin zone for a rhombic base cell (see
Fig. 1). Due to the symmetries in the rhombic cell, the search
area can be further reduced to the triangular area indicated
in the figure. Furthermore, it is commonly accepted that it is
sufficient to search only on the edges of the zone.

A fixed base cell geometry is chosen to reduce the overall
optimization problem. The particular choice of geometry is
based on the result of a previous similar study by Halkjær
et al. (2005), indicating that a rhombic shape is superior to a
rectangular shape with respect to large relative band gap sizes.
For the same reason, size and thickness as well as the material
constituent are also chosen a priori and kept fixed during
the topology optimization. Apart from the unit cell geometry
and Poisson’s ratio, these variables mostly scale and translate
the frequency bands and thus are not very important for the
resulting topology itself.

In our case, the topology optimization problem is now
completely described by (5–8). The analysis is performed
using the commercial FE program COMSOL, which can be
called from a MATLAB script that includes the optimiza-
tion routine method of moving asymptotes (Svanberg 1987).
Three thousand six hundred rhombic first-order elements
were used in the FE analysis.

An optimized design using (8) with j = 1 (maximiza-
tion of the relative gap size between the first and second
band) is shown in Fig. 2a with Polycarbonate (Young’s
modulus E1=2.3 GPa, mass density ρ1=1,200 kg/m3, and
Poisson’s ratio ν1=0.35) chosen as the base material. The
dimensions of the base cell are length (0.033 m) and thick-
ness (0.003 m). The weak material has the material properties

Μ K ΓΓ

∆ω/ω  = 0.950

(c)

(b)

(a)

∆ω/ω  = 0.150

Fig. 2 a Optimized base cell design using the cost function (8). b A
repeated structure consisting of 3×3 base cells. c The correspond-
ing dispersion plot which shows eigenfrequencies as function of wave
vector values indicated by the dashed line in Fig. 1
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Fig. 3 a Optimized base cell design using the cost function (9). b A
repeated structure consisting of 3×3 base cells. c The corresponding
dispersion plot

E0=0.0023 GPa, ρ0=12 kg/m3, and ν0 = 0.35. The opti-
mized structure is seen to be degenerate with disconnected
beams and masses. The corresponding dispersion plot that
gives the frequency of the propagating modes for the wave
vectors on the triangular path in Fig. 1 is shown at the bot-
tom of the figure. The figure depicts the maximized band gap
(highlighted and with relative size 0.95) and a second band
gap (relative size 0.15) between the third and fourth bands.
The background for the degeneracy of the structure is simple
to explain. Basically, we are trying to maximize the differ-
ence between the first and the second eigenfrequency for the
plate. This is obtained by minimizing the first eigenfrequency
(i.e., minimizing the structural integrity) and maximizing the
second eigenfrequency. To obtain a better structure we need
to modify the objective function.

The cost function in (8) favors large gaps for low frequen-
cies. This is successfully accomplished with the disconnected
structure in Fig. 2. However, the static stiffness of the struc-
ture is very low, making the design useless in practice. To
remedy this problem one could try to open the gap for higher
frequencies by modifying the objective function. Simply re-
moving the mean gap frequency ω0 from the denominator is
not sufficient but if we choose to multiply the gap 1ω by
ω2

0, the optimized gap is moved up in the frequency range re-
sulting in designs with sufficient rigidity. Thus, the new cost
function is

max
ζ∈[0,1]N
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An optimized design resulting from the use of (9) again with
j = 1 and the same geometry as above is seen in Fig. 3a. In
this case the beams are connected with a circular rim. A cir-
cular area is enclosed by the rim, making the circular center
area work as a softly extended internal resonator. Figure 3c
shows the corresponding dispersion plot with the maximized
band gap (highlighted and with relative size 0.6) and the sec-
ond band gap (with relative size 0.25). It is seen from the
dispersion plot that the frequency bands (and the gaps) are
positioned at larger values compared to the previous case, as
expected, ensuring better structural integrity.

