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Abstract A new implementation of Reproducing Kernel
Particle Method (RKPM) is proposed to enhance the process
of shape design sensitivity analysis (DSA). The accelera-
tion process is accomplished by expressing RKPM shape
functions and their derivatives explicitly in terms of kernel
function moments. In addition, two different discretization
approaches are explored elaborately, which emanate from
discretizing design sensitivity equation using the direct dif-
ferentiation method. Comparison of these two approaches
is made, and the equivalence of these two superficially dif-
ferent approaches is demonstrated through two elastostatics
problems. The effectiveness of the enhanced RKPM is also
verified by comparison of consumption of computer time be-
tween the classical method and the improved method.

Keywords Design sensitivity analysis · Shape optimization ·
Meshless method · Discretization

1 Introduction

The term shape optimization is often used in a narrow sense
referring only to the optimal design of the shape of the bound-
ary of 2D and 3D structural components. The twin term de-
sign sensitivity analysis (DSA), that is, the calculation of
quantitative information on how the responses of a struc-
ture is affected by changes in the variables that define its
shape, is a fundamental requirement for shape optimization
(Haftka and Grandhi 1986). Major computational challenges
involved in shape design optimization using finite element
method (FEM) arise from mesh distortion that occurs dur-
ing large shape design changes, potentially many times of
re-meshing that are needed during the optimization process,
and the difficulties in sensitivity calculation stemming from
inaccurate boundary representation and inaccurate bound-
ary solutions. The recently developed meshless or meshfree
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methods (Belytschko et al. 1994, 1996; Liu et al. 1995, 1996;
Duarte and Oden 1995; Melenk and Babuska 1999; Li and
Liu 2002; Atluri and Zhu 2000), on the other hand, over-
come the aforementioned major drawbacks of the FEM and
seem to be ideally suited for boundary shape optimization.
Meshless methods can provide higher rates of convergence
than the FEM as well as more accurate boundary solutions.
They can also provide continuous structural responses such
as strain and stress at no additional cost. This is of great im-
portance in sensitivity calculation because special strategy
for smoothing of structural responses is avoided. Moreover,
using the element-free Galerkin (EFG) method, Bobaru and
Mukherjee (2001) have shown that the solution given by EFG
is rather insensitive with respect to the arrangement of the
nodes. Therefore, an optimization procedure for the position
of nodes seems unnecessary. For all these reasons, meshless
methods seem to constitute very appealing approaches for
sensitivity analysis and shape optimization.

There are several published researches which use mesh-
less method as a tool for structural analysis and sensitivity
analysis. Grindeanu et al. (1998) used Reproducing Kernel
Particle Method (RKPM) for DSA of hyperelastic structures.
Various 1D and 3D examples were presented to demonstrate
the feasibility and accuracy of RKPM for DSA. It is shown
that mesh distortion or entanglement encountered in large
deformation and shape design optimization is eliminated
completely. Kim et al. (2000a, 2000b, 2001) introduced
meshless method into the shape design optimization prob-
lems with emphasis on the contact problem of nearly incom-
pressible hyperelastic material and elasto-plasticity. Bobaru
and Mukherjee (2001) applied EFG method to shape DSA
and shape optimization problems in 2D elasticity. A new
discretization approach was proposed, and the displacement
sensitivity equation was discretized directly avoiding differ-
entiation of the EFG shape functions. Smoother stresses and
better accuracy for points close to the boundary are obtained
by EFG as compared to published results using the FEM, the
boundary element method, or the boundary contour method.
Recently, Kim et al. (2003) presented some 2D and 3D shape
optimization examples by RKPM. It is shown that the num-
ber of design iterations is reduced because of the accurate
sensitivity information given by the meshless method.
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For the gradient-based optimization algorithm, an accu-
rate evaluation of sensitivity information is a crucial point
of the entire optimization procedure. Efficient and accurate
sensitivity computation, with respect to shape design pa-
rameters, can substantially reduce the design optimization
costs. Unfortunately, one of the main drawbacks of meshless
method lies in the fact that construction of shape functions
and their derivatives is more time-consuming as compared
to the FEM. Any improvement or enhancement of the effi-
ciency of meshless method leads to the acceleration of mesh-
less analysis and ultimately the enhancement of sensitivity
analysis, which is of great value for shape optimization and
shape sensitivity analysis. For this reason, effort is motivat-
ed to enhance the computation of meshless method shape
functions and their derivatives. For the specific Galerkin
meshless method, RKPM, this enhancement is realized
through a new implementation of RKPM, i.e., expressing
explicitly RKPM shape functions in terms of kernel func-
tion moments. This avoids matrix inversions or solutions
of linear systems, which are involved in classical RKPM
procedure. The effectiveness of enhanced RKPM is demon-
strated through two 2D linear elasticity shape DSA problems
by comparison of computer time between classical RKPM
and the improved RKPM. Recently, the authors have devel-
oped this enhancement strategy further into a 3D case, and
a speedup of computation is also observed in 3D structural
analysis (Zhou et al. 2005).

