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Abstract This paper presents an approach by combining the
genetic algorithm (GA) with simulated annealing (SA) al-
gorithm for enhancing finite element (FE) model updating.
The proposed algorithm has been applied to two typical rotor
shafts to test the superiority of the technique. It also gives a
detailed comparison of the natural frequencies and frequency
response functions (FRFs) obtained from experimental modal
testing, the initial FE model and FE models updated by GA,
SA, and combination of GA and SA (GA–SA). The results
concluded that the GA, SA, and GA–SA are powerful opti-
mization techniques which can be successfully applied to FE
model updating, but the appropriate choice of the updating
parameters and objective function is of great importance in
the iterative process. Generally, the natural frequencies and
FRFs obtained from FE model updated by GA–SA show the
best agreement with experiments than those obtained from
the initial FE model and FE models updated by GA and SA
independently.

Keywords Model updating · Finite element model ·

Optimization · Genetic algorithm · Simulated algorithm ·
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1 Introduction

1.1 Concept of FE model updating

Finite element (FE) model-based dynamic analysis has been
widely used to predict the dynamic characteristics of struc-
tures and rotating machinery. However, the results obtained
from FE model often differ from the experimental results of
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vibration or modal testing. This disparity is due to modeling
and experimental errors. The former results from uncertain-
ties in geometry, boundary conditions, discretization error,
modeling error of joints, variation of material properties, ig-
norance of nonlinear effect, and other simplifications, which
could be the possible sources of inaccuracy presented in a FE
model, while experimental errors are caused by incorrect im-
position of boundary conditions, lower sensor accuracy, ran-
dom excitation by noise, and signal processing errors (Levin
and Lieven 1998; Modak et al. 2002). To reduce the errors
between analytical and experimental results, efforts must be
made in trying to reduce experimental errors or to improve
the analytical model. Generally, to some extent, experimental
errors can be controlled by applying high-accuracy sensors,
reliable data acquisition, and well-developed signal measur-
ing and extraction methods (Maia and e Silva 1997; Ewins
2000). On the other hand, many efforts have been made to
minimize the difference between model prediction and ex-
periment by correcting model errors. This process is termed
as model updating, which is concerned with the correction
of FE models by comparing records of dynamic properties
from model prediction and experimental data. Obviously, for
the sake of reducing the errors between analytical and ex-
perimental results, it will be more expensive to run a sophis-
ticated experiment than to use computer simulation on FE
model updating. In addition, many practical situations occur
where the phenomenon of interest cannot be measured di-
rectly (Ranhois et al. 2001). For example, experiments can
be carried out on a limited number of measured degrees of
freedom (DOF) and also in a limited frequency range. There-
fore, FE model updating has become very popular nowa-
days. However, model updating is after all an inverse process
and contains highly nonlinear characteristics. In model updat-
ing process for practical applications, it is essential to obtain
satisfactory correlation between analytical and experimental
results and also to maintain physical significance of the updat-
ing parameters (Kim and Park 2004). For the above reasons,
model updating is still a difficult problem to overcome.

In spite of the problems mentioned above, model updating
is very useful for design, development, and application
phase of a mechanical system. Many mechanical systems re-
quire dynamic response prediction, modification of dynamic
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characteristics, damage identification, and fault parameters
identification. In the last 20 years, various methods for model
updating have been proposed (Mottershead and Friswell
1993). Most of these studies are devoted to approaches such as
the optimal matrix updating, sensitivity-based parameter es-
timation, eigen-structure assignment algorithms, and neural
networks updating methods (Jeong and Lee 1996). These ap-
proaches can be broadly classified into two groups, namely,
direct method and parametric method, depending on whether
there is any adjustment on the mass and stiffness matrices ei-
ther directly or indirectly. It has been shown that direct meth-
ods are not appropriate for model updating as the directly
updated elements of the mass and stiffness matrices have
no physical meaning, although the resulting updated matri-
ces can exactly reproduce the measured modal data (Levin
and Lieven 1998; Kim and Park 2004). For the parametric
method, many approaches have been proposed as shown in
reference (Friswell and Mottershead 1998). One conventional
approach is to consider an objective function that quantifies
the difference between the experimental and analytical data.
Generally, the objective function to be minimized is usually
defined as a penalty function involving the weighted sum
of the differences between analytical and experimental re-
sults, such as natural frequencies or mode shapes. Although
the ability to weight the different data seems versatile, the
weighting factors are very difficult to be determined because
the relative importance among the data is not obvious but spe-
cific for different problem. Furthermore, this method usually
takes a very long time to obtain the satisfactory weights (Kim
and Park 2004).

