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Abstract The recent progress in simulation technologies in
several fields such as computational fluid dynamics, struc-
tures, thermal analysis, and unsteady flow combined with
the emergence of improved optimization algorithms makes it
now possible to develop and use automatic optimization soft-
ware and methodologies to perform complex multidiscipli-
nary shape optimization process. In the present applications,
the MAX optimization software developed at CENAERO is
used to perform the optimization. This software allows per-
forming derivative free optimization with very few calls to
the computer intensive simulation software. The method em-
ployed in this paper combines the use of a genetic algorithm
(with real coding of the variables) to an approximate (or meta)
model to accelerate significantly the optimization process.
The performance of this optimization methodology is illus-
trated on the optimization of three-dimensional turbomachin-
ery blades for multiple operating points and multidisciplinary
objectives and constraints. The NASA rotor 67 geometry is
used to demonstrate the capabilities of the method. The aim
is to find the optimal shape for three different operating con-
ditions: one at a near peak efficiency point, one at choked
mass flow, and one near the stall flow. The three points are
analyzed at the same blade rotational speed but with differ-
ent mass flows. A finite element structural mechanics soft-
ware is used to compute the static and dynamic mechanical
responses of the blade. A Navier–Stokes solver is used to
calculate the aerodynamic performance. High performance
computers (HPC) are used in this application. Cenaero’s HPC
infrastructure contains a Linux cluster with 170 3.06 GHz
Xeon processors. The optimization algorithm is parallelized
using MPI.
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1 Introduction

The pressure towards increased efficiency and reduction of
the development and manufacturing costs and time has al-
ways pushed engineers to develop better and faster design
methods.

Traditionally, the three dimensional blade shape is very
often designed by experienced designers able to iteratively
and manually modify the blade shape taking into account sev-
eral results coming from aerodynamic computations (CFD)
and finite element (FEM) structural mechanics computations
(static and dynamic). In recent years, large progress has been
made in the development of automatic optimization pack-
ages able to optimize complex shape using advanced CFD
solver and optimization algorithms. Although these optimiza-
tion methodologies are starting to be used in industry, they
are not yet used very intensively in the real multidisciplinary
shape optimization design process. A more intensive use still
requires progress in the field of automatic shape optimization.
Some of these are listed below:

– The type of multidisciplinary simulation involved in this
research requires between 1 and 10 h per function evalua-
tion. In this type of optimization problem, the number of
design variables that can be treated simultaneously by the
automatic optimization chain must be increased from less
than 10 (in most of the existing industrial applications) to
more than 100 required by realistic industrial design prob-
lems. This first limitation can be avoided by the use of
the optimization techniques based on a genetic algorithm
largely accelerated by the use of an approximate model
such as a radial basis function network. This algorithm has
proved to be capable of handling a large number of design
variables for shape optimization (Pierret 2005).

– The automatic design optimizations are very often per-
formed at a single operating condition leading to nonro-
bust optimal solution with very narrow optimal operating
range. Therefore, a realistic automatic optimization meth-
odology must include optimization at several operating
points. This requires increased simulation time, very ro-
bust analysis packages, and optimization methods capa-
ble of handling uncomputable functions. An uncomputable
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function means that the simulation package (CFD or FEM
software) cannot provide a converged solution for some
combination of design variables. In this case, the optimiza-
tion method must flag this geometry as uncomputable, a
penalty is added to this design point and the optimizer will
move further away from this uncomputable design points
during the next optimization cycles. The uncomputable
penalty is scaled using the maximum value of the objec-
tive function found in the database. The spatial extention
of this penalty is based on the use of an external penalty
term scaled with the distance between the uncomputable
point and the closest computable point.

– The number of physics usually included in the automatic
optimization is very often limited to only one (i.e., CFD);
the other physics (i.e., mechanics) are usually treated as
simple side constraints (minimum thickness, etc.) during
the optimization. This methodology must be improved by
increasing the number of physics (aero, mechanics both
static and dynamic) directly included in the optimization
process. As an example, this can be performed by the use
of detailed FEM simulation software and/or multiphysics
simulations instead of using very simple geometrical cri-
teria to check the mechanical constraints.