Summarizing the available literature with reference to
meshless shape DSA using material derivative and direct
differentiation method (DDM), there are two apparently dif-
ferent discretization approaches, which are employed in the
meshless discretization of design sensitivity equation. Kim
et al. (2003) emphasize the difference between the FEM
shape functions and meshless shape functions: FEM shape
functions depend on the parent geometry of the element,
which is fixed throughout the design variations; while the
shape functions of meshless method hinge on global coor-
dinates of material points that are the design parameters for
shape DSA. Therefore, the material derivative of meshless
shape functions, which explicitly depends on design velocity,
has to be considered in approximating sensitivity of displace-
ment and sensitivities of other derived variables. Alterna-
tively, Bobaru and Mukherjee (2001) consider the sensitivity
of displacement as a common continuous function, and ap-
proximate it directly by a standard Galerkin procedure with-
out introducing material derivative of shape functions. The
former discretization approach (we call it Kim’s approach
in this paper) is more consistent in the sense of discretiza-
tion, but the latter (Bobaru’s approach) is definitely correct
and particularly simplifies the implementation of shape DSA
by meshless method. These two discretization approaches
are examined carefully, and the equivalence of these two ap-
proaches is shown clearly by two numerical examples.

The outline of the paper is as follows: the classical RKPM
is overviewed briefly, and the enhanced RKPM is proposed in
Section 2. The improved RKPM is applied to DSA, and two
discretization schemes for approximating sensitivity equa-

tion are explored in Section 3. Two DSA problems and a
portal frame shape optimization problem are given in Sec-
tion 4 to demonstrate the effectiveness of the enhancements.
Lastly, some concluding remarks are made in Section 5.

2 Highlights of RKPM for structural analysis

2.1 Enhanced RKPM for efficient computation of shape
functions

For the purpose of illustration, the 2D elasticity problem is
chosen here to show the enhancement of classical RKPM, in
which the shape functions and their first derivatives have the
following form:

NI (x, y) = [c0 + c1(x − xI )+
c2(y − yI )]wd(x, y) (1)

NI,x (x, y) = [c0,x + c1,x (x − xI ) + c1+
c2,x (y − yI )]wd(x, y) + [c0 + c1(x − xI )+
c2(y − yI )]wd,x (x, y) (2)

NI,y(x, y) = [c0,y + c1,y(x − xI ) + c2+
c2,y(y − yI )]wd(x, y) + [c0 + c1(x − xI )+
c2(y − yI )]wd,y(x, y) (3)

where NI(x,y), NI,x(x,y), and NI,y(x,y) are the shape function
associated with node I and its derivatives with respect to x
and y, respectively; wd(x,y) is the kernel function and is cho-
sen as the cubic spline function in this paper; ci, ci,x, and
ci,y are correction coefficients, derivatives of correction co-
efficients with respect to x and y, respectively. In classical
RKPM implementation, the correction coefficient vector C
and its derivatives C,x and C,y are obtained by solving the
so-called reproducing conditions, i.e., the following 9×9 si-
multaneous equations:



M 0 0
M,x M 0
M,y 0 M







C
C,x

C,y


 =


M

0
0


 (4)

where M is the 3×3 moment coefficient matrix, M, x and
M,y are derivatives of M with respect to x and y, and M is
the 3×1 known right-hand vector. Solving (4) may involve
matrix inversions or solutions of linear equations, which ex-
hausts most of computer time when frequent shape functions
constructions are needed.

Motivation is inspired by the fact that the analytical
solution of (4), in terms of kernel function moments, are
obtainable provided that analytical form of inversion of
matrix M is derived. This is not a difficult task, and the ex-



98 J. X. Zhou et al.

plicit forms of correction coefficients and their derivatives
are summarized as follows:

ci = vi0/� (i = 0, 1, 2) (5)

ci,x = − 1

�2
[ν00(νi0m00,x + νi1m10,x + νi2m01,x )

+ ν10(νi0m10,x + νi1m20,x + νi2m11,x )

+ ν20(νi0m01,x + νi1m11,x + νi2m02,x )] (6)

where

ν00 = m02m20 − m2
11

ν10 = ν01 = m01m11 − m02m10
ν20 = ν02 = m10m11 − m01m20
ν11 = m00m02 − m2

01
ν12 = ν21 = m01m10 − m00m11
ν22 = m00m20 − m2

10

and

� = m00m20m02 + m10m11m01 + m01m10m11

− m2
01m20 − m2

10m02 − m2
11m00

mij are kernel function moments in the following form for
the 2D problem considered herein:

mi j (x, y) =
∫

�

(x − s)i (y − t) j ×

wd(x − s, y − t)dsdt (7)

Substituting expressions (5) and (6) into (1)–(3) gives explicit
RKPM shape functions in terms of kernel function moments.
Enhancement of RKPM is the consequence of the fact that
frequent matrix inversions or solutions of linear systems are
replaced by the much cheaper algebraic manipulations in (5)
and (6).

2.1.1 Galerkin meshless discretization

For 2D linear elasticity problem, the principle of virtual work
gives, using penalty method to enforce essential boundary
conditions, the following weak form:

∫
�

σ · εd� −
∫

�

η · bd� −
∫

�t

η · t̄d�+

α

∫
�u

η · (u − u)d� = 0 (8)

where σ is the stress tensor corresponding to the displace-
ment u, b is the body force vector, t is the traction on the �t

part of the boundary of � with normal n, and u is the pre-
scribed displacement on the boundary �u. Applying Galerkin
approximations via RKPM shape functions to trial function
u and test function η yields

u =
NP∑
I=1

N I dI , η =
NP∑
I=1

N I d̃I (9)

where NP denotes the total number of particles, dI des-
ignates the generalized displacement vector of particle I,
and similarly for d̃I . Substituting approximation (9) into
(8) gives, referring to (Bobaru and Mukherjee 2001) for de-
tailed expressions of K, Kα, F and Fa, the following discrete
equations:

(K + Kα)d = F + Fa (10)

where d is the global generalized displacement vector,
the matrices K and Kα are gathered from the following
submatrices

KI J =
∫

�

BT
I DBJ d� (11)

Kα
I J = α

∫
�u

	T
I S	J d� (12)

in which

Bi =



∂ N I /∂x 0
0 ∂ N I /∂y

∂ N I /∂y ∂ N I /∂x


,

	I =
[

N I 0
0 N I

]
, S =

[
S1 0
0 S2

]

Si is defined so that when ui is prescribed on �u then Si=1
and otherwise Si=0. Similarly, vectors F and Fa consist of
the following subvectors

FI =
∫

�

	T
I bd� +

∫
�t

	T
I td� (13)