1.2 FE model updating based on optimization methods

Genetic algorithm (GA) and simulated annealing (SA) algo-
rithms are both probabilistic search algorithms and are ca-
pable of finding globally optimum results to complicated
optimization problems, which may be incorporated into
model updating. Levin and Lieven (1998) employed the GA
and SA independently in model updating for a beam and a
flat plate wing structure. Kim and Park (2004) introduced a
multi-objective optimization technique, Parato GA, to model
updating. The emphasis of this technique was on the selection
of updating parameters. Modak and Kundra (2000) proposed
a model updating method to solve a constrained nonlinear
optimization problem. Zimmerman (Zimmerman et al. 1999)
investigated the GA-based approach for FE model topology
and parameter adjustment. His contribution is in the formula-
tion of a GA fitness function which can avoid both analytical
and experimental problems associated closely with spaced
modes of vibration. Although there are many papers on GA
and SA applications in FE model updating, they are mainly
focused on simply supported cantilever beams, plates, tubes,
and space truss structures. Furthermore, GA and SA are in-
corporated independently into the model updating process.
There are limited works on FE model updating for rotor shafts
in rotating machinery systems.

The main aim of this paper is to present an approach
by combining GA with SA to perform model updating of
rotor shafts. Then, the results obtained from the FE model
updated by GA-SA are compared with those independently
updated by GA or SA. The paper has five main parts. A basic
description of GA, SA, and combined GA–SA is presented
in Section 2. This section provides an insight to the imple-
mentation procedure of GA and SA for a particular problem,
and also a detailed GA–SA implementation procedure. The
model updating procedure based on optimization technique
is discussed in detail in Section 3. This section discussed the
two important procedures, selection of updating parameters,
and definition of objective functions in model updating. A de-
tailed discussion and analysis on the results of two cases are
explained in Section 4. In this section, some comparisons of
natural frequencies and frequency response functions (FRFs)
obtained from initial FE model, updated FE models, and ex-
periments have been carried out while using different objec-
tive function in the model updating process. The final part
is a conclusion, which describes the effectiveness of GA,
SA, and combined GA–SA as optimization techniques for
successful application in FE model updating. FE model up-
dated by GA–SA can predict much better results matching
the experiment than those models updated by GA and SA
separately.

2 Basic descriptions of GA, SA, and GA–SA

Detailed tutorials on the subject of GA and SA can be seen
from references (Holland 1975; Rao 1996; He et al. 2001;
Pham and Karaboga 2000). In this section, some basic knowl-
edge of these methods and the implementation procedure of
the technique to a particular problem are presented.

2.1 Genetic algorithm

GA works on the principles of genetic and natural selection
based on Darwin’s survival of the fitness strategy. In natural
evolution, members of population compete with each other
to survive and reproduce successfully. If the genetic makeup
of an individual member of a population has an advantage
over its rivals, then it is more likely to breed successfully. As
a result, the combination of genes that confers this advantage
is likely to spread across the population. In this way, the
population continuously adapts to its environment and also
improves its fitness (Levin and Lieven 1998).

The application of GA needs six basic issues: chromo-
some representation, selection function, genetic operators
such as mutation and crossover for reproduction function,
creation of the initial population, termination criteria, and
the evaluation function. In accordance, the first step in this
algorithm is to define a coding process between the solutions
and chromosome. In this process, two commonly encoding
methods are normally used as the standard binary encod-
ing and real-number encoding. The second step involves the
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creation of an initial population of the solutions. This is fol-
lowed by the determination of the objective function and fit-
ness. The three key genetic operators, selection, crossover,
and mutation (Holland 1975), are applied to the old gener-
ation to generate a new generation. The process is repeated
until a convergence result can be obtained. The last task is
to translate the best chromosome into the solutions of the
problem.

2.2 Simulated annealing algorithm

SA was derived from an analogy with the annealing process
of material physics described by Kirkpatrick et al. (1983). It is
well known that certain materials have multiple stable states
with different molecular distributions and energy levels. The
annealing process consists of heating the substance until it is
molten, then slowly and discretely lowering the temperature
until the desired condition is achieved. In this process, the
substance is allowed to reach thermal equilibrium at each
temperature. Eventually the temperature is lowered until the
material freezes. If the temperature is lowered sufficiently
slowly, the annealing process can always pick out the global
minimum energy state from the unlimited number of possible
states (Kim and Park 2004).