– The shape parametrization plays a very important role in
the performance of the shape optimization process. A re-
view of existing methods is presented in (Samareh 1990).
Ideally, the geometry parametrization method must:

1. Be able to generate a large number of physically real-
istic shapes with as few design variables as possible.

2. Be robust, meaning that a random perturbation of the
design variables should still provide a realistic blade.

3. Be able to import any existing geometries from CAD
files in very little engineering time, few computational
resources, and to an arbitrary accuracy specified by the
designer.

4. Be generic to be applied to a large number of shape opti-
mization problems and able to be integrated or coupled
with any existing CAD system.

5. Provide design variables that can easily be handled by
an engineer to define design variable bounds.

6. Provide an easy optimization problem by minimizing
the skewness and improving the conditioning of the
design space.

In this study, the geometry is parametrized using a sim-
ple yet very efficient and generic method using B-spline
curves. The location of the B-spline control points are
chosen such as to minimize the discrepancy between the
B-spline definition of the blade geometry and the existing
discrete target blade shape to be parametrised. This
methodology is general and can be applied to any curve
parametrization which can therefore be used to parame-
trize any shape in any design problem. The design vari-
ables can define a modification either with respect to the
existing original shape or an absolute shape.

In the present application, the optimization software
developed at CENAERO (MAX) is used to perform the

optimization. This software allows performing derivative-
free optimization with a reduced number of calls to the
computational intensive simulation software. The method is
based on the construction of an approximate model (also
called metamodel or response surface) and the use of a ge-
netic algorithm to find the optimum predicted by the ap-
proximate model (Pierret and Van den Braembussche 1998;
Pierret et al. 2004; Pierret 2005).

This paper presents several applications of this optimiza-
tion method. First, the performance of the method is demon-
strated on algebraic test functions. Then, a parametric study
is performed to investigate the design space and identify the
noise that is usually present in optimization tasks involving
finite volume or finite element analysis. Next, a real two-
dimensional and existing turbine blade geometry is optimized
using the present method. The performance of the genetic
algorithm is compared to the performance of the coupled
method involving the approximate model and the genetic
algorithm.

This methodology has been developed and is demon-
strated on the redesign of the full three-dimensional shape
of the NASA rotor 67 geometry. Moreover, the geometry is
optimized for several operating points simultaneously, large
number of design variables, and using aerodynamic and struc-
tural mechanics analysis software.

2 The optimization strategy

2.1 Basic principle

The basic principle of the optimization algorithm developed
in this research project is based on the use of genetic algo-
rithms (GA) because they provide a very robust method satis-
fying many of the criteria mentioned above (Goldberg 1994).
Moreover, constraint handling with GA is easily performed
using a method proposed in (Deb 2000). The method pro-
poses to use a tournament selection operator, where two so-
lutions are compared at a time, and the following criteria are
always enforced:

1. Any feasible solution is preferred to any infeasible
solution.

2. Among two feasible solutions, the one having better ob-
jective function value is preferred.

3. Among two infeasible solutions, the one having smaller
constraint violation is preferred.

One drawback of GAs is that they suffer a slow conver-
gence because they use probabilistic recombination operators
to control the step size and searching direction. As a con-
sequence, for real industrial problems involving expensive
function evaluations, the GA required CPU time is usually not
practical even with nowadays computing power. Therefore,
a lot of effort has been put in this research project to accel-
erate the optimization process by using approximate model
and using robust and efficient genetic operators.
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Fig. 1 Optimization strategy diagram

The blade design algorithm is represented in Fig. 1 and
is organized as follows:

1. The first step consists in building a database using a de-
sign of experiments procedure (DOE). Numerous tech-
niques exist: full factorial, fractional, central composite,
D-optimal, Latin-hypercube, and random selection among
others.

2. Second, an approximate model is built using the design of
experiment points to construct an analytical relation be-
tween the design variables and the simulation responses.

3. Third, an optimization algorithm is used to find the op-
timum using the approximate model to evaluate the ob-
jective functions and constraints. One single approximate
model is used to evaluate all the objectives and constraints.

4. Fourth, the accurate simulation is used to evaluate and ver-
ify the actual values of the objectives and constraints. This
new simulation result is added to the database. The data-

base is therefore always improved with new design points
therefore leading to an improved approximate model.

