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Abstract The problem of designing the elastic properties of
a laminate is considered. It is shown that a unique formulation
for all the design problems with respect to elastic symmetries
can be found using polar invariants of the stiffness tensors. In
this way, the design of laminates having some general elastic
properties is reduced to a classical optimisation problem: the
search for the absolute minimum, whose value is 0, of a posi-
tive semi-definite form in the space of the polar invariants. A
minimum characterisation of some important elastic proper-
ties is also given. Some numerical examples and a discussion
of the results are also included in the paper.

Keywords Laminates · Polar method · Elastic symmetries ·
Quasi-homogeneity · Uncoupling

1 Introduction

The use of composite material laminates has considerably
broadened the possibilities of designers in finding an appro-
priate material for a specific use. In fact, they can manage
the variables governing the laminate mechanical behaviour
to obtain the desired effects or to optimise a given parame-
ter, such as the weight, the strength or the stiffness. These
variables are the material of the layers, the ply number, the
stacking sequence and the layer orientations. In a sense, it is
perhaps more appropriate to speak of material design rather
than of structural design and also if the homogenization laws
used for laminates are rather “structural type” laws.

Of course, several authors have considered different lam-
inate design problems; an organic state of the art in the field
of laminate design is very difficult to be done. This is due
to some reasons, the very high number of contributions be-
ing one of these, but more important is the fact that many
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different aspects characterise the researches in the domain:
the choice of the variables or of the objective function, the
basic mechanical hypothesis and the mathematical approach
are the main points that distinguish the works of the scientists
in the domain of laminate design and optimisation. A rather
deep, but not complete, analysis of the state of the art can be
found in Abrate (1994) or also in Vannucci (2002a).

Nevertheless, some general considerations can be done
about laminate design. The most part of authors deal with
the maximisation or minimisation of some mechanical prop-
erties: maximising the stiffness or the strength, as well as
the buckling load or the fundamental frequency, or minimis-
ing the weight under some mechanical constraints are the
most treated problems. Almost all the authors that deal with
such problems make some basic hypothesis about the lami-
nate; generally, they consider symmetric stacking sequences,
which automatically ensures uncoupling of the in- and out-
of-plane behaviours, that is B=O [see below for a recall of
the classical laminated plates theory (CLPT)]. Again, design-
ers often impose a balanced sequence, i.e. a sequence where
for each ply at the orientation α, there is another ply at −α:
this hypothesis ensures the orthotropy of A (see for instance
Jones 1975). Another rule sometimes used by designers is
the use of antisymmetric balanced sequences: this gives the
orthotropy of A and D, but not uncoupling, in general. Some
authors have also used symmetric balanced sequences con-
sidering D orthotropic, too, and also if this is not correct (see
Fukunaga and Vanderplaats 1991 or, again, Abrate 1994).
In many cases, only some orientations are considered for
the plies; typical is the case of balanced symmetric quasi-
isotropic (orientations at 0◦, ±45◦, 90◦), cross-ply (0◦, 90◦)
or angle-ply (α, −α) laminates to have uncoupling and or-
thotropy of A.

What seems to be a general rule is that laminate designers
try to optimise some parameters of the plate considering that
it has already some other, generally required, properties such
as orthotropy or uncoupling. To do this, they do not look for
general solutions but only for solutions belonging to a special
class, for instance, the one of balanced symmetric laminates,
to automatically ensure the desired property. This way of do-
ing is in a sense a short cut to solutions, especially for the
computing aspects, but can lead to solutions which are opti-
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mal only in the chosen class of laminates but not globally. For
instance, seeking for minimum weight orthotropic laminates
in the class of balanced symmetric plates excludes automat-
ically odd ply number laminates, which are candidates to be
the optimal solution just as even ply number laminates. In
addition, Vannucci and Verchery (2001a,b) have shown that
the number of uncoupled symmetric laminates is very small
compared with that of non-symmetric ones. So, looking for
uncoupled laminates only in the class of symmetric plates
can be very limiting.

Indeed, the design of general elastic properties of a lam-
inate, such as isotropy, orthotropy or uncoupling, has not
received by the scientists in the same interest that they
have reserved to the above-mentioned problems. Neverthe-
less, some interesting works in this field can be found in
the literature; see for instance the fundamental contribu-
tion of Werren and Norris (1953) on isotropy, the works of
Fukunaga (1990), Paradies (1996), Grédiac (1999), Vannucci
and Verchery (2002) still on isotropy, those of Caprino and
Crivelli-Visconti (1982) and of Grédiac (2000) on orthotropy,
and the already cited Grédiac (1999) and Vannucci and
Verchery (2001a,b) on uncoupling and quasi-homogeneity.