Generally, to simulate the annealing process in optimiza-
tion problems, the following preparatory steps are needed.
Firstly, the analogue of the physical concepts in the opti-
mization problem itself needs to be identified, noting that the
energy function corresponds to the objective function and
the configurations of particles represent the configurations of
the parameter values. Finding a low-energy configuration is
related to finding a near optimal solution. Temperature repre-
sents the control parameter for the annealing simulation. The
next step involves a fast cooling process (annealing schedule)
which consists of a set of decreasing temperatures and iter-
ation times at each temperature. The last step is to supply a
method of generating and selecting new solutions. Although
there are many approaches to implement SA algorithm, the
most thoroughly investigated SA algorithm is the adaptive SA
(ASA) published at the web site (http://www.ingber.com/).
ASA is developed to statistically find the best global solution
for a nonlinear constrained nonconvex cost-function over a
D-dimensional space. This algorithm permits an annealing
schedule for “temperature” decreasing exponentially in an-
nealing time which converges faster than Cauchy annealing
and Boltzmann annealing (Pham and Karaboga 2000). The
introduction of re-annealing also permits adaptation to chang-
ing sensitivities in the multidimensional parameter space
(Jeong and Lee 1996).
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Fig. 1 The flowchart of GA–SA implementation
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2.3 Combination of GA and SA algorithm—a hybrid
algorithm

It has been verified that GA and SA are both probabilistic
search algorithms which are capable of finding the global
minimum among many local minima. However, empirically
GA often lacks a hill-climbing capability and it does not
work well when the objective function is a huge multimodal
function or a highly coupled function such as the banana
function (Rao 1996). On the other hand, SA has a statistical
hill-climbing capability and the solution state will not stay at
a fixed point for a long time. Therefore for a particular prob-
lem, no matter what type of the solution space of the objective
function is, if GA were applied at the first step to obtain a rela-
tively optimal solution, then this solution is considered as the
initial solution of SA. With this, the final solution obtained
from SA will be greatly improved than that obtained from
a single GA or SA. This is because the initial global search
is achieved by the GA which allows fast convergence and
is independent of the initial parameters. The global search
performance can then be improved by introducing the SA
which has an entirely different global searching mechanism.
By combining the outstanding features of GA and SA, it re-
sults in a hybrid optimization technique (GA–SA) which can
reduce the probability of convergence to local minima due
to the complementary global search supplied by SA. When
comparing GA–SA with an independent GA and SA, it has
a number of advantages. In short, GA–SA not only can over-
come the demerit of GA, but also increase the probability of
finding the global optimum (Jeong and Lee 1996; Kim et al.
2003a). The working process of GA–SA is graphically repre-
sented in Fig. 1. In this figure, Ng is the maximum generation
number set in GA, while Nt is the number set to control the
time staying at one given temperature in SA.

3 Model updating procedure

In model updating based on optimization techniques, the first
step is to define the objective or cost function and the vari-
ables, i.e., updating parameters. The next step is to establish
a generation strategy of initial solutions and new solutions.
Each solution needs to be evaluated with a specific stopping
condition. The optimization or iteration is terminated when
the condition of optimum is achieved.

Figure 2 shows a general flowchart used in model up-
dating based on the optimization technique. The model up-
dating procedure proposed in this paper is similar to Fig. 2
after expanding the procedures in the broken line rectangle to
the detailed procedures as Fig. 1. The following subsections
will explain the main parts in the model updating procedures
shown in Fig. 2.

3.1 Selection of updating parameters

One of the most important and difficult issues in the process
of FE model updating is the selection of updating parame-
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Fig. 2 The flowchart of model updating procedure using optimization
techniques