Fα
I = β

∫
�u

	T
I Sūd� (14)

3 Enhanced RKPM for shape DSA

3.1 DDM for the Galerkin weak form using material
derivative

Borrowing the material derivative idea from continuum me-
chanics, the following material derivative or total derivative
of displacement with respect to shape design parameter τ is
introduced (Haug et al. 1986):

u̇ = lim
τ→0

uτ (x + τV(x)) − u(x)

τ
= u′ + ∇uV (15)
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where V(x) is known as the design velocity field. Once the
displacement sensitivity as given in (15) is known, the sen-
sitivities of strain and stress are obtained readily as follows:

ε̇(u) = ε(u̇) − 1

2

[∇u∇V + (∇u∇V)T]
(16)

σ̇ (u) = D : ε̇(u) (17)

In the DDM, we simply take the material derivative of
the weak form of the structural (8) and take (15)–(17) into
consideration, and ultimately obtain the following so-called
design sensitivity equation

∫
�

σi j (u̇)εi j (η)d� + α

∫
�u

ηi (u̇i − ˙̄ui )d�+
∫

�

σi j (u)εi j (η)divVd� +
∫

�

εV
i j (η)σi j (u)d�

+
∫

�

εi j (η)Di jklε
V
kl(u)d� =

∫
�

ηi [ḃi + bi divV]d� +
∫

�t

ηi [ ˙̄ti + t̄i (V · n)H ]d�−

α

∫
�u

ηi (ui − ˙̄ui )(V · n)Hd� (18)

where H=divn is the curvature of  in 2D and the mean
curvature of  in 3D, and

εV
i j (u) = −1

2

(
∂ui

∂xk

∂Vk

∂x j
+ ∂u j

∂xk

∂Vk

∂xi

)
(19)

3.2 Discretizing design sensitivity equation by the Kim’s
approach

In the Kim’s discretization approach, the variation of RKPM
shape functions with respect to design variable, i.e., the ma-
terial derivative of shape functions, is taken into account, and
the displacement sensitivity can be approximated as

u̇ =
NP∑
I=1

(N I ḋ I + Ṅ I dI ) (20)

where ḋ I is the material derivative of generalized nodal dis-
placement vector, dI; Ṅ I is the material derivative of shape
function. Following the same treatment of shape functions,
the material derivative of shape functions is expressed as

ṄI (x, y) = [ċ0 + ċ1(x − xI ) + c1(Vx − V I
x )

+ ċ2(y − yI ) + c2(Vy − V I
y )]wd(x, y)

+ [c0 + c1(x − xI ) + c2(y − yI )]ẇd(x, y)

(21)

where the subscripts in Vx and Vy indicate the components
of design velocity in the x and y directions, respectively; the
superposed dots on the correction coefficients and the kernel
function denote the material derivatives of correction func-
tions and kernel function, respectively. The material deriv-
ative of kernel function can be obtained easily according to
the specific expression of original kernel function. To obtain
the material derivative of correction coefficients, a similar
reproducing condition as the second equation in (4) can be
written as follows

ṀC̄ + M ˙̄C = 0 (22)

In similar fashion, we can write the analytical form of inver-
sion of matrix Ṁ , and the material derivative of correction
coefficients can be expressed in terms of material derivative
of kernel function moments in the following form:

ċi = − 1

�2
[ν00(νi0ṁ00 + νi1ṁ10 + νi2ṁ01)

+ ν10(νi0ṁ10 + νi1ṁ20 + νi2ṁ11)

+ ν20(νi0ṁ01 + νi1ṁ11 + νi2ṁ02)]

(23)

where the material derivative of kernel function moments is
expressed as

ṁi j (x, y) =
NP∑
I=1

[i(x − xI )
i−1(Vx−V I

x )×

(y − yI )
j wd(x, y) + j (x − xI )

i×

(y − yI )
j−1(Vy − V I

y )wd(x, y)+

(x − xI )
i (y − yI )

j ẇd(x, y)]

(24)

When the design velocities are given, (23) and (24) can be
evaluated prior to the sensitivity analysis. We will show be-
low that these explicit expressions for material derivative of
shape functions in combination with the above analytical
forms of shape functions undoubtedly enhance the process
of structural analysis as well as sensitivity analysis. It should
be noted that the material derivative of NI,x and NI,y can be
expressed as the similar forms as that of ṄI , and the detailed
expressions are omitted here.