This paper reconsiders the problem of designing general
properties of a laminate, namely, its elastic symmetries,
uncoupling, quasi-homogeneity and so on. An original way
to unify all these problems is proposed, which preserves the
absolute generality of the approach: no kind of simplifying
hypothesis is made, so general solutions can be found for
a given problem. In the paper, it is shown that the most
part of elastic properties considered can be viewed as
symmetry problems for the laminate and that they can be
characterised by minimum conditions. Such a quite general
approach seems to be indispensable to get absolute optimal
solutions also and perhaps especially in those cases where
the properties here considered are not the main goal of the
optimisation process but where they must be compulsory
achieved together with other quantities to be optimised.

When the design of elastic symmetries for a laminate is
considered, a basic problem is the choice of the elastic ten-
sors representation. In fact, the Cartesian representation is not
well suited to such a purpose, as symmetries appear clearly
only for some particular choices of the reference frame. In
addition, the method proposed by Pedersen (1990) to detect
elastic symmetries, and based upon the so-called invariants
of Tsai and Pagano (1968), is not very effective, as it cannot
make distinction among different types of elastic symme-
tries. It is, on the contrary, suitable to represent tensors by
their invariants, choosing among them those whose physical
meaning is directly linked to a particular symmetry of the
material or of a laminate behaviour. This is the most effec-
tive way to handle problems concerning elastic symmetries.
For this reason, the polar method for the representation of
elastic tensors in plane elasticity is used in this paper. This
technique, introduced by Verchery (1979), is the most ef-
fective one for the treatment of elastic symmetries in plane
elasticity, as in this method, an elastic tensor is known by five
invariants and a parameter fixing the reference frame; in ad-

dition, each one of the five invariants is linked to a particular
elastic symmetry of the tensor. Verchery obtained his results
by the application of a complex variable method, technique
introduced by Michell (1902) and successively improved by
Kolosov (1909), Muskhelishvili (1933) and Green and Zerna
(1954). From a general point of view, it can be noticed that, in
his approach, Verchery proposes a complex variable transfor-
mation more effectively than that used by Green and Zerna
(1954); this is not the place to recall the theory of Verchery
in the details, and the reader is addressed to this purpose to
the original paper of Verchery (1979), which contains also
the first invariant characterisation known in the literature of
material symmetries in plane elasticity. An extensive presen-
tation of the polar method can be found in Vannucci (2002a).

By the polar method, a certain number of problems con-
cerning laminates have been treated and solved; it is not the
case here to recall all the results obtained, and the reader
is addressed to the literature in the subject (Valot et al.
2001, 2002, 2003, 2005; Vannucci 2001, 2002a,b; Vannucci
and Verchery 2001a,b, 2002; Verchery 1979, 2000; Vincenti
et al. 2001, 2002, 2003a–c).

The polar method is effectively used in this paper to ob-
tain a unified formulation of all the problems concerning
elastic symmetry properties. Under a mathematical point of
view, the obtained formulation is rather classical in struc-
tural optimisation: apart from a special case of orthotropy
considered in the paper, it corresponds to the search for the
absolute minimum, whose value is 0, of a symmetrical pos-
itive semi-definite form in the space of the polar invariants.
The objective function is non-convex, as in the most part
of approaches to optimisation problems of laminates having
the layer orientations among the variables, but the problem
is unconstrained.

The paper is composed of eight sections besides this in-
troduction: Sect. 2 is a quick introduction of polar invariants
and of their physical meaning, Sect. 3 proposes the general
formulation of the problems considered in this paper, Sect. 4
is devoted to some basic problems, Sect. 5 to some composed
problems, Sect. 6 to quasi-homogeneity, Sect. 7 to orthotropy,
Sect. 8 shows some numerical examples and Sect. 9 is about
final remarks and conclusions.

The theoretical frame of the paper is the CLPT (see for
instance Jones 1975), where the elastic behaviour of a lami-
nate is described by three tensors: A, accounting for the ex-
tension behaviour; B, describing coupling between bending
and extension; and D, the tensor of the bending behaviour.
A laminate having B=O is said to be uncoupled: bending
does not affect stretching and conversely. For the purposes
of the paper, the homogeneity tensor C is also introduced
(1/h and 12/h3 are the factors used to homogenize A and D,
respectively; see Jones 1975):

C = A
h

− 12
D
h3 , (1)

h being the total thickness of the laminate. C measures the
difference between A and D, i. e. of the in- and out-of-plane
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behaviours; only when C is the null tensor, the two behaviours
of the laminate are identical in each direction. If a laminate
has B=C=O, it behaves just like a homogeneous plate; that
is why such laminates are called quasi-homogeneous (Kandil
and Verchery 1988; Vannucci and Verchery 2001a,b); their
use can be very interesting for some applications. In the paper,
no supplementary hypothesis is done: a laminate composed
of n plies is considered each time; the layers can be differ-
ent or identical and can be made of any kind of material,
also completely anisotropic, even though orthotropic plies
are usually employed.