ters. Inadequate updating parameters will cause the updated
model unsatisfactory or unrealistic, whereas too many up-
dating parameters might cause an ill-conditioned numerical
problem. Hence, the number of updating parameters should
be carefully selected. Generally, updating parameters should
be selected with the aim of correcting the modeling errors or
the uncertainty in the model. Furthermore, the selected para-
meters should be sensitive to the calculated and experimen-
tal natural frequencies, mode shapes, and dynamic response.
There are many methods for selecting updating parameters,
such as sensitivity analysis (Zhang et al. 2000; Bohle and
Fritzen 2003) and error localization algorithm (Bohle and
Fritzen 2003). In practical applications, updating parameters
are often selected as global, substructural, local material or
geometric parameters. Many researches are focused on the
updating of material properties because these parameters are
often unknown or partially known. The knowledge of geo-
metric parameters of the structure can be easily obtained,
although they might be simplified in the model (Jeong and
Lee 1996; Ewins 2000; Modak and Kundra 2000; Modak
et al. 2002). One of the strategies to ensure that only mean-
ingful corrections are made after the updating process is to
select the updating parameters on the basis of engineering
judgment on the possible locations of modeling errors or ma-
terial properties variation in a structure (Modak et al. 2002).
As rules of thumb, for the case of a rotor with or without mass
disks, the parameters to be considered include material prop-
erties, such as Young’s modulus E, mass density ρ, Poisson
ratio ν, shear coefficient γ, and effective stiffness diameters
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des of the shaft stations with mass disks. In this study, the
concept of effective stiffness diameters of the shaft stations
needs to be explained in detail. Generally, for a uniform di-
ameter shaft, the stiffness of each shaft station depends on the
material properties, shaft length, and the polar area moment
of inertia. In this situation, the mass and stiffness matrices in
FE model can be calculated with the geometric diameters and
standard material properties. However, for shaft sections with
various diameters or assembled with mass disks, the stiffness
matrix in FE model cannot be calculated directly with the
geometric diameters and standard material properties. This
has been verified to be caused by the assembled interference
of the shrunk shaft and diameters variation (Kim et al. 2003b).
Thus, the potential updating parameters which are taken into
account for the difference between analytical and experimen-
tal results is shown as following:

p = {E, ρ, ν, γ, dei }
T . (1)

Other parameters, such as mass distribution of the cylin-
der, have been tried in the past but only those mentioned
above turned out to be the most effective and consequently
we use these parameters in our current research. To avoid pro-
ducing physically meaningless updated results, the selected
parameters are assumed to be bounded in some prescribed
regions which are determined according to the uncertainties
that exist in the parameters.

3.2 Objective function

It is important to decide the form of objective function in
practical applications of model updating. An obvious first
choice is the sum-squared difference between the natural fre-
quencies, mode shapes, or FRFs obtained from experiment
and analytical FE model. In this paper, two forms of objective
functions are defined. The first one is using the sum-squared
difference of natural frequencies obtained from analytical
model and experiment, which is expressed in (2). The sec-
ond form is defined in (3), which is using the sum-squared
difference between the amplitudes of the experimental and
analytical FRFs (in natural logarithm) and summed over each
available frequency point.

f1(p) =

∑
(ωAi − ωXi )

2, (i = 1, 2, ..., m) (2)

f2(p) =

∑ (
log

(∥∥
Aα jk(ωi )

∥∥
2

)
− log

(∥∥
Xα jk(ωi )

∥∥
2

))
,

(i = 1, 2, ..., n) (3)

where p represents the updating parameters, E, ρ, ν, γ, and
des. des is a vector that indicates the effective stiffness di-
ameters of the shaft stations with mass disk. ωAi and ωXi
are analytical and experimental natural frequencies, respec-
tively. Aαjk(ωi) and Xαjk(ωi) are amplitudes of the analytical
and experimental FRFs, respectively, at frequency ωi. m and
n represent the order of natural frequencies and the number of
frequency components, respectively, considered in the FRF,

while j and k are degrees of freedom at which the impacting
force is applied and the response is measured, respectively.

In the objective function, the experimental data are ob-
tained from modal testing in the laboratory. The tested shaft
is supported using two steel piano strings. Two high-accuracy
accelerometers, amplifiers, were employed to acquire the
data, and modal analysis is completed by using the Medallion
software. In the modal testing, 5 times average on the mea-
sured FRFs data was used to reduce the random error. Figure 3
shows the experimental setup for shaft modal analysis in our
research. In the figure, the x and y indicate the horizontal
and vertical directions, respectively. In the modal testing, the
impacting force was applied either at the x-direction or y-
direction, and the acceleration response was measured at the
x-direction or y-direction accordingly. Theoretically, if the
impacting force is applied at one node in the x-direction, no
signals can be measured by the accelerometer at another node
in the y-direction. In practice, the response signal can be also
obtained although it might not be the actual response excited
by the impacting force at the respective direction. Therefore,
the direction of the measured acceleration response should
be maintained in accordance with the direction of the impac-
ting force.