Substituting approximation (20) into (18) in combination
with the approximations given in (9) gives

(K + Kα)ḋ = F
 − (M + N)d (25)

where matrices M and N and column vector F
 consist of the
following submatrices and subvectors

MI J =
∫

�

(BT
I DḂ J + BV T

I DB J + BT
I DBJ divV)d� (26)
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NI J = α

∫
�u

[	T
I S	̇J + 	T

I S	J (V · n)H ]d� (27)

F

I =

∫
�

	T
I [ḃ + bdivV]d�+

∫
�t

	T
I [ ˙̄t + t(V · n)H ]d�+

α

∫
�u

	T
I Sū(V · n)Hd� (28)

in which

ḂI =
[

Ṅ I
,x 0 Ṅ I

,y
0 Ṅ I

,y Ṅ I
,x

]T

,

BV
I = −

[
N I

,k Vk,x 0 N I
,k Vk,y

0 N I
,k V k,y N I

,k Vk,x

]T

In the expression of BI
V, summation over repeated indices is

implied.
It should be pointed out that the left-hand side matrices

involved in (25) are the same as that appear in (10). There-
fore, only the calculation of the matrices in the right-hand
side of (25) is needed. Once ḋ is obtained, it is substituted
into (20) to compute the sensitivity of displacement and ulti-
mately to evaluate the sensitivities of strain and stress by the
corresponding strain measure and the constitutive law.

3.3 Discretizing of design sensitivity equation
by the Bobaru’s approach

As an alternative to (20), Bobaru and Mukherjee (2001) pre-
sented, considering u̇ an ordinary smooth field variable and
treating u̇ in the standard discretization manner, another dis-
cretization approach as follows

u̇ =
NP∑
I=1

N I ˆ̇d I
(29)

Note that a hat is superposed on ˆ̇d I
to indicate that it is dif-

ferent from ḋ in (20). Actually, it is considered here that ˆ̇d I

contains not only the information of ḋ but also the informa-
tion of Ṅ I dI in (20). Substituting the expression (29) and
invoking the following relationships,

ε(u) = Bd, ε(η) = Bd̄, σ (u) = DBd, σ (u̇) = DB ˆ̇d
it follows that

(K + Kα) ˆ̇d = F̂
 − (M̂ + N̂ + N̂T)d (30)

As counterparts of 26–28, we have

M̂I J =
∫

�

BT
I DBJ divVd�+

α

∫
�u

	T
I S	J (V · n)Hd�

(31)

N̂I J =
∫

�

BT
I DBV

J d� (32)

F̂

I =

∫
�

	T
I [b + bdivV]d�+

∫
�t

	T
I [ ˙̄t + t(V · n)H ]d�+

α

∫
�u

	T
I Sū(V · n)Hd�

(33)

3.3.1 Remark

In the Kim’s discretization approach, the sensitivity of dis-
placement is decomposed into two parts: one consists of ma-
terial derivative of nodal parameters while another consists of
explicit variations of meshless shape functions with respect
to shape design variations. This approach is more consistent
in the sense of discretization, and, furthermore, highlights
the differences between the meshless shape functions and
the shape functions of the FEM. Boburu’s approach provides
alternative appealing discretization scheme for practical ap-
plication. From the viewpoint of application, Bobaru’s ap-
proach is more realistic and simpler because it avoids the
complexities involved in calculating the material derivative
of shape functions and thus simplifies the implementation of
shape DSA. Although these two discretization approaches
are seemingly different and lead to different implementation
of DSA using meshless method, it should be pointed out that
these two discretization approaches are equivalent, and any
of them can give correct answers as shown in the following
numerical examples. The choice of discretization scheme is
only a matter of preference.

