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Abstract Micropolar field theory represents an extension of
the classical Cauchy continuum theory. In this paper, a topol-
ogy optimization procedure for maximum stiffness is applied
to structural elements made of micropolar (Cosserat) solids.
Some special problems are dealt with and particular atten-
tion is given to models that refer to structural interfaces. The
results are in good agreement with the real behavior of some
biological tissues.

Keywords Topology optimization · Micropolar continua ·

Cosserat theory · Structural interfaces

1 Introduction

Conventional continuum mechanics approaches cannot in-
corporate any intrinsic material length scale. However, real
materials often exhibit a number of important length scales,
which must be included in any realistic model: grains, parti-
cles, fibers, cellular solids, and biological tissues. So-called
nonlocal theories can be used to account for size effects in the
mechanical behavior of materials. The departure from local
theories begins with the micropolar (or Cosserat) continuum.
A Cosserat medium is a continuous collection of particles that
behaves like rigid bodies. Accordingly, each material point is
endowed with translational and rotational degrees of freedom
that describe its displacement and the rotation of an under-
lying microstructure. Dealing with two-dimensional bodies,
the objective of the paper is to find the optimal distribution of
a given amount of material in a fixed design domain with pre-
scribed boundary conditions to minimize the global structural
compliance. The problem is based on a suitable parametriza-
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tion of the constitutive tensor in terms of the material density
function (see Eschenauer and Olhoff 2001).

In Section 2, the basic equations governing the kine-
matics, equilibrium, and constitutive behavior of a microp-
olar continuum are briefly recalled. Section 3 deals with
two-dimensional problems for isotropic Cosserat solids. The
computational aspects of the problem are dealt with in
Section 4 through a suitable finite element formulation for
Cosserat solids. The optimization procedure follows the Solid
Isotropic Material with Penalization (SIMP; Bendsøe and
Sigmund 2002) model. A comparison among different mod-
els of material interpolation is made. In particular, a modified
SIMP model is adopted to take into account both translational
and rotational constitutive tensors.

Examples of application will be presented in Section 5
with reference to a cantilever beam and to structural interface
problems, as can appear in biological structures like bone tis-
sues and cartilages. The dependence of the optimal solutions
on the length scale, coupling number, and on the differences
from classical elasticity are also pointed out.

2 The mechanical model

In this section, the basic equations for micropolar elastic-
ity are briefly reviewed (for more details, see Eringen 1999,
1966; Novacki 1986). The main difference between the clas-
sical (Cauchy) elasticity theory and nonlocal theories consists
in the basic idea to establish a relationship between macro-
scopic and microscopic mechanical quantities in materials
with microstructure. Continuum nonlocal models can be clas-
sified into three main groups, namely, integral models, higher
order gradient models, and micropolar theories (see Fatemi
et al. 2002).

The fundamental distinction between classical elasticity
and higher order gradient elasticity theories lies in the nature
of interactions of material elements. Microcontinuum field
theories can be classified according to the kinematical degrees
of freedom associated with each material particle. These
classes refer to the micromorphic theory, microstructure
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theory, micropolar and Cosserat theory, and the couple stress
theory (see Chen et al. 2004).

In the next subsections, the governing equations for a
three-dimensional micropolar continuum body �, with
boundary ∂�, are given in index notation (with i, j, k, l,
m, n = 1, 2, 3). The usual rule of summation over a repeated
index is assumed and the comma indicates the partial deriv-
ative with respect to the relevant variable.

2.1 Kinematics

The kinematics of a micropolar continuum is characterized
by introducing an additional deformation field produced by
microrotations. These microrotations are independent of the
displacement field uk (see Fig. 1 in a two-dimensional repre-
sentation). The vector of microrotations is defined as φm , and
uk is the displacement vector. The micropolar strain tensor εkl

is defined as a function of the displacement and microrotation
fields:

εkl = ekl + eklm (wm − φm) , in �, (1)

where ekl denotes the macrostrain tensor:

ekl =
1

2

(
uk,l + ul,k

)
, in �. (2)

� = � ∪ ∂� is the closure of the domain.