5. Go to step 2 until the maximum number of optimization
cycles specified by the user is not reached.

In this work, the design of experiments is very often per-
formed using random selection of design points improved
with techniques to ensure a maximum filling of the design
space. This is a generic method because it allows generating
a number of points independently on the number of design
variables. DOE can very often be generated very rapidly by
making use of massively parallel computers to evaluate the
expensive objective functions. The software developed in this
research is parallelized using MPI. In general, the number of
design points generated in the DOE is equal to one to two
times the number of design variables. At every optimisation
cycle, a new approximate model is constructed using all the
data points available in the database.

Several multidimensional and nonlinear interpolation
techniques can be used to construct the approximate model.
They are kriging (Chung and Alonso 2002), artificial neural
network (Masters 1995), radial basis function network
(Bishop 1995), or lazy learning (Bontempi et al. 2001) among
others. Compared to simple polynomial interpolations, these
techniques offer the advantage of decoupling the number of
free parameters in the model with respect to the number of
design parameters. In this research, the radial basis function
interpolation technique is very often used mainly because of
its robustness in providing an accurate approximate model.
Moreover, it allows constructing a global approximate model
which is valid for the entire design space. This is an important
aspect for the application of the method to multiple objective
optimization techniques based on the Pareto front concept.

2.2 Validation and performance

The scope of the numerical experiment in this section is to val-
idate the capabilities of the design method to find the global
objective function optimum of a multimodal function and
to assess the convergence speed of the optimization algo-

Fig. 2 Multi-modal function (left) and closer view on the local minima of the multimodal function (right)
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rithm. This function with two design variables is represented
in Fig. 2, and the exact mathematical definition is provided in

(1). Figure 2 also provides a closer view on this test function
to better visualize the local minima.
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])
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This optimization test case is run using the same type of
test function but with four design variables. With four design
variables, the square domain [−10, 10] × [−10, 10] contains
625 local minima.

This optimization task is first solved using the genetic al-
gorithm alone with a population of 50 individuals. The con-
vergence history shows that the global minimum is found
with a precision of 10−6 after 1,000 function evaluations.

Finally, the most interesting results using the GA acceler-
ated by the approximate model is presented. An initial data-
base with 12 points is used and then only 100 optimization
iterations are required to find the global minimum with an
accuracy of 10−6 (Fig. 3). This benchmark demonstrates the
convergence speed up by a factor of 10 using the GA cou-
pled to the approximate model. It also shows that the second
method is capable of finding the global optimum of such a
multimodal function.

3 Rotor 67 redesign

This test case aims at demonstrating the advantage of using
this design method in a real complex industrial application
involving large simulation cost, large number of design para-
meters, and multiple operating points optimization problems.

Fig. 3 Convergence history on the multimodal function

3.1 The test case

In the present study, the NASA rotor 67 geometry is used.
This compressor is representative of fan blades. The rota-
tional speed is 16,043 rpm, there are 22 blades and the design
mass flow is 33.25 kg/s. The aim is to find the optimal geom-
etry for three different operating conditions: one at choked
mass flow, one at near efficiency peak, and one near the stall
flow. The three points are analyzed at the same blade rota-
tional speed which is the design speed.

In the context of this work, a computational code solving
the Reynolds-averaged Navier–Stokes equations (RANS) is
used to predict the aerodynamic performance of turboma-
chinery blades. The TRAF code which is developed by the
University of Florence is used in this research (Arnone et al.
2003) and has been validated on several test cases among
which the rotor 67 geometry (Arnone 1994).

A C-type mesh is used in this study. The mesh used for
the computations contains 700,000 mesh points having 233
points along the C mesh lines, 53 from the blade walls to the
midpitch and 57 in the spanwise direction. The code is capa-
ble of obtaining a converged solution in 1 h on a Xeon proces-
sor (3.06 GHz). The Baldwin–Lomax turbulence model
is used.

The rotor 67 has been redesigned in several papers among
with (Lian 2004; Oyama et al. 2002). In Oyama et al. (2002),
the rotor is redesigned at one operating point using only
aerodynamic computations. The blade is defined by 35 pa-
rameters. A genetic algorithm is used without the use of
metamodels. A population of 64 individuals is used and the
optimization is run for 100 reproduction cycles. This leads
to 6,400 evaluations of the Navier–Stokes solution. The effi-
ciency is improved by 1.78%.

First, the blade is redesigned using aerodynamic ob-
jectives and constraints only Section (3.2). Then the same
geometry is optimized using aerodynamic and mechanical
objectives and constraints Section (3.3).

