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Abstract Alternative formulations for optimization and
simulation of structural and mechanical systems and other
related fields are reviewed. The material is divided roughly
into two parts. Part 1 focuses on the developments in struc-
tural and mechanical systems, including configuration and
topology optimization. Here the formulations are classified
into three broad categories: (i) the conventional formula-
tion where only the structural design variables are treated
as optimization variables, (ii) simultaneous analysis and de-
sign (SAND) formulations where design and some of the
state variables are treated as optimization variables, and (iii)
a displacement-based two-phase approach where the dis-
placements are treated as unknowns in the outer loop and the
design variables as the unknowns in the inner loop. Part 2
covers more general formulations that are applicable to di-
verse fields, such as economics, optimal control, multidisci-
plinary problems and other engineering disciplines. In these
fields, SAND-type formulations have been called mathe-
matical programs with equilibrium constraints (MPEC), and
partial differential equations (PDE)-constrained optimiza-
tion problems. These formulations are viewed as generaliza-
tions of the SAND formulations developed in the structural
optimization field. Based on the review, it is concluded that
the basic ideas of the formulations presented in diverse fields
can be integrated to conduct further research and develop al-
ternative formulations and solution procedures for practical
engineering applications. The paper lists 187 references on
the subject.
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Major abbreviations

DB: Displacement-based two-phase formulation
FEM: Finite element method
KKT: Karush–Kuhn–Tucker
LP: Linear programming
MDO: Multidisciplinary design optimization
MPEC: Mathematical programs with equilibrium con-

straints
NAND: Nested analysis and design (conventional formula-

tion)
NLP: Nonlinear programming
ODE: Ordinary differential equations
PDE: Partial differential equations
SAND: Simultaneous analysis and design
SDP: Semidefinite programming
SLP: Sequential linear programming
SQP: Sequential quadratic programming
rSQP: Reduced SQP method

1 Introduction

Since the 1960s, various formulations for optimization of
problems in many diverse fields, such as structural, chem-
ical, industrial and mechanical engineering, economics, op-
timal control and others, have been developed and discussed
in the literature. These formulations are reviewed with the
objective of possible cross-fertilization of ideas that can lead
to better approaches for optimization of complex systems.

In the structural optimization literature, three basically
different formulations for optimum design have been pre-
sented. The first one is called the conventional formulation
where only the structural design variables are treated as
the optimization variables. This is also called the nested
analysis and design (NAND) approach. The second set of
formulations is known as the simultaneous analysis and de-
sign (SAND) approach. In these formulations some of the
state variables, such as the displacements, are also treated as
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optimization variables in addition to the traditional design
variables. The governing equilibrium equations are treated
as equality constraints. The third formulation is known as
the displacement-based two-phase approach where the dis-
placements are treated as optimization variables in the outer
loop and the design variables as the unknowns in the inner
loop.

Parallel developments of SAND-type optimization for-
mulations and their solutions strategies have also taken place
in other fields since the 1970s. A general class of formu-
lations known as mathematical programs with equilibrium
constraints (MPECs) has been developed and studied. The
word equilibrium in the term MPEC refers to the varia-
tional equalities or inequalities that model the equilibrium
phenomenon in engineering and other applications. An-
other class of formulations that has been presented and
analyzed recently is known as partial differential equations
(PDE)-constrained optimization. In these formulations, the
equilibrium equations are expressed in a continuum form,
the PDEs. In addition to these literatures, SAND-type ap-
proaches have been used to solve optimal control problems.
We shall present an overview of these literatures.