Fig. 1 Kinematical model of an infinitesimal plane element

The macroscopic rotation tensor describes the rigid body
rotation of the classical elasticity theory through the rotation
vector wm (as w3 in Fig. 1):

eklmwm =
1

2

(
ul,k − uk,l

)
, in �; (3)

where eklm is the permutation tensor.
In the micropolar theory, the relative rotation between

the material element and the corresponding microrotation is
represented by:

wrel
k = wk − φk . (4)

Finally, the microcurvature tensor or microrotation gra-
dient is defined as follows:

χkl = φl,k . (5)

Note that in the symbolic representation of Fig. 1 the
macrorotation is given by a rigid body motion of the infini-
tesimal plane element, whereas the microrotations are due to
rotations of the material particles inside that element. The mi-
crocurvatures correspond to the microrotation gradient, i.e.,
the relative rotations between the material particles of the
element.

2.2 Equilibrium

The higher order gradient theories necessitate the introduc-
tion of additional stress tensors, which are conjugate to the
additional deformation measures (e.g., couple or moment
stresses in the Cosserat type theories and double forces ten-
sor in the Mindlin continuum; see Chen et al. 2004). In the
elasticity theories, these new stress tensors can normally be
obtained by differentiating the variation of a total elastic po-
tential (i.e., the elastic energy density) with respect to the
deformation measures. In Cartesian coordinates, the equilib-
rium equations for (generally asymmetric) stresses σ j i and
couple stresses m j i are:

σ j i, j + bi = 0, in �, (6)

m j i, j + eilkσlk + mi = 0, in �, (7)

where bi is the body forces and mi is the body couples (see
Figs. 2 and 3 for two-dimensional representations).

2.3 Constitutive equations

The constitutive equations for a micropolar linear (in general
anisotropic) elastic solid are given by (Lakes and Benedict
1982):

σi j = Ei jklεkl + Bi jklχkl , (8)

mi j = Bkli jεkl + Ki jklχkl , (9)
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Fig. 2 Statical model of an infinitesimal plane element

in �, where Ei jkl , Bi jkl , and Ki jkl are the micropolar fourth
rank stiffness tensors. Ei jkl associates stresses with strains
and Ki jkl associates couple stresses with microrotations. Bi jkl

is often called “pseudotensor” in the sense that it vanishes
in the case of isotropic micropolar material. This tensor is
responsible of the coupling between stresses and microcur-
vatures and between couple stresses and strains. Moreover,

Fig. 3 Stresses and couple stresses on an infinitesimal plane element at
equilibrium

it must be noticed that Ei jkl and Ki jkl enjoy the major sym-
metries Ei jkl = Ekli j and Ki jkl = Kkli j because both tensors
are associated with a potential energy. Conversely, the mi-
nor symmetries are not ensured because of the presence of
asymmetric total strain and microcurvature tensors.

In the case of a micropolar isotropic linearly elastic solid,
(8) and (9) are reduced to:

σkl = λennδkl + (2µ + κ) ekl + κeklm(wm − φm), (10)

mkl = αφn,nδkl + γφl,k + βφk,l , (11)

in �. In the last two expressions, λ and µ denote the Lamè
constants of the classical isotropic elasticity theory, whereas
µ∗

= µ − κ/2 is the micropolar shear modulus (Rosenberg
and Cimrman 2001). Moreover, κ , α, β, and γ are micropolar
constants that vanish when the classical elasticity theory is
recovered.