2 The polar invariants

Let us consider a plane stiffness fourth order tensor L: it can
be represented by the aid of six polar constants, T0, T1, R0,
R1, �0 and �1, linked to Cartesian components by (i is the
imaginary unit)

8T0 = L1111 − 2L1122 + 4L1212 + L2222,
8T1 = L1111 + 2L1122 + L2222,

8R0e4i�0 = L1111 − 2L1122 − 4L1212 + L2222
+ 4i(L1112 − L2212)

8R1e2i�1 = L1111 − L2222
+ 2i(L1112 + L2212)

(2)

Constants T0, T1, R0, R1, as well as the angular difference
�0 − �1 , are tensor invariants, which characterise the elastic
symmetries of the material; the choice of the reference frame
fixes the value of the polar angles �0 and �1 , but not their
difference, and conversely each choice of one of the two
polar angles corresponds to fixing a reference frame; the usual
choice for orthotropic laminae corresponds to �1 = 0 . For
what concerns symmetries, it is in particular:

(a) L is orthotropic if and only if

�0 − �1 = K
π

4
, K = 0, 1; (3)

(b) L is square symmetric (that is, its components are invari-
ant under rotations of π/4) if and only if

R1 = 0; (4)

(c) L is isotropic if and only if

R0 = R1 = 0. (5)

The above conditions explain why T0 and T1 are called
isotropy, while R0 and R1 anisotropy, invariants.
In addition to the cases above, another special type of or-
thotropy must be cited (Vannucci 2002b), the so-called R0-
orthotropy:
(d) L is R0-orthotropic if and only if

R0 = 0. (6)

R0-orthotropic materials are interesting under many as-
pects; for instance, it is apparent that in this case, the number
of elastic independent constants characterising the material is
only three (T0, T1 and R1), like in the case of square symme-
try (T0, T1 and R0), and not four as for orthotropy (T0, T1, R0
and R1). Nevertheless, while square symmetry corresponds
to a higher symmetry condition (four symmetry axes turned
by π/4), R0 orthotropy has the same symmetries of general
orthotropy, i.e., two orthogonal axes of plane symmetry. In
addition, while the square symmetry of a stiffness tensor im-
plies the same symmetry of the corresponding compliance
tensor, this is not the case for R0-orthotropy.

It is also apparent from (3) that for each set of values
T0, T1, R0 and R1, two different kinds of orthotropic ma-
terials can exist: one with K=0 and the other with K=1.
Vannucci (2002a) has shown that the first case corresponds
to the so-called low-shear modulus, while the second cor-
responds to the high-shear modulus materials introduced by
Pedersen (1993), giving in this way an interpretation of this
classification in terms of tensor invariants.

It must be also emphasized that polar invariants, as well
as any other material coefficients, must fulfil some conditions
to have a positive definite tensor L, see Vannucci (2002a,b).

The polar representation can be used, of course, also for
tensors A, B and D. In the following, the polar constants of
A will be denoted by T 0, T 1 and so on, those of B by T̂0, T̂1
and so on and those of D by T̃0, T̃1 and so on. Of course,
by (2), the composition laws proper to the CLPT giving the
Cartesian components of A, B and D apply as well to polar
constants

T 0, T̂0, T̃0 = 1

m

n∑

k=1

T0k (z
m
k − zm

k−1),

T 1, T̂1, T̃1 = 1

m

n∑

k=1

T1k (z
m
k − zm

k−1),

R0e4i�0 , R̂0e4i�̂0 , R̃0e4i�̃0 = 1

m

n∑

k=1

R0k e4i(�0k +δk )

× (zm
k − zm

k−1),

R1e4i�1, R̂1e4i�̂1 , R̃1e4i�̃1 = 1

m

n∑

k=1

R1k e4i(�1k +δk )

× (zm
k − zm

k−1).

(7)

In (7), m=1 for A, m=2 for B and m=3 for D; the subscript
k indicates a quantity proper to the kth layer; so, δk is the
orientation angle; while zk−1, zk, the distances from the mid-
dle plane z=0 of the lower and upper face of the layer k. An
advantage of the polar representation on the Cartesian one
is that in (7), the dependence upon the angles δk is explicit.
In the most general case, the elastic behaviour of a laminate
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in a given reference frame is known when 18 parameters are
known.

It is apparent from (7) that

R1k = 0 ∀k ⇒ R1 = R̂1 = R̃1 = 0; (8)

that is, a laminate composed of square-symmetric layers
will be completely square symmetric (Vincenti et al. 2001).
Again,

R0k = 0 ∀k ⇒ R0 = R̂0 = R̃0 = 0, (9)

which shows that the use of R0-orthotropic layers ensures
automatically the complete orthotropy of type R0 of the lam-
inate for any possible stacking sequence and orientation of
the layers. In other words, unlike invariant (3) which denotes
ordinary orthotropy, invariants R0 and R1 are strong invari-
ants in the sense that they belong not only to the plies but to
the laminate, too.