4 Numerical examples

In order to prove the effectiveness of enhanced RKPM for
DSA and to demonstrate the equivalence of two discretiza-
tion approaches, two 2D linear elasticity examples given in
Bobaru and Mukherjee 2001 are adopted, in which the an-
alytical solutions of sensitivities are available. The two ex-
amples are the pulling of a bar and the Lame’s problem, and
denoted by numerical examples 1 and numerical example 2,
respectively. As state previously, the enhanced RKPM will
accelerate structural responses analysis as well as the DSA.
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Fig. 1 Numerical example 1: the pulling of a bar

In addition, the Bobaru’s discretization approach is simpler
to be implemented. It is desirable to perform shape optimiza-
tion by combing the improved RKPM and the Bobaru’s ap-
proach. This is demonstrated via a portal frame optimization
problem.

4.1 Numerical example 1: the pulling of a bar

The same parameters as given in Bobaru and Mukherjee 2001
are used in this paper: a bar of dimensions 5 m×20 m with
Young’s modulus of E=3×107 N/m2 and Poisson’s ratio
γ=0.3 is chosen as the computational model as shown in
Fig. 1. A traction t=104 N/m2 is applied at the right end of
the bar, while the left end of the bar is fixed. The penalty pa-
rameter is chosen as α=106×E. The design variable is
chosen to be the length of the bar. The exact solutions
of displacement sensitivities in the x and y directions are
(Bobaru and Mukherjee 2001):

u̇x (X, τ ) = ε11
x

l
, u̇ y(X, τ ) = 0

The displacement sensitivity in the x direction given by us-
ing two discretization approaches are compared with the ex-

Fig. 2 Comparison of analytical displacement sensitivity to numerical
results by Kim’s discretization approach

Fig. 3 Comparison of analytical displacement sensitivity to numerical
results by Bobaru’s discretization approach

act solutions given above and illustrated in Figs. 2 and 3,
respectively.

4.2 Numerical example 2: Lame’s problem

The second example chosen here is the Lame’s problem.
A cylinder of internal radius a=1 and external radius b=2
is subjected to uniform internal pressure p=1 as shown in
Fig. 4. We take E=1, γ=0.3 and α=106×E as computation
parameters for this problem. Choosing the internal radius as
the design variable and a liner design velocity field, the exact

Fig. 4 Numerical example 2: Lame’s problem
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Fig. 5 Comparison of analytical displacement sensitivity to numerical
results by Kim’s discretization approach

expressions of sensitivities of displacement and stress have
the following form in the polar coordinates:

u̇x = u̇r cos θ
u̇ y = u̇r sin θ

σ̇rr = 2ab2 p[r(r2 − b2) + a(b − r)(b + a)]

(b2 − a2)2r3

σ̇θθ = 2ab2 p[r(r2 + b2) − a(b − r)(b + a)]

(b2 − a2)2r3

σ̇rθ = 0

where

u̇r = 2pab2

E(b2 − a2)2

[
(1 − γ )r + (1 + γ )

b2

r

]

+ pa2(b − r)

E(b2 − a2)(b − a)

[
(1 − r) − (1 + r)

b2

r2

]

Fig. 6 Comparison of analytical displacement sensitivity to numerical
results by Bobaru’s discretization approach

Fig. 7 Comparison of analytical stress sensitivity to numerical results
by Kim’s discretization approach

The comparison of exact results and numerical results of dis-
placement and stress sensitivities for the points on the x-axis
is made and shown in Figs. 5, 6, 7, and 8. The numerical
results are given by using two discretization approaches.