2.4 Boundary conditions and total potential energy

The boundary of the body is decomposed in two parts ∂� =

∂�l ∪ ∂�c. On the first part, the classical conditions on sur-
face tractions hold:

t j = σi j ni , on ∂�l (12)

and, in addition, an analogous condition for the surface cou-
ples must be fulfilled:

s j = mi j ni , on ∂�l . (13)

On the second part of the boundary the following condi-
tions hold:

φ j = φ0
j , on ∂�c, (14)

u j = u0
j , on ∂�c, (15)

where φ0
j and u0

j are prescribed microrotations and displace-
ments vectors. Then, the total potential energy for a Cosserat
elastic body can be written as:

5 =
1

2

∫
�

(
σi jεi j + mi jχi j

)
d� −

∫
�

(
b j u j + m jφ j

)
d�

−

∫
∂�

(
t j u j + s jφ j

)
d S (16)

and the strain energy density, written in terms of Lamè con-
stants, reads:

9 =
1

2
[λεkkεll + (2µ + κ) εklεkl]

+κ (wk − φk) (wk − φk) +
1

2

(
γφk,lφk,l

)
. (17)
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3 Two-dimensional case

Referring to a plane problem, in the Cartesian plane, x1x2, the
kinematics of the body is described through the components
u1 and u2 of the displacement vector u, together with the third
component φ3 of the microrotation vector φ, as follows:

ε11 = u1,1 , ε22 = u2,2 ,

ε12 = u2,1 − φ3 , ε21 = u1,2 + φ3. (18)

The components of the microcurvature tensor read:

χ13 = φ3,1 , χ23 = φ3,2. (19)

In two dimensions, the equilibrium equations are reduced
to:

σ11,1 + σ21,2 + b1 = 0 ,

σ12,1 + σ22,2 + b2 = 0 ,

σ12 − σ21 + m13,1 + m23,2 + m3 = 0. (20)

When the constitutive equations are considered, it is nec-
essary to distinguish between plane strain and plane stress
conditions. In the case of the plane strain, one has:

σ11 = e11(λ + 2µ + κ) + e22(λ),

σ22 = e22(λ + 2µ + κ) + e11(λ),

σ12 = e12 (2µ + κ) + κ(w3 − φ3),

σ21 = e21 (2µ + κ) − κ (w3 − φ3) ,

m13 = γφ3,1 , m23 = γφ3,2 , (21)

whereas in the plane stress case:

σ11 = e11(λ + 2µ + κ) + (λ) (e22 + e33) ,

σ22 = e22(λ + 2µ + κ) + (λ)(e11 + e33),

σ12 = e12 (2µ + κ) + κ (w3 − φ3) ,

σ21 = e21 (2µ + κ) − κ (w3 − φ3) ,

m13 = γφ3,1 , m23 = γφ3,2 , (22)

where:

e33 = − (e11 + e22)
λ

(λ + 2µ + κ)
. (23)

Commonly, generalized engineering constants are adopt-
ed (which are six in 3-D and four in 2-D). In two dimensions
(Novacki 1986), in addition to the usual Young’s modulus
and Poisson’s ratio defined respectively as

Em =
(2µ + κ)(3λ + 2µ + κ)

2µ + 2λ + κ
= E (24)

and

νm =
λ

2µ + 2λ + κ
= ν , (25)

there are two additional parameters. These are the character-
istic length for bending,

`m =

(
γ

4 µ + 2κ

)1/2

=

(
γ (1 + ν)

2 E

)1/2

(26)

and the so-called “coupling number”

Nm =

(
κ

2µ + 2κ

)1/2

=

(
κ (1 + ν)

E + κ (1 + ν)

)1/2

. (27)

Note that when Nm = 0 and `m = 0, the classical Cauchy
theory is recovered. The characteristic length can be shown to
be directly related to Cosserat effects in plane strain bending
of a slab (Gauthier and Jahsman 1975). Experimental de-
termination of such a length was provided by Lakes (Lakes
1986) for porous materials. To fulfill thermodynamics re-
quirements, these constants must satisfy the following bounds
(referring again to the plane case, see Eringen 1966; Lakes
and Benedict 1982):

0 < `2
m < ∞ , (28)

0 < Em < ∞ , (29)

and:

− 1 < νm < 1 (in 2-D),
1

2
(in 3-D). (30)

Finally, the bounds on Nm are:

0 < N 2
m < 1. (31)

In the plane case, again, the total potential energy takes
the form:

5 =
1

2

∫
�

(σ11ε11 + σ22ε22 + σ12ε12 + σ21ε21) d�

+
1

2

∫
�

(m13χ13 + m23χ23) d�

−

∫
�

(b1u1 + b2u2 + m3φ3) d�

−

∫
∂�

(t1u1 + t2u2 + s3φ3) d S. (32)

4 The topology optimization problem

4.1 Problem formulation

In this paper the classical problem of maximum global
stiffness [or minimum compliance C = l(u) + g(φ), see (33)
below] is dealt with, referring to micropolar solids. The
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problem reads (see Bendsøe and Sigmund 2002 and the ref-
erences therein):

min
ρ,u,φ

C(Ei jkl(ρ), Ki jkl(ρ)) according to :

Ei jkl ∈ Eadm, Ki jkl ∈ Kadm,

subject to∫
�

ρ d� ≤ V, 0 < ρmin < ρ ≤ 1,

aE (u, ū) + aB(u, ū) + aK (u, ū) = l(ū) + g(φ̄),

for all ū ∈ U and φ̄ ∈ S, where uT
= [u, φ] . (33)

In (33), ρ denotes the material density and ρmin is its lower
limit introduced to avoid singularities in the finite element so-
lution procedure. V is an upper bound on the total resource
of material available. Eadm and Kadm are the sets of thermo-
dynamically admissible micropolar stiffness tensors (Walsh
and Tordesillas 2003). Moreover, U and S denote the space
of the kinematically admissible displacement and the space
of the kinematically admissible microrotation fields, respec-
tively. The equilibrium equation is written in weak variational
form.

aE (u, ū) =

∫
�

Ei jklεi j (u)εkl(ū) d�

aB(u, ū, φ, φ̄) =

∫
�

Bi jklεi j (ū)χkl(φ) d�

+

∫
�

Bkli jεkl(u)χi j (φ̄) d�

aK (φ, φ̄) =

∫
�

Ki jklχi j (φ)χkl(φ̄) d�,

lu =

∫
�

biui d� +

∫
∂�

tiui d S,

g(φ) =

∫
�

miφi d� +

∫
∂�

siφi d S. (34)

In the following, for simplicity, bi and mi are assumed
to be equal to zero vectors. In (34), aE is a bilinear form,
corresponding to the internal virtual translational work; aK

is a bilinear form, corresponding to the internal virtual rota-
tional work, whereas aB is responsible for the coupled virtual
work of the two primary fields. The constrained minimization
problem (33) can be rewritten as the search for stationarity
of the augmented functional:

L = l(u) + g(φ) − λ̄ [aE (u, ū) + aK (φ, φ̄)

+aB(u, ū, φ, φ̄) − l(ū) − g(φ̄)]

+3

(∫
�

ρ(x) d� − V
)

+

∫
�

λ+(x) (ρ(x) − 1) d�

+

∫
�

λ−(x) (ρmin − ρ) d�, (35)

where λ̄ is the Lagrangian multiplier associated with the
equality constraint and 3, λ+, and λ− are the multipliers
associated with inequalities. The necessary (Kuhn–Tucker)
stationarity conditions for the Lagrangian functional L at
equilibrium are:

∂L
∂ρ

=
∂ Ei jkl

∂ρ
εi j (u) εkl(u) + 2

∂ Bi jkl

∂ρ
εi j (u) χkl(φ)

+
∂Ki jkl

∂ρ
χi j (φ) χkl(φ) − 3 − λ+

+ λ−
= 0 , (36)

λ+ (ρ(x) − 1) = 0 , λ+
≥ 0 , (37)

λ− (ρmin − ρ(x)) = 0 , λ−
≥ 0. (38)

4.2 The modified Solid Isotropic Material with Penalization
method

The power-law (or SIMP method) is a simple approach that
allows one to obtain optimal designs consisting in regions
inside a prescribed design space with the presence of isotropic
material or absence of material (void).