3.2 The aerodynamic optimization

3.2.1 The objective function

Only aerodynamic objectives and aerodynamic constraints
are imposed. The aerodynamic efficiency is maximized at
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three operating points, while a lower limit is imposed on the
pressure ratio at the three operating points. The mass flow
computed by the TRAF code on the original geometry is
34.25 kg/s at choked mass flow. This mass flow is constrained
between 34.15 and 34.25 kg/s during the optimization. There-
fore, the objective function takes the following mathematical
expression:

f (X) = 50 ∗ η1 + 100 ∗ η2 + 50 ∗ η3

+104
∗ max(1.46 − π1, 0)

+104
∗ max(1.65 − π2, 0)

+104
∗ max(1.73 − π3, 0)

+100 ∗ max(m f1 − 34.25, 0)
+100 ∗ max(34.15 − m f1, 0)

(2)

where:

1. η1, η2, and η3 are the efficiencies at high, intermediate,
and low mass flow (objectives).

2. π1, π2, and π3 are the total pressure ratio at high, interme-
diate, and low mass flow (constraints).

3. m f1 is the mass flow at the high-mass flow operating point
(constraints).

3.2.2 The optimization results

The three-dimensional geometry is parametrized using five
two-dimensional sections equally distributed from hub to
tip. The two-dimensional sections are parametrized using B-
Spline curves. Thirty-five design parameters are used in total
defining modifications of the blade geometry with respect to
the original blade shape. A first optimization run is performed
using the GA alone. The genetic algorithm is run using a pop-
ulation of 60 individuals who are evaluated in parallel on 60
processors.

Figure 4 shows the optimization convergence history.
With GA, a large gain is obtained during the first two re-
production cycles. Then, smaller amplitude gains are still
obtained during the next reproduction cycles. However, this
convergence history shows that a fully converged solution
would probably require around 10,000 optimisation cycles.

Fig. 4 Rotor 67—optimization convergence history

Fig. 5 Rotor 67—efficiency performance curve

The same optimization problem has been solved using
the methodology based on the combined use of genetic al-
gorithm and metamodel. This optimization process is first
initialized by constructing a design of experiments based
on 70 geometries run in parallel on a Linux cluster using
20 processors. Then, the optimization is run for 100 func-
tion evaluations. The convergence history obtained with the
genetic algorithm and the genetic algorithm accelerated by
the metamodel (Fig. 4) demonstrates that the second method
is about 20 times faster than a classical genetic algorithm.
Moreover, the optimum found by the second optimization
algorithm is better and probably corresponds to the solution
close to the fully converged solution. This fully converged
solution could be found by the GA alone but would require
too large computer resources to bring it to full convergence.

Figure 5 shows the compressor performance map at the
design rotational speed for both the initial and optimized
blade geometries. The adiabatic efficiency of this already
highly optimized blade has been improved by more than 2%
along the whole operating curve. The main reason for the
efficiency improvement is probably the decrease of shock
intensity mainly at midspan (Fig. 6).

Figure 7 shows the total pressure ratio curve for the orig-
inal and optimized blade geometries. This pressure ratio is
slightly larger along the whole curve.

Figure 8 highlights the geometry variations for three sec-
tions: at hub, at midspan, and close to the tip section. The
tip section clearly shows a S-shape suction side. However,
the tip section clearly has a negative thickness portion, while
the midspan section has a very thin leading edge and the hub
section has a too thin trailing edge. Although not realistic,
the CFD analysis of a blade with negative thickness is pos-
sible because the mesh is generated around the blade with-
out any intersection check between the suction and pressure
sides. These small thicknesses of the optimized blade clearly
demonstrate that mechanical objectives and constraints must
be added to the optimization procedure to reject such blade
geometries.

Figure 6 highlights the changes in the density contours on
the suction side at the intermediate mass flow. In particular,
the hub section shows a smaller amplitude of the shock, while
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Fig. 6 Rotor 67—suction side density contours: initial geometry (left), aerodynamic optimization (center), and aeromechanical optimization
(right) at the intermediate mass flow

the midspan section indicates that one of the two initial shocks
along the suction side disappeared.