Although it has smaller relative band gap sizes, we have
chosen to proceed with the latter design due to its better abil-
ities of supporting objects. We use a postprocessed version to
make the resulting design more robust and easier to fabricate.
The circular area and rim were replaced with beam segments,
such that the base cell consists of crossing beams. The post-
processed design is shown in Fig. 4 (right) and illustrates that
the final design consists of triangular holes in a base material.
The equivalence is obvious from Fig. 4 (left), which shows
one base cell shifted half a period compared to Fig. 3a. The
performed postprocessing was found to have a quantitative
effect on the relative band gap sizes, as the postprocessed
design exhibits a larger relative size of the second band gap
than the first band gap.
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Fig. 4 Left: optimized base cell from Fig. 3b. Right: the postprocessed version of the optimized base cell

Based on preliminary studies, the dimensions of the base
cell were selected according to the following considerations.
For experimental reasons, it was the goal to create and max-
imize a relative band gap around 5 kHz. As noted previ-
ously, the actual positions of the band gaps can be adjusted
by proper selection of base cell dimensions. As base material
we choose PolyCarbonate (as it is easier to create holes in it)
with a thickness of 3 mm (the material are properties listed
in Table 1), such that holes can be fabricated with enough
precision. With these choices it was found that centering the
second band gap around 5 kHz resulted in a larger relative
band gap size than centering the first band gap around 5 kHz.
The resulting dimensions are shown in Fig. 4 (right) with
base cell length equal to 3.3 cm and diagonal wall thickness
equal to 0.41 cm. The corresponding dispersion plot is shown
in Fig. 5b. The two band gaps are shown, the first just below
2 kHz with a relative size of 0.16 and the second around
5 kHz with a relative size of 0.21, the latter is of interest in
the following.

3 The finite plate

We create a finite plate consisting of 10×10 base cells
(≈34×29 cm) using the base cell in Fig. 4 (right). However,
instead of choosing a rhombic area, we choose a rectangu-
lar area to secure equal stiffnesses at the four corners of the
plate. We position a harmonic distributed load at the center
of the plate to model the shaker that will be used to generate
vibrations in the experimental study. The area of contact is
circular with a radius of 6 mm. This is a simple model of the
shaker used in the actual experiment and is described below.
The accelerometer used in the experiment to measure the ac-
celeration at a given position on the plate is modeled by a
massless point gauge, which simply picks out the vibrational
amplitude at a given point. In a numerical study, this simple

Table 1 Material parameters

Material ρ (kg/m3) E (GPa) ν

PolyCarbonate 1,200 2.3 0.35
Weak material 12 0.0023 0.35

model gave the same results as a model including mass and
area of contact of the accelerometer due to negligible actuator
weight compared to structural weight. In the investigations
described below, the accelerometer is used to measure ac-
celerations at different positions for a fixed frequency and to
measure the accelerations at a fixed position for a range of
frequencies. The plate with the area of contact of the har-
monic load is shown in Fig. 6. We consider free boundary
conditions for the finite plate because these are easiest to re-
alize in the experiment. The finite plate is modeled using the
following steady-state equation with circular frequency ω

(K − ω2M + iωC)u = f0 (10)

where f0 is the amplitude of the distributed harmonic load. K
and M are again the stiffness matrix and mass matrix; how-
ever, they differ in form and content from those of (5). C is
a structural damping matrix. We did not perform a rigorous
damping analysis. However, when calculating the accelera-
tion frequency response function (FRF) in the following, we
use damping to remove peaks in the frequency regime

C =
β

ω
K (11)

and use the constant of proportionality β = 0.01. The choice
β for the theoretical frequency plot was the result of a small
parameter study giving the best overall agreement with the
experimental frequency response. In the FE analysis of the
finite periodic plate, we use 21,500 triangular first-order
elements.