Here, we adopted a modified SIMP model that takes into
account different material interpolation laws for the transla-
tional, rotational, and “pseudo” micropolar stiffness tensors
Ei jkl , Ki jkl , and Bi jkl . The moduli can be expressed as:

Ei jkl(x) = ρ(x)p E0
i jkl , with p ≥ 1 , (39)

Ki jkl(x) = ρ(x)q K 0
i jkl , (40)

Bi jkl(x) = ρ(x)r B0
i jkl , (41)

where E i jkl
0 , K i jkl

0 , and Bi jkl
0 are the constitutive tensors of

the base material (see Figs. 4 and 5).
The stationarity conditions for the Lagrangian functional,

when the SIMP method is adopted and if the side constraints
are supposed to be inactive, read:

pρ(x)p−1 E0
i jklεi j (u)εkl(u)

+ 2rρ(x)r−1 B0
i jklεi j (u)χkl(φ)

+ qρ(x)q−1 K 0
i jklχi j (φ)χkl(φ) = 3. (42)

The updating method for the design variable ρ is:

ρk+1 =



max [(1 − ζ ) ρk, ρmin] ,

ifρk Bη

k ≤ max [(1 − ζ ) ρk, ρmin] ,

min [(1 + ζ ) ρk, 1] ,

ifρk Bη

k ≥ min [(1 + ζ ) ρk, 1] ,

ρk Bη

k otherwise,

(43)
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where ρk is the material density at the kth iteration and Bk is
given by (Cheng and Olhoff 1982):

Bk = 3−1
k [pρ(x)p−1 E0

i jklεi j (uk)εkl(uk)

+ 2rρ(x)r−1 B0
i jklεi j (uk)χkl(φk)

+ qρ(x)q−1 K 0
i jklχi j (φk)χkl(φk)]. (44)

At the optimum, Bk is equal to unity (see (42)). In the up-
dating scheme (43), the variables η and ζ control the stability
of the change of density at each iteration step. The variable
η is a damping factor and ζ is the move limit for the density
(Bendsøe and Sigmund 2002).

4.3 Finite element implementation

The finite element formulation is based on the stationarity of
the total potential energy to find the discretized equilibrium
equation. The discretized form of the total potential energy
is:

5 =
1

2

N∑
e=1

[
(Ue)T Ke

DUe
+ (Ue)T Ke

RUe
]

−

N∑
e=1

[
(Fe)T Ue

D + (Me)T Ue
R

]
, (45)

where N is the number of finite elements
In the previous expression of the energy, the subscripts

D and R refer to the translational and rotational parts of the
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Fig. 4 Penalty coefficients for the components of the tensor Ei jkl as
functions of the material density ρ (see Bendsøe and Sigmund 2002)
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Fig. 5 Penalty coefficients for the components of the tensor Ki jkl as
functions of the material density ρ

generalized displacement vector, respectively. In the plane
case the vector U reads:

U = [UD, UR] = [ua
1, · · · , ua

2, · · · , φa
3 , · · · ]. (46)

The displacement and microrotation fields in each finite
element are approximated as functions of the nodal displace-
ments and rotations through interpolation functions.

u = [ N u
] UD , φ = [ Nφ

] UR , (47)

where [ N u
] and [ Nφ

] are the matrices of the above-
mentioned interpolation functions.

The global system of the discrete equilibrium equation
is obtained through the standard finite element assembly
technique:

[
KDD KDR

KRD KRR

] [
UD

UR

]
=

[
F
M

]
.