By the aid of (1) and (7), also the polar components of C,
denoted by T̆0, T̆1 , can be found;

T̆0 = 1

h3

n∑

k=1

T0k (zk − zk−1)[h
2 − 4(z2

k + zkzk−1 + z2
k−1)],

T̆1 = 1

h3

n∑

k=1

T1k (zk − zk−1)[h
2 − 4(z2

k + zk zk−1 + z2
k−1)],

R̆0e4i�̆0 = 1

h3

n∑

k=1

R0k e4i(�0k +δk )(zk − zk−1)

× [h2 − 4(z2
k + zkzk−1 + z2

k−1)],

R̆1e2i�̆1 = 1

h3

n∑

k=1

R1k e2i(�1k +δk )(zk − zk−1)

× [h2 − 4(z2
k + zkzk−1 + z2

k−1)].
(10)

A particular but extremely important case is that of lami-
nates composed of identical plies; for them, (7) and (10) give
immediately that

T 0

h
= 12

T̃0

h3 = T0,

T 1

h
= 12

T̃1

h3 = T1,

T̂0 = T̆0 = T̂1 = T̆1 = 0; (11)

that is, the isotropic parts of the homogenized tensors A and
D are the same and identical to those of the basic layer,
while B and C are made only of anisotropic parts. So, for
laminates made of identical layers, uncoupling and quasi-
homogeneity correspond to the isotropy, and nullity, of ten-
sors B and C. That is why in this paper, what have been called
a “general elastic property” of the laminate is considered as

a symmetry property. In fact, the problems of finding or-
thotropic, square-symmetric, R0-orthotropic, uncoupled and
quasi-homogeneous laminates are addressed herein, as well
as some possible combinations of these cases, and, for the
case of laminates composed by identical plies, also uncou-
pling and quasi-homogeneity can be regarded as symmetry
properties, the isotropy of B and C. This is also generally
true, but if layers are not identical, the isotropic parts of the
two tensors are not automatically null.

3 A unified approach to the design of laminates
with given general elastic properties

Let us consider the following general problem: find the layer
orientations δk of an n-ply laminate to obtain a given general
elastic property, such as isotropy, orthotropy, uncoupling and
so on. The material is known, and it can be different from
one layer to another.

To state the above problem, consider the following quad-
ratic form of the matrix H, defined on the 18-dimensional
space of the variables Pi:

I (Pk) = P · HP = Hi j Pi Pj , i, j = 1, ..., 18 (12)

with

P1 = T 0

hM
, P2 = T 1

hM
, P3 = R0

hM
, P4 = R1

hM
, P5 = �0,

P6 = �1,

P7 = 2T̂0

h2 M
, P8 = 2T̂1

h2 M
, P9 = 2R̂0

h2 M
, P10 = 2R̂1

h2 M
,

P11 = �̂0, P12 = �̂1,

P13 = 12T̃0

h3 M
, P14 = 12T̃1

h3 M
, P15 = 12R̃0

h3 M
, P16 = 12R̃1

h3 M
,

P17 = �̃0, P18 = �̃1. (13)

M is a factor used to obtain non-dimensional variables. Sev-
eral definitions are possible for M, provided that it is never 0;
proper choices are means of layer characteristic quantities.
To this purpose, it can be used, for instance, the tensor norm
proposed by Kandil and Verchery (1988) and to pose

M = 1

n

∑n

k=1

√

T 2
0k

+ 2T 2
1k

+ R2
0k

+ 4R2
1k

. (14)

Moreover, if the layer orientations appear as the basic
variables, the quadratic form I(Pk) depends upon all the me-
chanical and geometrical parameters of the laminate, i.e.
the orientations, the stacking sequence, the material and the
thickness of the layers. In fact, by (7) and (13), the parameters
Pk depend upon all these quantities.
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H is a symmetric matrix of non-dimensional real num-
bers: the choice of its components Hij determines the kind of
problem to be treated; several choices are possible, and so,
several different problems can be stated in the same way, sim-
ply changing the Hij. H is positive semi-definite, and, apart
from the case of orthotropy with K=1, each problem can be
stated as follows: find an absolute minimum of (12) for a
given H. As H is positive semi-definite, these minimums are
0-valued. Clearly, to solve such a problem means to find a
vector P of Pk, i.e. the 18 polar components, which satisfy
the above statement.

A certain number of different and technically interesting
problems are detailed in Vannucci (2002b). In the following
sections, only some of these problems, particularly impor-
tant, are considered, and the components Hij are shown for
each case. It must be said, anyway, that a larger number of
problems, not always technically interesting, can be treated
in the same way.

Before going on, it is worth noting what was already said
in Sect. 1—a unique mathematical form has been given to
several different problems of laminate design: the search for
the minimum of a positive semi-definite form, which is a
classical problem of structural optimisation. The objective
function (12) is not convex, since parameters Pk depend upon
circular functions of the orientations (7), but the problem is
unconstrained. The use of the parameters Pk allows a classical
formulation, stated in terms of the minimisation of a quadratic
positive semi-definite form in the 18-dimensional space of the
Pk parameters. Nevertheless, the real design variables are the
n orientations δk of the layers, and in this space, the problem
is non-convex and higly non-linear.