The first question to be answered is how large the finite
plate must be in order for finite size effects to be neglected
from the boundaries. We investigate this by considering the
harmonic load vibrating at a frequency of f=5 kHz, which is
in the second band gap. We therefore expect an exponential
decay of the vibrational amplitudes away from the load. We
then monitor the vibrational amplitudes away from the load
for different sizes of the finite plate. Let n denote the num-
ber of base cell lengths from the center of the plate to the
edge along the horizontal direction (such that the distance
between opposite vertical edges is 2n). We then consider
plates with n = 1, 2, 3, 4, and 5. The result is shown in Fig. 7.
The positions of the nodes of the plate are illustrated in gray
along the x-axis. Visual inspection reveals that the band gap
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Fig. 5 a The acceleration plot for the finite plate in Fig. 6 calculated at the node with a horizontal distance of four base cell lengths from the
center. b The dispersion plot for the infinite periodic plate with base cell shown in Fig. 4

effect is not present for plates with center-to-edge distances
n = 1, 2, while the plates with n = 3, 4, and 5 seem to be
sufficiently large for the effect to be present. The positions
of the plate nodes suggest that the length of a base cell cor-
responds to half a wavelength for this band gap frequency.
The dimensions of the plate should therefore be larger than
three times the wavelength for a harmonic load placed at the
center. This observation, together with the fact that a larger
plate is preferable experimentally (to make it less sensitive
to error sources), has lead to the choice of a finite plate with
size 2n = 10, see Fig. 6.

As a last point, the influence of the size of the plate on the
FRF is shown in Fig. 8 for 2n = 10 and 12. Here, the acceler-
ation is shown as a function of frequency. The full line shows
the acceleration for the 10×10 plate at the node placed four
base cells away from the load along the horizontal direction.
The dashed line and dotted-dashed line show the acceleration
for a 12×12 plate at nodes four and five base cells, respec-
tively, away from the load along the horizontal direction. This
shows that the response drops significantly at the 5-kHz band
gap when the distance to the load is increased while the dis-
tance to the edge is kept constant. A less pronounced drop is
seen around the 2-kHz band gap. On the other hand, keeping
the distance to the load constant while increasing the distance
to the edge does not significantly change the response.

The acceleration plot for the 10×10 plate is compared
with the dispersion plot for the corresponding infinite plate
in Fig. 5. The acceleration plot was calculated at the node
with a horizontal distance of four base cell lengths from the
center. It is seen that the widths and positions of the band gaps

for the infinite plate roughly show up as drops in the FRF plot
for the finite plate (illustrated with horizontal lines). The drop
at 2 kHz is around 35 dB while the drop at 5 kHz is around
25 dB. Discrepancies due to edge modes in the finite plate
could possibly be removed by optimization.

The band gap effect is illustrated in Fig. 9 (left) showing
the plate vibrations at a frequency f=5 kHz in the band gap.
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Fig. 6 The finite periodic plate consisting of 10×10 base cells. The
harmonic load is shown at the center of the plate
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Fig. 7 Vibrational amplitudes as a function of horizontal distance from the harmonic load, f=5 kHz, for different sizes of the finite periodic plate.
n denotes the distance in base cells from the center to the edge of the plate. Gray areas indicate plate nodes

The strong decay away from the load is clearly seen. The
contour plot of the plate vibrations (right) clearly shows that
the vibrations at the plate nodes are small while they are large
between the nodes resulting in “localized” beams vibrating
in the fundamental mode. From this it is hypothesized that
a lower band gap may be created when the wavelength is

approximately equal to twice the base cell dimensions (this
is also known in optics).

As a contrast, Fig. 10 shows the plate vibrations at a fre-
quency f=3 kHz outside the band gap. No decay is seen in
this case and the contour plot shows vibrations also at the
plate nodes in this case.
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Fig. 8 The finite periodic plate. Acceleration plots for 10×10 and 12×12 plates showing the acceleration at different distances from the load
(given in number of base cells) along the horizontal direction
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Fig. 9 Sideview and contour plot of the finite periodic plate structure showing the vibrations due to a harmonic load at a frequency f=5 kHz in
the second band gap

Fig. 10 Sideview and contour plot of the finite periodic plate structure showing the vibrations due to a harmonic load at a frequency f=3 kHz
outside a band gap

4 Experimental investigation

The finite periodic plate was fabricated and an experimental
investigation was carried out with the purpose of verifying
the existence of the band gap effect in the fabricated plate. In
accordance with the model description in the previous section
we did not attempt to obtain a quantitative agreement. In the
following, we therefore consider normalized results except
in the final frequency response plot.