In GA, the objective function, f1 or f2, is used to evaluate
the fitness of each individual in the population. The best in-
dividual achieved through an evolution corresponding to the
highest fitness is the expected parameters, p. While in SA, f1
or f2 is considered as the cost function to be minimized.

4 Application and results

FE model-based vibration analysis and fault diagnosis have
been widely studied in the research area of rotor dynamics.
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Fig. 3 An example set-up for modal testing
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Fig. 4 FE model of the shaft

In the process of establishing an FE model for a rotating
system, one of the most important works is to establish the
submodel of rotor shafts consisted in the system. Generally,
the submodels of rotor shafts are often carried out based on
the standard material properties, standard geometric dimen-
sions, and simplified boundary conditions of the rotor shaft.
Unfortunately, many material properties (E, ρ, ν, and γ) can-
not be determined exactly for a specific shaft. In addition,
the stiffness diameter of a general shaft station is assumed
equal to the geometrical diameter (mass diameter). For some
special shaft stations, such as shaft stations assembled with
a mass disk by means of shrunk method, they display higher
stiffness characteristics than that calculated with the geomet-
rical diameter. In this situation, the diameters used for the
calculation of stiffness matrix in FE model are not equal to
the mass diameters for some shaft stations. Consequently,
the effective stiffness diameters of some special shaft sta-
tions are included in the updating parameters in this paper
so as to cover the possible unknown parameters mentioned
above and also supply a reliable FE model for the further re-
search on vibration analysis and fault diagnosis. Two cases
of shaft conditions are used in this paper. Case 1 consists of
a typical and simple shaft without any mass disk component
and is used as an example for material properties updating.
Case 2 consists of a shrunk shaft in the middle with a cylin-
drical mass assembled by means of shrinkage fitting method.
Because the interference fitting will generally stiffen the shaft
station assembled with cylinder, this case is employed in this
study to explore the stiffening effects on FE model, i.e., ef-
fective stiffness diameters updating.

4.1 Case 1: shaft model without a shrunk fitted mass disk

The shaft considered in this study is modeled in Fig. 4. The
figure shows the shaft without any mass disk which is made

Table 1 Shaft parameters, length, and diameters of each element

Element
number

Shaft
length
(mm)

Shaft
diameters
(mm)

Element
number

Shaft
length
(mm)

Shaft
diameters
(mm)

1 14.7 15.5 11 16.3 19.5
2 14.7 15.5 12 16.64 19.5
3 14.7 15.5 13 16.64 19.5
4 14.7 15.5 14 16.64 19.5
5 9.5 16.9 15 16.64 19.5
6 9.5 16.9 16 16.64 19.5
7 17.0 19.5 17 11.25 16.9
8 17.0 19.5 18 11.25 16.9
9 16.9 19.5 19 11.5 12.8
10 16.3 19.5 20 11.5 12.8

Material properties: E = 210 GN/m2, ρ = 7,800 kg/m3, ν = 0.3,
γ = 0.9
Total length: L = 290 mm

of 45C steel. Detailed geometric parameters of this shaft
are listed in Table 1. Figure 5 shows one experimental FRF
between nodes 3 and 8 at the x-direction. The FRF is calcu-
lated by the rational polynomial method supplied in Medal-
lion software, from which the first three natural frequencies
can be extracted. The last column of Table 2 lists the first
three natural frequencies obtained from experiment, and the
natural frequencies calculated by the initial FE model (FEin)
are listed in the second column of Table 2. It should be noted
that the FEin model is based on the practical geometric pa-
rameters and standard material properties of the shaft. The
initial value of these property parameters are listed in the
third column of Table 4. It is obvious that there are some
differences between the natural frequencies obtained from
experiment and FEin model. Especially in the higher natural
frequencies, for the third natural frequency, the absolute dif-
ference is about 24 Hz.

In Table 2, the values in parentheses are the relative dif-
ferences of natural frequencies obtained from FEin model, FE
model updated by GA (FEGA model), and experiment. The
relative difference is defined as:

Relative difference (% ) = ( fi - fmi)
/

fmi × 100% , (4)

where fi is the natural frequency calculated by FEin model or
FEGA model, and fmi is the experimental natural frequency.
Note that the other higher natural frequencies cannot be mea-
sured due to the limited frequency range in modal analysis.