It is worth noting that parameters Pk generalise the con-
cept of lamination parameters introduced by Miki (1982) and
successively widely used by several authors, but unlike these,
they have some advantages: they are based upon tensor invari-
ants linked to elastic symmetries, so their use allows a very
simple statement of problems concerning these symmetries,
and in addition, they make the orientation of the reference or
material frame directly appear.

4 Basic problems

Let us consider first some basic problems, those concerning
only one polar parameter among the 18 of the laminate. For
instance, consider the search for a laminate having an R0-
orthotropic tensor A: the condition is

R0 = 0, (15)

or equally

I (Pk) = P2
3 = 0, (16)

which implies that for this case in H, it is H33=1, while
the remaining Hij are 0. In the same way, the following
basic problems can also be stated (in the following, the
components of H not explicitly indicated are understood to

be 0; in addition, being H symmetric, only the components
above the diagonal are shown):

• find a laminate with a square-symmetric tensor A,

R1 = 0; I (Pk) = P2
4 = 0 ⇒ H44 = 1; (17)

• find a laminate with an R0-orthotropic tensor D,

R̃0 = 0; I (Pk) = P2
15 = 0 ⇒ H1515 = 1; (18)

• find a laminate with a square-symmetric tensor D,

R̃1 = 0; I (Pk) = P2
16 = 0 ⇒ H1616 = 1. (19)

It is worth to recall that all these properties are automati-
cally obtained in the case of a laminate made by layers having
the same property. Other basic problems can be considered,
but they are not so mechanically interesting as those shown
hereon; their importance is eventually in the fact that they
are a part of composed problems, i.e. of problems depend-
ing upon more than one polar parameter. In the next section,
some of these composed problems are considered.

5 Composed problems

First of all, let us consider the search for uncoupled laminates;
this problem can be stated as follows:

B = O; I (Pk) =
∑10

i=7
P2

i = 0 ⇒ Hii = 1,

i = 7, ..., 10. (20)

If the laminate is composed by identical plies, it is auto-
matically

P7 = P8 = 0, (21)

so H77 and H88 are meaningful; that is, they can be equally
posed 0 or 1.

Another case of interest is that of uncoupled laminates
with A or D isotropic, which can be respectively stated as

I (Pk) = P2
3 + P2

4 +
∑10

i=7
P2

i = 0 ⇒ Hii = 1,

i = 3, 4, 7, 8, 9, 10; (22)

I (Pk) =
∑10

i=7
P2

i + P2
15 + P2

16 = 0 ⇒ Hii = 1,

i = 7, 8, 9, 10, 15, 16. (23)

In the same way, the very treated problem of full isotropy,
i.e. of the search for an uncoupled laminate with isotropic
tensors A and D, can be stated as follows:

I (Pk) = P2
3 + P2

4 +
∑10

i=7
P2

i + P2
15 + P2

16 = 0

⇒ Hii = 1, i = 3, 4, 7, 8, 9, 10, 15, 16. (24)
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Another interesting problem is that of an uncoupled lam-
inate with square symmetric A and D, having, in addition,
the same axes of symmetry. Now, the coincidence of the axes
must be imposed; in the polar method, this can be easily done
by setting �0 = �̃0 :

I (Pk) = P2
4 + ∑10

i=7 P2
i + P2

16 + (P5 − P17)
2 = 0 ⇒

Hii = 1, i = 4, 5, 7, 8, 9, 10, 16, 17; H517 = −1.
(25)

6 Statement of quasi-homogeneity

The condition imposing C=O can be stated as follows:

T̆
2
0 + T̆

2
1 + R̆

2
0 + R̆

2
1 = 0; (26)

taking into account for (1), (7) and (13), we get the equivalent
condition

(P1 − P13)
2 + (P2 − P14)

2 +
(

P3e4i P5 − P15e4i P17
)

(

P3e−4i P5 − P15e−4i P17
)

+
(

P4e2i P6 − P16e2i P18
)

(

P4e−2i P6 − P16e−2i P18
)

= 0. (27)

A simpler condition can be obtained if we consider that
the identity of the elastic in- and out-of-plane behaviour at
each direction implies the identity of the polar angles of A
and D that can be stated by the condition

(P5 − P17)
2 + (P6 − P18)

2 = 0. (28)

So, considering (27) and (28), together with (20), to take
into account for uncoupling, a general condition for quasi-
homogeneity (B=C=O) is obtained:

I (Pk) = (P1 − P13)
2 + (P2 − P14)

2 + (P3 − P15)
2+

+ (P4 − P16)
2 + (P5 − P17)

2 + (P6 − P18)
2+

+ P2
7 + P2

8 + P2
9 + P2

10 = 0 ⇒
Hii = 1, i = 1, ..., 10, 13, ..., 18;
H113 = H214 = H315 = H416 = H517 = H618 = −1.