It was not possible to fabricate a plate with sharp triangu-
lar corners because the voids were milled using a tool with a
radius of 1.5 mm, but only small discrepancies between the
numerical and experimental results are expected due to this.

The plate material is PolyCarbonate (material parameters
listed in Table 1). Figure 11 shows the fabricated periodic
plate. The weight of the periodic plate is 144 g. Figure 12
shows the experimental setup, while Fig. 13 illustrates the
used hardware. The plates are placed horizontally with their
center on the shaker. This is experimentally convenient, and
a small experimental investigation showed no significant dif-
ference in the results for vertical and horizontal plates. A
shaker was chosen to generate the two types of plate vibra-
tions investigated: a random signal to determine the FRF and
single-frequency signal for studying bending amplitudes. The

random signal was chosen instead of a frequency sweep, as it
ensures a more uniform energy distribution over frequencies.

Plate vibrations are detected with an Endevco 22 ac-
celerometer with a weight of 0.14 g. The vibrations are gen-
erated with a Brüel & Kjær Mini-Shaker 4810 using a Brüel

Fig. 11 The fabricated periodic plate made of PolyCarbonate consisting
of 10×10 base cells
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Fig. 12 Experimental setup

& Kjær power amplifier 2706. The area of contact between
the shaker and the plate is of a circular shape with a radius
of 6 mm. A thin wax layer is used to ensure proper attach-
ment of the plate to the shaker. The shaker (power amplifier)
and accelerometer are connected to the Brüel & Kjær PULSE
platform consisting of a 3560 C frontend and PC software.

5 Numerical and experimental comparisons

This section is devoted to the comparisons between theoret-
ical and experimental results. Figures 14 and 15 show the
normalized vibrational amplitudes along the horizontal di-
rection from the shaker at the center to the edge of the plate
for two frequencies f=1.9 and 5 kHz, respectively, one in
each band gap. The position of the plate nodes are shown
along the x-axis. There is good agreement between the ex-
perimental and theoretical results and they clearly show the
expected exponential decay of the amplitudes away from the

shaker. Edge effects only show up quite close to the edge and
somewhat more for the lower of the two frequencies.

Figure 16 shows the normalized amplitudes for a fre-
quency f=3 kHz outside the band gaps. As expected, no ex-
ponential decay is seen for the amplitudes. The agreement
between the experimental and theoretical results is not as
good in this case, especially close to the shaker. It seems like
more modes are present in the theoretical case than in the ex-
perimental case. A theoretical parameter study showed that
the generation of modes is highly sensitive to the placement
of the load within millimeters. The figure shows the best re-
sult comparative from a number of different load positions in
the theoretical model.

The discrepancies between theoretical and experimental
results near the shaker may also be attributed to the modeling
of the shaker. The shaker is only modeled as a distributed
load, which means we did not take into account the effect
of the wax, which to some extent prevents local bending at
the area of contact. This effect is expected to increase with
increasing frequency.

Figure 16 does not reveal any significant exponential de-
cay of the experimentally measured amplitudes, which could
then be attributed to material damping as we are outside a
band gap. Together with Figs. 14 and 15, this confirms that
material damping is negligible in comparison with the band
gap effect.

Finally, theoretical and experimental acceleration curves
are shown in Fig. 17. These were measured at a horizon-
tal distance of four base cell lengths from the center (see
Fig. 12). There is reasonable agreement between the theoret-
ical and experimental drop around 2 kHz (≈ 30 dB) in width
and height, while for the drop around 5 kHz (≈ 25 dB), the
experimental drop is much more narrow.

6 A corner supported plate

In the previous sections we have considered a finite peri-
odic structure with free boundary conditions subjected to a
harmonic massless load. This was done for experimental rea-

B&K 4810

PC w. dsp+taxi board
running B&K PULSE

charge converter
B&K 2647B

power amp.
B&K 2706

acquisition frontend B&K 3560C
w. input/output module 3109

plate

software

accelerometer

minishaker
Endevco 2312
force transducer

Endevco 22

Fig. 13 Illustration of the used hardware
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Fig. 14 The finite periodic plate. Experimental and theoretical normalized amplitudes along the horizontal direction from the shaker to the edge
of the plate for a frequency f=1.9 kHz in the band gap

sons. However, in an actual application the structure would,
e.g., be simply supported (zero displacements) at the four cor-
ners with the purpose of supporting a vibrating object with
nonzero mass. Of practical interest would then be the reaction
forces at these supports. The reaction forces should ideally
be small in order not to transfer the vibrations to the sur-
roundings. In the following, we therefore numerically study

the size of these reaction forces incorporating the mass of the
vibrating object.