To update the initial FE model that can predict natural fre-
quencies more closely to the experimental natural frequen-
cies, GA is applied to the model updating process. Because
this shaft is a simple structure, almost all geometric para-
meters can be obtained directly and easily. In the model up-
dating process, the updating parameters are selected from the
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Fig. 5 The experimental FRF between nodes 3 and 8 in the x-direction
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Table 2 Natural frequencies of the initial FE model, updated model,
and experiment

Mode number Natural frequencies (Hz)
Initial model Updated model Experiment

1 1,211 (0.67%) 1,205 (0.17%) 1,203
2 2,939 (0.48%) 2,925 (0.0%) 2,925
3 5,348 (0.43%) 5,325 (0.0%) 5,325
4 8,394 8,370 −

5 11,876 11,858 −

6 15,783 15,777 −

7 20,211 20,229 −

8 25,054 25,105 −

9 30,157 30,241 −

10 35,610 35,738 −

Table 3 Optimization algorithm-related parameters

Number of generation in GA 20
Number of population in GA 150
Crossover probability, Pc 60%
Mutation probability, Pm 5%

material property parameters (E, ρ, ν, and γ) and the objective
function is defined as f1(p). Table 3 gives the value of GA-
related parameters. Table 4 gives the initial value, lower and
upper limits, and the final value of the updating parameters.
Here, the ranges of the updating parameters are determined
empirically. The first ten natural frequencies were calculated
from the updated FEGA model and are shown in Table 2. It
clearly shows, except for a small difference existing in the
first natural frequencies, that there are no differences in the
second and third natural frequencies obtained from experi-
ment and FEGA model. When comparing the natural frequen-
cies obtained from FEin model, FEGA model and experiment,

Table 4 Updated results of parameters

Parameter Lower and upper
limits

Initial value Updated value

Young’s modulus,
p1 (GPa)

[190–215] 210 211.05

Material density,
p2 (kg/m3)

[7600–7950] 7,800 7,902

Poisson ratio,
p3

[0.2–0.49] 0.3 0.200

Shear coefficient,
p4

[0.5–0.9] 0.9 0.8969

it can be seen that the results obtained from FEGA model are
more close to the experiment than those obtained from FEin
model.

With the updated FEGA model, FRF analysis is carried
out so as to verify the updating technique. Figure 6 shows the
comparison of FRF between nodes 1 and 8 in the x-direction.
The result shows that the FRF obtained from FEGA model
matches the experimental FRF much better than that obtained
from FEin model, especially in the higher frequency range. To
understand whether the updating parameters have the same
influence on FRF between any other two degrees in the shaft
model, comparisons among other FRFs were carried out in
our research. In this test, ten FRFs between different DOFs
were measured and compared. The results show that all the
FRFs obtained from FEGA models exhibit better agreement
with experiments than those from FEin model. However, for
some FRFs, such as the FRF between nodes 3 and 8 shown
in Fig. 7, there are still some differences in the frequency
range from 3,200 to 5,000 Hz. Big difference at the antires-
onance frequency in the frequency range can be seen which
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Fig. 7 Comparison of FRFs obtained from initial model, GA-updated model, and experiment between nodes 3 and 8 in the x-direction

must be caused by some other modeling errors in this figure.
Again, huge difference can be seen at the higher frequency
range even if f2 is used as the objective function in the updat-
ing process. The results cannot be improved further but the
CPU time needed to accomplish one run is 20 times than that
needed while using f1 as objective function.

4.2 Case 2: shaft model with a shrunk fitted mass disk

A shaft assembly with a mass cylinder attached to it by using
shrinkage fitting method is considered in this study (Kim
et al. 2003b). Figures 8 and 9 show the structure and initial
FE model of the considered shrunk shaft, respectively. Table 5
gives the dimensions of each of the shaft stations and material
property parameters of the shrunk shaft.