(29)

It is apparent that this approach let to the designer the
possibility to add new properties to other ones. For instance,
if now we look for a quasi-homogeneous square-symmetric
laminate, it is sufficient to add to (29) a condition fixing

square symmetry, like (17) or equally (19), the two condi-
tions being equivalent for quasi-homogeneity:

I (Pk) = (P1 − P13)
2 + (P2 − P14)

2 + (P3 − P15)
2+

+ (P4 − P16)
2 + (P5 − P17)

2 + (P6 − P18)
2+

+ P2
4 + P2

7 + P2
8 + P2

9 + P2
10 = 0 ⇒

Hii = 1, i = 1, ..., 3, 5, ..., 10, 13, ..., 18; H44 = 2;
H113 = H214 = H315 = H416 = H517 = H618 = −1.

(30)

7 Statement of orthotropy

Apart from R0 orthotropy, the general condition for or-
thotropy is (3); this means that orthotropy of A and D can
be respectively stated by

I (Pk) = (P5 − P6)
2 = K

π2

16
, K = 0, 1 ⇒

H55 = H66 = 1; H56 = −1; (31)

I (Pk) = (P17 − P18)
2 = K̃

π2

16
, K̃ = 0, 1 ⇒

H1717 = H1818 = 1; H1718 = −1. (32)

This approach gives the designer to chose the type of or-
thotropy, but if K=1, the solution does not correspond with
the absolute minimum of the objective function I(Pk). It is
easy to combine (31) and (32) with other properties to obtain
for instance orthotropic and uncoupled laminates. Among
these cases, the following two final problems are considered:
the first one concerns a quasi-homogeneous orthotropic lam-
inate. Taking into account for (29) and (31), or equally of
(32), we get the statement of this problem:

Ĭ (Pk) = (P1 − P13)
2 + (P2 − P14)

2 + (P3 − P15)
2+

+ (P4 − P16)
2 + (P5 − P17)

2 + (P6 − P18)
2+

+ P2
7 + P2

8 + P2
9 + P2

10 = 0;

I (Pk) = (P5 − P6)
2 − K

π2

16
= 0, K = 0, 1 ⇒

Hii = 1, i = 1, ..., 4, 7, ..., 10, 13, ..., 18; H55 = H66 = 2;
H56 = H113 = H214 = H315 = H416 = H517 = H618 = −1.

(33)

If K = 0 , the two functions Ĭ (Pk) and I (Pk) can be
added to obtain again a unique quadratic form of the type
I (Pk) ; if K = 1 , we can still get a unique non-negative
objective function I (Pk) , for instance, posing

I (Pk) = ∣
∣I (Pk)

∣
∣ + Ĭ (Pk). (34)
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The second one is the case of an uncoupled laminate,
orthotropic in bending and in extension and with coincident
symmetry axes:

I (Pk) = (P5 − P6)
2 − K

π2

16
= 0, K = 0, 1;

Ĩ (Pk) = (P17 − P18)
2 − K̃

π2

16
= 0, K̃ = 0, 1;

Î (Pk) =
∑10

i=7
P2

i + (P6 − P18)
2 = 0 ⇒

Hii = 1, i = 5, 7, ..., 10, 17; H66 = H1818 = 2;
H56 = H618 = H1718 = −1. (35)

Like in the preceding case, if K = K̃ = 0 , then the three
functions I (Pk) , Ĩ (Pk) and Î (Pk) can be added to obtain
again a unique quadratic form of the type I (Pk) ; if this is
not the case, a unique non-negative objective function I (Pk)
can still be obtained, for instance, posing

I (Pk) = ∣
∣I (Pk)

∣
∣ + ∣

∣ Ĩ (Pk)
∣
∣ + Î (Pk). (36)

8 Numerical examples and discussion of the results

Different types of numerical methods can be used to solve
the above-mentioned problems; in this section, some exam-
ples of laminates composed by identical layers are shown. In
this hypothesis, the only variables are the ply orientations,
and a descent method has been used to solve numerically
the problems, namely, the steepest descent method (see for
instance Arora 1989) or alternatively the conjugate gradient
method of Fletcher and Reeves (1964). The initial point for
the descent algorithm was established randomly, but consid-
ering that, to fix a global frame for the plate, the orientation
of the first layer was always 0; so, the number of unknowns

Fig. 1 The polar diagrams of E and G for example 9 in Table 1 (exact
and approximate solutions; in GPa)

is n−1 and not n. We give in Table 1 some details about 10
among the several examples that we have treated. The values
of the objective function shown in Table 1 are the residuals
of I(Pk): an obvious consequence of the use of a numerical
approach is that the solution of an equation is found to a
certain degree of approximation, an exact solution being in
practice impossible to be obtained. To notice that I(Pk) is a
non-dimensional function, so the residuals shown in Table 1
are non-dimensional, too.

It is worth noting that, being in all the example the layers
identical, the elastic properties of the single basic ply are
meaningful, the results being valid for all the possible layers;
for this reason, the mechanical properties of the ply is not
necessarily specified: in fact, the true computations have been
made independently of them and are valid for any material.
Nevertheless, the diagrams in Figs. 1, 2 and 3 have been traced
for laminates composed of T300-5208, carbon–epoxy layers,
whose mechanical constants are (see Tsai and Hahn 1980)
E1=181 GPa, E2=10.30 GPa, G12=7.17 Gpa and ν12=0.28.