The area of contact of the vibrating object is circular with
a radius of one unit base cell and with center at the center
of the structure. The mass of the object is set to ten times
the mass of the perforated structure. The mass of the object
is modeled by including it in the mass density of the part
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Fig. 15 The finite periodic plate structure. Experimental and theoretical normalized amplitudes along the horizontal direction from the shaker to
the edge of the plate for a frequency f=5 kHz in the band gap
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Fig. 16 The finite periodic plate structure. Experimental and theoretical normalized amplitudes along the horizontal direction from the shaker to
the edge of the plate for a frequency f=3 kHz outside the band gaps

of the structure below the area of contact. The vibrations of
the object is modeled with a harmonic vertical force acting
uniformly over the area of contact

f (t) = f0 sin(ωt)

We include the same damping (11) for the accelera-
tion plots. For the simply supported plate, four reaction
forces Ri are then calculated. We compute the sum of the
absolute values of these forces R =

∑
i |Ri |, which takes

rotary effects (antisymmetric modes) into account. The
result is shown in Fig. 18 (full line), normalized with respect
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Fig. 17 The finite periodic plate structure. Experimental and theoretical acceleration plots
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Fig. 18 Reaction forces for the simply supported plate. Full line represents the periodic structure while the dotted line represents the homogeneous
plate

to f0 and expressed in decibels. Two drops are seen at
2 kHz (depth 50 dB) and 5 kHz (depth 30–50 dB). Thus,
the reaction forces are relatively small at frequencies in the
band gaps as expected. Peaks within the drops are the results
of edge modes.

We have investigated the same scenario for a homoge-
neous plate with the same dimensions and with the mass of
the vibrating object the same as before. This was done to
confirm that the designed structure is superior to the (con-
ventional) homogeneous plate regarding vibration isolation
in a practical situation. The result is also shown on Fig. 18
(dotted line). In this case, no similar drops in reaction forces
are seen at frequencies in the band gap intervals.

For comparison we also added the response of a 1-
degree-of-freedom system with the same fundamental eigen-
frequency as the homogeneous plate with added mass. The
response of our perforated plate is generally higher due to
the multitude of modes; but especially in the frequency range
around the second band gap near 5 kHz, the response of the
plate approaches that of the spring, which in this respect can
be viewed as the idealized vibration isolator.

7 Conclusions

Using topology optimization, we have designed a base cell in
an infinite periodic plate with a maximized frequency band
gap size. Interpretation and postprocessing of the topology

optimized base cell design were carried out to achieve a fi-
nal structural design with better robustness properties and
which is possible to fabricate using conventional equipment.
Of course, this is achieved at the cost of smaller band gap
properties. Using this final base cell design, we have designed
a finite periodic plate and we have shown how the band gap
effect present in the infinite periodic plate may be transferred
to the finite plate subjected to a centered harmonic load with
a frequency in the band gap, provided that the dimensions of
the plate are at least a few (≈3) wavelengths. An interpre-
tation was attempted to explain the position of the band gap
relative to the size of the base cells and the physics of the
phenomenon.

The designed plate was fabricated using conventional
milling equipment and experimental investigations were car-
ried out. In general, the theoretical and experimental results
show good agreement, verifying the existence of the band
gap effect in the fabricated plate.

A practical scenario with the periodic structure simply
supported at its corners and subjected to a vibrating object
with a mass was modeled and investigated. As expected, the
reaction forces experience drops at frequencies in the band
gaps. Thus, it is believed that the periodic structure can be
useful in practical situations where minimization of the vi-
brations transferred to the surroundings is an issue.

Future work includes optimization of the finite periodic
plate itself, and also including the boundaries. Finally, the
topic of the optimal base cell geometry needs further study.
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