The finite elements adopted in the examples presented in
Section 5 are the four-node generalized isoparametric finite
element and the eight-node generalized isoparametric finite
element. Each node has three degrees of freedom (two dis-
placements and one microrotation). F and M are the nodal
force and moment vectors. In the isotropic case, the microp-
olar stiffness pseudotensor Bi jkl is equal to the null tensor.
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Therefore, the constitutive equations, written in matrix form,
read:

[ σ ] = [ E ] [ ε ], (48)

[ m ] = [ K ] [χ ]. (49)

Explicitly:σ11
σ22
σ12
σ21

 =

 E1111 E1122 E1112 E1121
E2211 E2222 E2212 E2221
E1211 E1222 E1212 E1221
E2111 E2122 E2112 E2121


 ε11

ε22
ε12
ε21

 ,

[
m31
m32

]
=

[
K3131 K3132
K3231 K3232

] [
χ31
χ32

]
.

In matrix notation, the compatibility equations are: ε11
ε22
ε12
ε21

 =

 ∂x1 0
0 ∂x2
0 ∂x1

∂x2 0

 [
u1
u2

]
+

 0
0

−1
+1

 [
φ3

]
, (50)

[
χ31
χ32

]
=

[
∂x1
∂x2

] [
φ3

]
, (51)

where the following differential operators were introduced:

D̄ =

 ∂x1 0
0 ∂x2
0 ∂x1

∂x2 0

 , D̃ =

 0
0

−1
+1

 , D̂ =

[
∂x1
∂x2

]
.

The equilibrium is given by:

 ∂x1 0 0 ∂x2 0 0
0 ∂x2 ∂x1 0 0 0
0 0 +1 −1 ∂x1 ∂x2




σ11
σ22
σ12
σ21
m31
m32

+

 b1
b2
m3

=

 0
0
0

 , (52)

where the complete differential operator is:

DT
=

 ∂x1 0 0 ∂x2 0 0
0 ∂x2 ∂x1 0 0 0
0 0 +1 −1 ∂x1 ∂x1

 =

[
D̄T

�

D̃T D̂T

]
.

In the former expression, � represents the null submatrix.
The micropolar strain, microcurvature, and stress and couple
stress fields, in terms of the generalized displacement vector,
are written as:

[ε] = D̄ [ N u
] UD + D̃ [ Nφ

] UR = B̄ UD + B̃ UR , (53)

[χ ] = D̂ [ Nφ
] UR = B̂ UR , (54)

[σ ] = [E] B̄ UD + [E] B̃ UR , (55)

[m] = [K] B̂ UR . (56)

The stiffness matrix of each finite element takes the form
(see Providas and Kattis 2002):

[
K

]
=

[
B̄T [E] B̄ B̄T [E] B̃
B̃T [E] B̄ B̃T [E] B̃ + B̂T [K] B̂

]
. (57)

The stiffness matrix can be decomposed in two parts cor-
responding to the tensors Ei jkl and Ki jkl :

[K] =
[
KI

]
+

[
KII

]
=

[
B̄T [E] B̄ B̄T [E] B̃
B̃T [E] B̄ B̃T [E] B̃

]
+

[
� �

� B̂T [K] B̂

]
. (58)

Then, the optimization problem previously formulated
(see 33) can be rewritten in discretized form as:

min
ρe,u,φ

N∑
e=1

[
(Fe)TUe

D + (Me)TUe
R

]
,

s.t. :

[
N∑

e=1

(
ρ p

e

[
KI

e

]
+ ρq

e

[
KII

e

])]
U =FG ,

N∑
e=1

Ae ρe ≤ V,

0 < ρmin < ρ ≤ 1 , (59)

where FG denotes the vector of the generalized nodal forces:

FT
G = [F , M] . (60)

The material penalization law considers the components
Ei jkl and Ki jkl separately (see (39), (40), and (41)). Two dif-
ferent material interpolation methods are shown in Figs. 5
and 6 where the different penalization coefficients of trans-
lational and rotational tensors can be understood.