The first case has been treated to test the effectiveness of
the method; it is a five-layer laminate composed of plies rein-
forced by balanced fabrics (that is, having the same amount
of fibres in warp and weft, what ensures the square symmetry,
R1=0) and designed to be uncoupled. The complete solution

Table 1 Some numerical examples

Type of laminate Layers number Stacking sequence (◦) Objective function

1 Uncoupled (ply R1=0) 5 [0/4.572/−3.04/1.54] 6.7 10−4

2 Uncoupled, A isotropic 7 [0/−60.10/59.27/61.19/−59.37/0.45] 1.6 10−7

3 Fully isotropic (ply R0=0) 7 [0/87.59/ 82.32/−39.69/20.81/5.14/−83.42] 1.4 10−4

4 Fully isotropic (ply R0=0) 8 [0/−78.94/63.34/−62.83/31.28/−4.42/−29.36/74.74] 1.1 10−8

5 Fully isotropic 12 [0/−55.89/49.92/65.58/−65.74/79.91/
−2.85/−36.58/11.36/26.75/−47.75/76.46]

2.8 10−7

6 Uncoupled, A square symmetric 7 [0/−81.03/35.79/−83.14/−22.93/−86.73/12.66] 1.5 10−7

7 Uncoupled, D square symmetric 7 [0/88.36/−85.89/56.24/4.19/−1.89/−89.84] 4.5 10−6

8 Quasi-homogeneous 12 [0/14.75/2.34/10.59/−2.75/17.55/
13.80/3.99/2.57/8.08/−3.98/13.38]

1.2 10−7

9 Quasi-homogenous square symmetric 12 [0/61.76/−52.12/82.67/−18.21/−78.31/
64.64/1.10/−2.52/44.63/−29.90/−89.65]

1.1 10−13

10 Uncoupled orthotropy 12 [0/44.67/15.70/−39.98/−25.46/−37.21/
59.04/54.28/36.92/−38.16/18.58/−5.23]

4.7 10−5
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Fig. 2 Polar diagrams of E and G for example 2 in Table 1 (in GPa)

to this case has been analytically found by Vincenti et al.
(2001), so the comparison of the results of Table 1 for case 1
and the theoretical solution are possible. The exact solution
is, in degrees and up to the fourth decimal digit,

[0°/4.5735°2/ − 3.0374°/1.5361°]; (37)

it can be noticed that the approximate numerical solution is
very close to the exact one. A remark about the precision: if
the exact solution is given with only the first two decimal dig-
its, the residual of the objective function passes immediately
from 0 to the value of the numerical solution in Table 1. In
effects, a rather great sensitivity of the objective function to
the precision has always been observed, but this sensitivity
concerns much more the value of the residual than the qual-
ity of the solution. Indeed, it has been observed that residuals
in the range 10−6÷10−4 are very well suited for technically
acceptable solutions. Another example confirming this is the
solution of case 9, which is actually an exact solution, be-
ing the residual extremely small. When, to have a stacking
sequence well suited for applications, the solution is approx-
imated to the nearest integer angle,

[0°/62°/ − 52°/83°/ − 18°/ − 78°/65°/1°/ − 2°/45°/

−30°/90°],
(38)

the residual becomes 8.56 10−5, i.e. 7.78 108 times greater.
Nevertheless, the solution remains very close to the exact
one, as it can be seen on the diagrams of moduli E and G for
extension and bending of the exact and approximated solution
shown in Fig. 1: the four curves of E and the four of G are
almost perfectly superposed (there are four curves because
the laminate was also required to be quasi-homogeneous).

Example 2 is another interesting case, since for this prob-
lem, an exact solution exists, the Werren and Norris (1953)
symmetric solution is

[0°/ − 60°/60°/60°/ − 60°/0°]. (39)

It can be noticed that the solution found numerically is very
near to the exact one; in Fig. 2, the polar diagrams of moduli

E and G, for bending and extension, are shown; it can be
noticed that the extension behaviour is in practice isotropic
(the ratio Emax/Emin is equal to 1.0015, i.e. a difference of
0.15%), while the bending one is completely anisotropic.

Examples 3 and 4 concern the search for fully isotropic
laminates composed by R0-orthotropic layers. The use of lay-
ers having one of the two anisotropic invariants null sim-
plifies the search and increases considerably the number of
solutions. In fact, it has been possible to find hundreds of
fully isotropic laminates composed of R0-orthotropic layers
(those shown in Table 1 are the best ones in the sense that
their residual is the lowest), while it is well known that it
is rather difficult to find fully isotropic laminates composed
of generally orthotropic layers (see Grédiac 1999; Vannucci
and Verchery 2002). In addition, the solutions with seven
R0-orthotropic layers, to which example 3 belongs, are, up
to now, the known fully isotropic solutions with the lowest
number of layers.