In this research, the concept of effective stiffness diame-
ters is employed to consider the stiffness effects on shaft stiff-
ness matrix caused by shrinkage fitting methods. Although
there are some other empirical formulas for calculating the
effective stiffness diameters of special shaft stations, the re-

Fig. 8 Structure of the shrinkage fitted shaft

sults are usually not satisfactory. In this case, the effective
stiffness diameters are considered as the updating parame-
ters, des, that is, d6 ∼ d11, as shown in Fig. 9. Assuming
symmetric characteristics of the shaft, then let d6 = d11,
d7 = d10, and d8 = d9. The natural frequencies obtained from
FEin model and experiments are listed in Table 7. Here, it
should be noted that the effective stiffness diameters of the
shaft stations with cylinder in the initial FE model are consid-
ered as 0.065 m empirically (Kim et al. 2003b). The results
show that in the higher frequency range, the difference is rel-
atively big. The third natural frequency has an absolute fre-
quency difference of about 556 Hz which must be caused by
the incorrect value of the effective stiffness diameters given
in the initial FE model. Moreover, a big difference exists in
the FRFs obtained from FEin model and experiment shown
in Fig. 10, especially in the frequency range from 6,000 to
8,000 Hz. To minimize the difference of the natural frequen-
cies, the parameters, d6 to d11, need to be updated with opti-
mization methods.

Initially, GA-based model updating method was applied
using f1 as the objective function. Table 6 gives the para-
meters related to GA, SA, and GA–SA, and also the range
of the updating parameters. Because the outer diameters of
the shaft stations with a shrinkage cylinder are 0.045 m and
the outer diameter of cylinder is 0.075 m, the effective stiff-
ness diameters can be valued in the range of [0.045–0.075].
The natural frequencies predicted by FEGA model are listed

1    2   3  4  5  12 13 14   15 16 
                 d6   d7   d8   d9   d10  d11   

Fig. 9 FE model of the shrinkage fitted shaft
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Table 5 Shaft parameters, length, and diameters of each element

Element
number

Shaft
length
(mm)

Shaft
diameters
(mm)

Element
number

Shaft
length
(mm)

Shaft
diameters
(mm)

1 30 40 9 26 45
2 30 40 10 26 45
3 30 40 11 13 45
4 20 40 12 20 40
5 20 40 13 20 40
6 13 45 14 30 40
7 26 45 15 30 40
8 26 45 16 30 40

Material properties: E = 205 G N/m2, ρ = 7835 kg/m3, ν = 0.3,
γ = 0.9
Total length: L = 370 mm

in the second column of Table 7. The final values of updat-
ing parameters are given in Table 8. When comparing the
natural frequencies obtained from FEGA model and experi-
ments, a great improvement was achieved on the difference of
the third natural frequency. However, differences of the first
and fourth natural frequencies increase slightly. Meanwhile,
the FRF comparisons from different FE models are made in
Fig. 10. It is obvious that the FRF obtained from FEGA model
shows a much better agreement with the experimental FRF
than that obtained from FEin model. However, there are still
some differences in the higher frequency range.

To reduce much more the difference of FRF between ex-
periment and updated FE models, using f2 as the objective
function, the optimization techniques involving GA, SA, and
GA–SA are tried, respectively. The updated results of updat-
ing parameters are shown in Table 8. The natural frequencies
obtained from FE model updated by SA (FESA model) and FE
model updated by GA–SA (FEGASA model) are shown in the
fourth and fifth column of Table 7, respectively. It is obvious
that the relative differences of natural frequencies obtained
from FEGASA model and experiment are smaller than those
obtained from any other models and experiment, with the ex-
ception of the third natural frequency. The results show that
FEGASA model is the best FE model for predicting natural
frequencies that can closely match the experimental results.

Figure 11 shows the comparison of FRFs obtained from
FEin model, FEGA model, FESA model, FEGASA model, and
experiment. Seeing from the difference of FRFs between all
models and experiment, FRF obtained from all the updated

Table 6 Updating parameters and optimization algorithm related
parameters

Parameter item Parameter value/limits

p1 (d6 = d11) (mm) [45–75]
p2 (d7 = d10) (mm) [45–75]
p3 (d8 = d9) (mm) [45–75]
Number of generation in GA 20
Number of population in GA 150
Crossover probability, Pc 60%
Mutation probability, Pm 5%
SA-related parameters Default in SA source code (Jones 2002)
GA–SA-related parameters The same as that used in GA and SA

Table 7 Natural frequencies obtained form the initial FE model, up-
dated model, and experiment

Mode
number

Natural frequencies (Hz)
FEin
model

FEGA
model

FESA
model

FEGASA
model

Experiment

1 1,557
(0.06%)

1,611
(3.53%)

1,588
(2.06%)

1,584
(1.8%)

1,556

2 2,915
(2.46%)