5 Examples

In this section, some examples obtained with the use of the
proposed formulation are shown. The results are compared
with the solutions of the same problems for a Cauchy contin-
uum (with E = 1 and ν = 0.3), that is, in absence of an in-
trinsic length scale. For all examples the material is assumed
as micropolar, isotropic, and elastic, with Young’s modulus
Em = 1 and Poisson’s ratio νm = 0.3. In the graphical rep-
resentations of the optimal solutions, black and white are
used to represent the density field where white means void
(ρmin = 10−3) and black regions correspond to the base ma-
terial (ρ = 1). For all examples the volume fraction is equal
to 0.3. The first example is the classical end-loaded cantilever
short beam (Fig. 6) with height/length = 2/5 and discretized
with 200 × 80 four-node finite elements. The optimal solu-
tion for a Cauchy solid is shown in Fig. 7, where a truss-like
configuration was obtained. Strongly different solutions are
presented, for a micropolar solid, in Figs. 8 and 9. Figure 8
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Fig. 6 Examples: short cantilever beam, structural interface subjected
to shear load, periodic interface with displacements and rotations con-
strained at the bottom, and square element under a prescribed shear type
deformation

presents optimal results for different values of the character-
istic length for bending (`m). Figure 9 shows optimal config-
urations for various penalization coefficients associated with
the rotational part of the micropolar stiffness tensor. The sec-
ond example in Fig. 6 concerns a long strip of finite length
made of a micropolar elastic material, clamped at the bottom,
and subjected to a parabolic shear load at the top. The di-
mensions of the structure are such that the height/length ratio
is equal to 1/5, and has been discretized by 300 × 60 four-
node finite elements. This kind of structure is one of the sim-
plest models adopted to simulate interfaces between solids.

Fig. 7 Optimal solutions of the problems in this figure for a Cauchy
solid: cantilever short beam, structural interface subjected to shear load,
and square element under a shear type deformation

Fig. 8 Examples: interface problem with displacements, rotations, and
microrotations constrained at the bottom and subjected to couple loads,
uniform pressure, and inclined loads
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Fig. 9 Cantilever problem: Cosserat solid with coupling number Nm =

0.9, p=3, q=3; values of`m=0.05L, 0.10L, 0.15L, 0.25L, 0.30L, and
0.35L

Fig. 10 Interface nonperiodic problem with coupling number Nm =

0.8; values of `m=0.025S, 0.5S, and 0.75S

Fig. 11 Cantilever problem: Cosserat solid with coupling number Nm =

0.8, `m=0.015L, and p=3; values of q=0, 2, 3, 4, 5, and 10

Fig. 12 Interface nonperiodic problem with coupling number Nm=0.8;
values of `m=1.5S, 2.5S, and 3.5S
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Fig. 13 Interface problem with coupling number Nm=0.8; values
of`m=0.015S, 0.08S, 0.25S, 0.5S, 1.0S, and 1.5S

Fig. 14 Interface problem with coupling number Nm=0.8. Examples
1, 2, 3, and 4 with q=0, 1, 6, and 10, respectively, `m=3.0S, and p=3.
Example 5 with `m=0.075S, p=3, q=3, and Nm=0.8 in the absence of
microrotational constraints. Example 6 with `m=0.15S, p=3, q=3, and
Nm=0.8 without microrotational constraints

Fig. 15 Interface problem with coupling number 0.8. Examples 1 and
2 subjected to couple loads with p=3, q=3, and `m=1.0S with micro-
rotations constrained and not contrained. Examples 3 and 4 subjected
to pressure loads with p=3, q=3, and `m=1.5S with the same con-
straints. Examples 5 and 6 subjected to inclined loads with p=3, q=3,
and `m=1.0S with the same constraints

Fig. 16 Interface problem with coupling number 0.8. Examples 1 and
2 subjected to couple loads with p=3, q=3, and `m=0.08S with micro-
rotations constrained and not constrained. Examples 3 and 4 subjected
to pressure loads with p=3, q=3, and `m=0.08S with the same con-
straints. Examples 5 and 6 subjected to inclined loads with p=3, q=3,
and `m=0.08S with the same constraints
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Fig. 17 Shear type deformation with coupling number 0.8, p=3, and q=3; values of `m=0.0067L, `m=0.033L, `m=0.133L, `m=0.2667L,
`m=0.4000L, and `m=0.6667L