Finally, example 10 is the case of an uncoupled in- and
out-of-plane orthotropic laminate with identical symmetry
axes in extension and in bending; to test the effectiveness of
the approach, two different types of orthotropy for A and D
have been imposed, simply choosing K = 1 and K̃ = 0 . In
other words, the laminate in example 3 is low-shear mod-
ulus in bending and high-shear modulus in extension. The
diagrams of E and G are shown in Fig. 3. The conditions
imposed to the solution have been satisfied with a good ap-
proximation: in fact, �0 − �1 = −45.03 , �̃0 − �̃1 = 0.20
and the angular gap between the extension and bending sym-
metry axes is only

∣
∣�1 − �̃1

∣
∣ = 0.02 . The two curves of E in

Fig. 3 show clearly the different type of orthotropy in bend-
ing and in extension: contrarily to what happens for bending,
the Young’s modulus E in extension is not the highest on the
orthotropy axes.

The examples given above do not consider but elastic
symmetries. The main goal of this approach was to consider
the design of a laminate, including the design of the elas-
tic symmetries in the procedure, to not use some short cuts
usually accepted by designers, like, for instance, the use of
symmetric stacking sequences. The method proposed hereon
can treat all the problems concerning elastic symmetries in
the same way and can also take into account any combination
of these problems.

Fig. 3 Diagrams of E and G for example 10 in Table 1 (in GPa)
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Fig. 4 Polar diagrams of E for laminate (Eq. 41) (in GPa)

Nevertheless, the main interest of designers is to obtain a
laminate which, in addition to some specified general prop-
erties, i.e. some elastic symmetries in the sense specified in
Sect. 2, maximises some other property, for instance, stiff-
ness or strength and so on, or respects certain given conditions
imposed to the design.

In addition, the formalisation of the problem, which con-
serves the orientation angles as main variables, makes use of
a very non-linear objective function. No general rules are
known to establish a good starting point for a numerical
search of the solution; in addition, Vincenti et al. (2001) have
shown that the set of solutions of several problems concerning
laminates is not discrete; that is, solutions vary continuously
with respect to design variables (see also Valot and Vannucci
2005). So, descent methods, like those used for finding the
solutions in Table 1, are not the best suited for this kind of
problems.

Nevertheless, the method proposed in this paper is ef-
fective also in treating more complicated problems, and of
course, it can be adapted to different numerical methods for
the search of the solution. Let us consider, for instance, the
following example: find a laminate, composed by 12 identical
plies, designed to be uncoupled and orthotropic in extension
and with the orientation angles belonging to a discrete set
(namely, 0◦, ±15◦, ±30◦, ±45◦, ±60◦, ±75◦ and 90◦). The
plies are made with the same material of the previous ex-
amples, i.e. carbon–epoxy T300-5208. Two constraints are
imposed to the solution: the Young’s modulus in extension
must fulfil the following requirements:

Emax ≥ 100 GPa;
Emin ≥ 40 GPa.

(40)

To solve this problem, which is a discrete optimisation
problem, a genetic algorithm has been used (see Vincenti et
al. 2003b,c). The best solution found is

[0°/30°/ − 15°/15°/90°/ − 75°/0°/45°/ − 75°/0°/

−15°/15°], (41)

to whom the residual 1.3×10−3 corresponds; the values
of the extension Young’s modulus for this laminate are
Emin=45.8 GPa at 61.22◦ and Emax=114 GPa at 6.05◦, re-
specting the imposed minimal values. The polar diagrams of
the Young’s modulus in bending and in extension are shown
in Fig. 4. More details on the numerical algorithm and about
the handling of constraints can be found in Vincenti et al.
(2003b,c) or in Vannucci (2002a).

9 Final remarks and conclusion

A new method for designing laminates with given stiffness
properties has been proposed. Some basic problems concern-
ing the design of laminates, often discarded by designers,
are considered in the most general way. This opens the way
to find optimal solutions to some particular problems in the
most general case, without the use of simplifying but rather
limiting hypothesis, such as the use of symmetric balanced
stacking sequences; an example in this sense has been given.

Under a mathematical point of view, this method makes
use of the polar invariants, introduced by Verchery et al.
(2000), and several distinct problems concerning the prop-
erties of a laminate, namely, its elastic symmetries, are con-
densed in a unique formulation, which is a classical problem
of structural optimisation: the search for the minimum of a
positive semi-definite form in the space of polar invariants.
The objective function is non-convex, but the problem is un-
constrained. This new formulation takes a great advantage
by the use of polar tensor invariants, as they are the most
effective way to represent material symmetries.

The examples given in the paper show the effectiveness
of the method, and a discussion of the order of approximation
of the solutions has also been given.

In perspective, some points must still be solved: the use
of the proposed method into a general approach to the op-
timisation of laminates and the inclusion of the number of
plies among the design variables. Researches are going on in
these directions.
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A final remark, the paper shows that some basic proper-
ties not only of a laminate but also of a layer can be charac-
terised as being minimum properties, such as isotropy. This
is a quite new formulation of these properties, as the form to
be minimised is a function of parameters having a physical
meaning, the polar invariants.
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