Figure 9 shows the isentropic Mach number distribution
on three sections. The intensity of the shock wave on the
tip section is clearly reduced. This is confirmed by the isen-
tropic Mach number distribution along the tip pressure side.
The midspan isentropic Mach number distribution is also
smoother than on the original geometry and the shock in-
tensity at midspan is reduced.

Figure 10 shows the outlet total pressure along the span-
wise direction. It clearly shows large improvements in to-
tal pressure along the whole spanwise direction. Figure 11
presents the outlet flow angle along the spanwise direction.

Fig. 7 Rotor 67—total pressure performance curve

The outlet flow angle is decreased compared to the original
geometry. As a consequence and in the context of a multistage
machine, the next stator blade should be adapted to provide
an optimum inlet flow angle.

3.3 The aeromechanical optimization

In this section, the same shape optimization problem is treated
but a FEM structural mechanic code (SAMCEF) is used to
compute the static stresses and dynamic vibration modes.
These new responses are then included in the optimization
process as constraints.

3.3.1 The aeromechanical simulation chain

The aeromechanical optimization process is summarized in
Fig. 12. The simulation chain is composed of the following
components:

– The shape parametrization module transforms the design
variables into the detailed shape definition of the three-
dimensional blade section.

– The FEM software computes the maximum von Mises
stress and the blade vibration frequencies. The load case is
imposed by the centrifugal forces due to the blade rotation.
The FEM computational time is about 5 min and is there-
fore a lot cheaper than the computational time required by
the CFD simulation (1 h).
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Fig. 8 Rotor 67—section geometry obtained with aerodynamic optimization—hub section (top–left), mid section (top–right), and tip section
(bottom)

– The CFD software including the mesh generation, the
flow solver, and the postprocessor extracts aerodynamic
responses such as the aerodynamic efficiency, the pressure
ratio, and the mass flow. Three CFD computations are per-
formed for three different static pressure imposed at the
domain outlet boundary.

– The parallel application manager, which is a MAX com-
ponent, is capable of managing the simulation submission
based on many criteria such as the number of available
processors and number of available software licenses.

– The optimization based on the metamodel.
– The database containing the initial DOE results together

with an incremental storage of the simulation responses
computed by the simulation chain.

The Samcef finite element model used for the blade simu-
lation consists of 20×20 nodes forming a volumic shell with
varying thickness along the blade geometry. This mesh and
FEM approach are probably not appropriate enough to pro-
vide an accurate prediction of the real eigen frequencies. An
accurate prediction would require a volumic FEM approach
together with the modelling of the blade root and disk. How-
ever, this model is adequate for the purpose of demonstrating
the capabilities of the optimization approach presented in this
study to handle a large number of constraints where the con-
straints are various forbidden ranges on the system responses.

The centrifugal forces are imposed while the fluid pressure is
not imposed on the FEM computation in this study. The FEM
code is run to compute both the static and dynamic blade be-
haviors. The 20 first vibration frequencies are computed at
0 rpm, at the nominal rotational speed (16,043 rpm), and at
105% of the nominal rotational speed.

An imaginary material is used for this computation
whose properties are taken identical to the values used for
a fluid/structure interaction performed in (Doi and Alonso
2002). The Young’s modules, Poisson’s ratio, and metal den-
sity are chosen to be E=1.422e+11 Pa, ν = 0.3, and ρ =

4,539.5 kg/m3, respectively, which looks reasonable when
comparing the vibration frequencies of the original blade with
the aerodynamic excitation frequencies.

The five first vibration frequencies at cruise speed on the
original geometry are: 557, 1,307, 1,923, 2,760 and 3,111 Hz.

3.3.2 The objective function

The objective function contains the objectives and constraints
already defined for the pure aerodynamic optimization. How-
ever, several mechanical constraints are added. The first one
aims at limiting the maximum static stresses inside the blade
metal. This is performed by imposing a maximum limit on the
Von Mises stress to 4.8 MPa compared to a value of 4.75 MPa
on the initial geometry.
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Fig. 9 Rotor 67—isentropic Mach number at the intermediate mass flow–tip section (top–left), mid section (top–right), and hub section (bottom)

The vibration frequencies are controlled at cruise speed
by imposing several constraints on the first and second vi-
bration frequencies. The rotational speed is 16,043 rpm or
267.4 Hz. This value is defined as N=267.4 Hz. In prac-
tice, the blade vibration frequencies should not be equal to
1, 2, 4, 8 N, etc. Moreover a margin of +/−5% is imposed
with respect to these forbidden frequencies leading to the fol-
lowing forbidden ranges: 260–274, 521–548, 1,042–1,096,
1,564–1,644, and 2,085–2,192 Hz. Then the first and sec-
ond blade vibration frequencies are not allowed to be inside
these ranges.