Fig. 18 Shear type deformation `m=0.4000L, p=3 and q=3; values of Nm=0.05, Nm=0.1, Nm=0.3, Nm=0.6, Nm=0.8, and Nm=0.9

Fig. 19 Cantilever problem p=3, q=3, and Nm=0.8; discretized by four-node generalized isoparametric finite elements; values of `m=0.005L,
`m=0.075L, and `m=0.25L with and without checkerboard control by filtering

Fig. 20 Cantilever problem p=3, q=3, and Nm=0.8; discretized by eight-node generalized isoparametric finite elements; values of `m=0.005L,
`m=0.075L, and `m=0.25L with and without checkerboard control by filtering
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The optimal solutions of Figs. 10 and 11, obtained for a given
coupling number and different values of the characteristic
length of bending, clearly show that at the optimum the in-
terface assumes a well-defined structural configuration. The
optimal solution for the same interface problem, but not for
a Cauchy solid, is given in the second picture of Fig. 7. The
third example in Fig. 6 deals with a strip of infinite length
clamped at the bottom and subjected to a constant shear force
on the top. The optimal solutions are found for different val-
ues of the characteristic length (see Fig. 12) and for different
penalization coefficients for the rotational components Ki jkl

of the constitutive tensor and different microrotational con-
straints (see Fig. 13). The fourth example in Fig. 6 concerns
a unit cell subjected to shear type deformation. The cell was
discretized with 200 × 200 four node finite elements. The
results of the optimization problem are shown in Fig. 14 and
15. In the first one the results for different values of the char-
acteristic length of bending are shown, whereas in the second
picture different values of the coupling number are taken into
account. It may be interesting to observe for Fig. 15 that the
formation of a fine substructure is related to large values of
Nm , rather than to large values of `m . This effect is due to
the fact that Nm governs the nonsymmetry of the constitutive
response, while `m the rotational stiffness for applied couple-
stresses. In Figs. 16 and 17, some optimal configurations of
an infinite strip under different loading conditions and dif-
ferent constraints are shown (see Fig. 18 for static scheme).
The examples presented show how the degree of connectiv-
ity of the optimal solutions strongly depend on the micropo-
lar constitutive parameters (characteristic length of bending
and coupling number). Finally, Figs. 19 and 20 present op-
timized cantilever beams obtained by using four and eight
isoparametric finite elements with and without linear filter-
ing of the sensitivities (see Bendsøe and Sigmund 2002). In
the examples presented in this section, which show different
rotational penalization coefficients Ki jkl (Figs. 9 and 13), the
solutions of maximum stiffness correspond to q = 0. In this
case the penalization acts only on the translational part, i.e.:

Ei jkl(x) = ρ(x)p E0
i jkl , with p ≥ 1 , (61)

Ki jkl(x) = K 0
i jkl . (62)

The assumed values of the penalization parameter q ad-
mit a mechanical interpretation. In particular, the case q = 0
corresponds to a characteristic length for bending dependent
only on the dimensions of the representative volume element
(RVE) but not on the relative material density. On the other
hand, when q 6= 0 the characteristic length for bending de-
pends on the RVE relative material density.

6 Conclusions and perspectives

In this paper, the topology optimization for maximum stiff-
ness applied to micropolar (and, in particular, to Cosserat)
solids was formulated and solved. Several examples of appli-
cation were shown, and compared with those obtained (with
the same amount of material available) for Cauchy solids.
The results on the one hand show that for the Cauchy con-
tinuum model the optimal solutions are shaped as truss-like
structures, on the other hand, in the case of Cosserat continua,
the optimized structures are much more complex and charac-
terized by attractive shapes. The mechanical model and the
geometry of the design domains in the examples presented in
this paper find interesting applications in the fields of struc-
tural interfaces and mechanics of biological materials. In the
future the model can be, with some effort, enriched by first
including material anisotropies and then considering other
mechanical models like those of micromorphic, microstruc-
tured, and noncentrosymmetric materials.
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