From Figs. 2, 3,and Figs. 5, 6, 7, and 8, we come to the
conclusion that RKPM is effective for shape DSA, and it can
provide numerical results with great accuracy as compared
with the exact solutions. Furthermore, a prior conclusion,
which can be drawn from these figures, is that both of these
two discretization approaches are definitely correct, and they
are intrinsically equivalent.

4.3 The effectiveness of the enhanced RKPM for DSA

To demonstrate the effectiveness of the enhanced RKPM for
shape DSA, the computation time of two numerical examples

Fig. 8 Comparison of analytical stress sensitivity to numerical results
by Bobaru’s discretization approach
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Table 1 Comparison of computation time of DSA between classical
and enhance RKPM (unit of time: min)

Numerical examples Classical
RKPM

Enhanced
RKPM

Numerical example 1
(particle number: 85)

17 7

Numerical example 1
(particle number:
256)

56 24

exhausted by classical RKPM and the proposed enhanced
RKPM is compared and presented in Table 1. The particle
numbers of examples 1 and 2 are 85 and 256, respectively.
The computer used here is a PIII 800 PC computer. As can
be seen from Table 1, the enhanced RKPM proposed in this
paper can markedly speed up the process of shape DSA. The
time-savings of enhanced RKPM is nearly 70% of the com-
putation time of classical RKPM as for the presented two
examples.

4.4 Shape optimization of a portal frame by enhanced
RKPM

The computational model is shown in Fig. 9, in which AB,
CD, DE, and FG are four boundaries to be optimized. A to-
tal of 14 design variables are chosen to be the x-coordinates
of five key points on AB and FG, and the x-coordinates of
two key points on CD and DE, respectively. The objective
is to minimize the area of the frame under the constraint
that the von Mises stress does not exceed the admissible
stress—300 MPa in this paper. Material constants with E=
207 MPa and γ=0.3 are assumed. A total of 496 particles
are used to discretize the domain. After eight optimization
iterations, a 23.7% area reduction from initial 9,055 mm2 to
final 6,908 mm2 is obtained. Figure 10 shows the final parti-
cle distribution, and Fig. 11 shows the final non Mises stress
distribution after eight optimization iterations, respectively.

Fig. 9 Computation and optimization model of a portal frame

Fig. 10 Final particle distribution after eight iterations

5 Concluding remarks

RKPM is implemented in a different manner such that RKPM
shape functions and their derivatives are expressed explicitly
in terms of kernel function moments. The analogous ideas
are followed in the shape DSA formulations, in which the
material derivative of shape functions is also written analyt-
ically in terms of material derivative of moments. The goal
of these efforts is to provide explicit forms of RKPM shape
functions for programming, and the matrix inversions or solu-
tions of linear systems are absolutely eliminated. This lead to
marked time reduction in structural analysis and shape DSA
and, at last, we believe, can speed up the process of shape op-
timization and make RKPM more realist and applicable. The
effectiveness of enhanced RKPM is proved via two 2D linear
elasticity problems, and it is shown that the computation time
decrease is more than 50% of that of classical RKPM.

Discretization scheme is an important issue from the point
of view of practice, and it is another topic in this paper. Us-
ing meshless methods for DSA, there exist two superficially
different discretization approaches, called Kim’s approach
and Bobaru’s approach herein, for Galerkin approximation

Fig. 11 Final von Mises stress contour after eight iterations
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of shape sensitivity equation, which is a key equation for
shape DSA. It is demonstrated through numerical examples
that these two discretization approaches are equivalent, and
both of them can give correct results. Kim’s approach is more
consistent in the sense of discretization, while Bobaru’s ap-
proach is simpler and more appealing in practice. The choice
of discretization approach is a matter of taste.

Finally, a more complicated portal frame shape optimiza-
tion problem with four design boundaries is studied by an
integration of the enhanced RKPM into Baboru’s approach.
This example demonstrates the feasibility and the effective-
ness the improvements and efforts made in this paper. The de-
velopments and applications of these improvements to shape
optimization problems of nonlinear structures undergoing
large deformation by meshless method are underway.
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