Fig. 10 Rotor 67—spanwise outlet total pressure (nondimensionalized
by the inlet total pressure)

3.3.3 The optimization results

The convergence history is represented in Fig. 4. The op-
timizer converges in 120 iterations. The objective function
value decreases compared to the initial value but the level
reached at the end of the optimization is higher than the one
obtained with the pure aerodynamic optimization. This is
normal due to the additional constraints imposed during the
aeromechanical optimization.

The efficiency gain is represented in Fig. 5. The efficiency
gain with the aeromechanical optimization is of 0.5% along

Fig. 11 Rotor 67—spanwise outlet blade-to-blade flow angle



Multidisciplinary and multiple operating points shape optimization of three-dimensional compressor blades 69

Simmetrix
YAMS/
Tet3D

…

CFD 1 Mesh Solver
Optimisation
Meta-model

Max 
components

Legend

Post-Pro

CFD 2 Mesh Solver Post-Pro

CFD 3 Mesh Solver Post-Pro

FEM Mesh Solver Post-Pro

Parametrisation

Parallel
Application

Manager

Database

Fan blade optimisation (rotor67) at  3 operating conditions, CFD using 700k points,
Shape parameterization using 35 design variables,
Objectives : Maximize efficiency at 3 operating conditions
Constraints on pressure ratio, choked mass flow, maximum von Mises stress, first and second vibration modes

✓

✓

✓

✓

Fig. 12 Aeromechanical and multiple operating points optimization chain

Fig. 13 Rotor 67—section geometry obtained with aeromechanical optimization—hub section (top–left), mid section (top–right), and tip section
(bottom)
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the whole operating range. This is smaller than the efficiency
gain obtained for the aerodynamic optimization, but this is
normal due to the additional constraints imposed in this sec-
ond case.

The maximum von Mises stress of the optimized blade is
3.9 MPa, while the first two vibration frequencies are 599.6
and 1,360 Hz. These values are outside the forbidden ranges
specified during the optimization.

Figure 13 shows that the blade thickness now looks much
better than for the pure aerodynamic optimization. The blade
thickness along the first part of the blade close to the leading
edge is still small on the midspan and tip sections. This last
point probably comes from the fact that only the centrifugal
forces are imposed for the FEM mechanical computation and
not the effect of the aerodynamic pressure field onto the three-
dimensional blade shape. The next step of the current research
will then be to impose the pressure field along the blade walls
to further increase the simulation accuracy.

4 Conclusions

This paper demonstrates that optimization methods based on
genetic algorithm accelerated by approximate models has
many advantages compared to other design techniques: it
provides efficient geometries in a very short time, can be run
automatically, and mimics the intelligent behavior of the de-
signer. It can manage uncomputable functions and does not
require accessing the source code and, therefore, can easily
be applied to any type of equations (Euler, Navier–Stokes,
mechanics or acoustic among others).

The elapsed time required to perform the aeromechanical
design of a three-dimensional blade is reduced to less than
a week. This has to be compared to a time of more than
2 to 3 weeks required by an experienced designer team to
“manually” design a three-dimensional blade including the
aerodynamic and the mechanical objectives.

The optimization method has been largely validated on
various test functions of which one test case is presented in
this study. The genetic algorithm and DOE have been paral-
lelized using the MPI library allowing for a rapid turn around
time for the design of turbomachinery blades.

This paper presents the first results towards an effort to re-
duce the computational effort for real industrial optimization
tasks involving multiple objectives and multiple disciplines
(CFD, mechanics, thermal analysis, and acoustic).

A large step towards an automatic aeromechanical op-
timization chain has been performed. However, further de-
velopments are needed to further model the real process by
including the pressure mapping of the fluid onto the three-
dimensional blade.

Other improvements could also come from the
use of larger number of design parameters. Moreover, by

including directly the number of blades as a design param-
eter, its optimal value could also be found automatically by
the optimization algorithm.
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