2,914
(2.43%)

2,895
(1.76%)

2,890
(1.58%)

2,845

3 6,472
(−8.7%)

7,021
(−0.9%)

7,037
(−0.68%)

7,028
(−0.8%)

7,085

4 8,906
(0.68%)

8,979
(1.5%)

8,872
(0.29%)

8,852
(0.07%)

8,846

5 11,967 1,3203 13,373 13,156 −

6 16,630 17,804 17,797 17,489 −

7 19,752 20,047 19,885 19,538 −

8 21,178 22,924 23,070 22,706 −

9 24,709 28,090 28,247 27,781 −

10 26,112 30,025 30,192 29,675 −

models shows much better agreement with experiment than
that obtained from initial FE model, especially in the higher
frequency range greater than the second natural frequency.
However, when using f2 as the objective function, FRF ob-
tained from FEGA model does not match the experiments
better than that predicted by FEGA model using f1 as objec-
tive function. It seems that in this case, for GA, the selection
of objective function will have little influence on the updated
model. In addition, the FRF predicted by FESA model is very
similar to that predicted by FEGASA model, but when compar-
ing the amplitudes of FRF at the resonant frequencies, FRF
obtained from FEGASA model shows much better agreement
with experiments than that from FESA model. Therefore, see-
ing from Fig. 11, it can be concluded that FEGASA model is
the best updated FE model, especially in the frequency range
below 6 kHz. However, in the high frequency range over the
third natural frequency, there are still some differences of
FRFs obtained from FEGASA and experiment.

5 Conclusions

FE model updating based on optimization technique for two
typical structures, a general shaft and a shrinkage fitted shaft
assembled with a cylinder disk, has been explored in this
paper. Several popular optimization techniques, GA, SA, and
GA–SA, were employed in the model updating process. From
the results achieved, for an initial FE model, the material

Table 8 Comparison of final updated parameters obtained by GA, SA,
and GA–SA-based model updating

p1 (d6=d11)
(mm)

p2 (d7=d10)
(mm)

p3 (d8=d9)
(mm)

Initial model 65.0 65.0 65.0
GA 56.0 74.6 74.9
SA 48.36 75.0 75.0
GA–SA 47.9 75.0 75.0
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Fig. 10 Comparison of FRFs obtained from initial model, model updated by GA, and experiment

properties, such as Young’s modulus, mass density, Pois-
son ratio, and shearing factor, effective stiffness diameters
of some special shaft stations can be updated to predict nat-
ural frequencies and FRFs closely matching the experimental
results. Generally, for a simple structure, such as a shaft with-
out any mass disks, taking f1 as the objective function in GA-
based model updating process, the updated model is good
enough to predict the natural frequencies and FRF that can

closely match those obtained from experiment. While as for
the shrinkage fitted shaft, in the model updating process based
on GA, it seems that the selection of objective function, f1 or
f2, has little influence on the updated results when compar-
ing the FRF curve predicted by FEGA model and experiment.
However, from the differences among FRFs obtained from
all the updated models and experiment, FRFs obtained from
all the updated models show much better agreement with
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Fig. 11 Comparison of FRFs obtained from initial model, models updated by GA, SA, and GA–SA, and experiment
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experiment than that obtained from initial FE model, espe-
cially in the higher frequency range. In addition, the FRF
predicted by FESA model is very similar to that predicted by
FEGASA model. When comparing the amplitudes of FRF at
the resonant frequencies, FRF obtained from FEGASA model
shows much better agreement with experiments than that
from FESA model. It can be concluded that FEGASA model
is the best updating model, especially in the frequency range
below 6 kHz. But in the high frequency range over the third
mode, there are still some differences of FRFs obtained from
FEGASA and experiment.

In conclusion, the GA and SA are both powerful opti-
mization techniques which can be successfully applied to FE
model updating independently or in a combinative form. For
simple structures, such as case 1, when selecting the mater-
ial properties as updating parameters and f1 as the objective
function in the GA-based updating process, a good updated
FE model can be obtained that can predict natural frequencies
and the FRF closely matching the experimental results. But
for a relatively complex structure, such as case 2, when se-
lecting the effective stiffness diameters of some special shaft
stations as updating parameters and using f2 as the objective
function, neither FEGA model nor FESA model can predict
natural frequencies and FRFs that match the experimental
results closely. Under this condition, FEGASA model will be
a good choice in the model updating process.
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