Thus, the objective of this paper is to review various
formulations for optimization and simulation of structural
and mechanical systems, and other related fields. The liter-
ature on this topic has grown substantially in recent years.
To cover the material properly, the paper is divided roughly
into two parts. Part 1, consisting of Sects. 2 to 7, focuses on
the developments in structural optimization including con-
figuration and topology optimization. Part 2, consisting of
Sects. 8 to 11, covers developments on the subject in other
diverse fields, such as economics, other engineering disci-
plines, optimal control, and multidisciplinary design opti-
mization. Section 2 presents an overview of the entire liter-
ature. Section 3 describes the conventional formulation and
Sect. 4 covers simultaneous analysis and design (SAND)
formulations. Literature on linear and nonlinear problems is
covered, and optimization algorithms that have been used
for SAND formulations are discussed. Section 5 describes
the displacement-based two-phase formulation for structural
optimization. Section 6 presents a comparative evaluation of
the three formulations, the conventional, SAND, and the dis-
placement based two-phase. Section 7 covers the literature
on configuration and topology optimization of structures.
Section 8 describes the PDE-constrained optimization for-
mulation where the equilibrium equations are kept in the
continuum form. Section 9 covers the formulation of math-
ematical programs with equilibrium constraints (MPEC).
Section 10 covers the literature on optimal control problems,
and Sect. 11 covers the literature on multidisciplinary design
optimization. Finally, some concluding remarks are given
in Sect. 12.

2 Overview of the literature

Various formulations that have been used to solve differ-
ent optimization problems can be classified into two broad
categories: (i) conventional formulation, also called nested

analysis and design (NAND), where only the design vari-
ables are treated as the independent optimization variables,
and (ii) formulations where the state variables and the design
variables for the system are simultaneously treated as in-
dependent optimization variables, and the governing analy-
sis equations are treated as equality constraints. We present
more details of these formulations later in the paper; here we
present an overview of the literature on the subject.

In the structural optimization literature, the simultan-
eous analysis and design (SAND) formulation is a major
class of alternative formulations that has been discussed
since the 1960s. Besides the design variables, the SAND
formulations also include some of the state variables as op-
timization variables. Some of the earliest attempts to in-
clude state variables in the structural optimization problem
were by Schmit and Fox (1965). The basic idea was to
transform an inequality-constrained minimization problem
in the design variable space into an unconstrained prob-
lem in a space of mixed design and state variables. Fuchs
(1982, 1983) presented explicit optimum design methods
(SAND) for linear elastic trusses. Explicit expressions for
the objective function and the constraints could be obtained.
A SAND formulation based on an element-by-element pre-
conditioned conjugate gradient technique was proposed by
Haftka (1985), and Haftka and Kamat (1989). It was con-
cluded that the simultaneous approach was competitive with
the conventional nested approach, and that it was more effi-
cient for large-scale problems. Shin et al. (1988) considered
the simultaneous analysis and design approach to solve the
problem with eigenvalue constraints. Ringertz (1989) for-
mulated the minimum-weight design of structures with ge-
ometrically nonlinear behavior in two different ways. All
the equilibrium equations or a few of them were treated as
constraints. Both design variables and displacements were
treated as optimization variables. Ringertz (1992) also pre-
sented methods for the optimal design of nonlinear shell
structures. The matrix sparsity in the constraint Jacobian
was exploited because of the large number of variables.
Kirsch and Rozvany (1994) presented several alternative
but equivalent formulations for structural optimization prob-
lems. These included design variable space (conventional),
SAND, optimality criteria (OC), and some simplified SAND
formulations. Other methods, such as the augmented La-
grangian method, have also been used with SAND formula-
tions (Larsson and Rönnqvist 1995). The SAND formulation
proposed by Orozco and Ghattas (1991, 1997) was solved
by a reduced SQP method. Geometrically nonlinear behav-
ior of the structure was included in the formulation and the
sparsity of problem functions was exploited in the calcula-
tions.

In recent years, various SAND formulations have been
successfully applied to the configuration and topology de-
sign of structures (Bendsøe 1995; Bendsøe and Sigmund
2003). It is well-known that a crucial step for success of the
SAND formulations is the solution of very large-scale op-
timization problems. Therefore considerable focus has been
put on the development of new algorithms to solve large-
scale optimization problems (Ringertz 1995; Ben-Tal and
Roth 1996; Ben-Tal and Zibulevsky 1997; Orozco and Ghat-
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tas 1997; Jarre et al. 1998; Maar and Schulz 2000; Her-
skovits et al. 2001; Hoppe et al. 2002; and others).

Another alternative approach to optimum structural de-
sign is the so-called displacement-based two-phase proced-
ure. In a paper by Missoum and Gürdal (2002), the two-
phase optimization procedure of McKeown (1977, 1989,
1998) was presented and applied to optimize trusses. The
formulation solved the problem in two phases, the inner and
outer problems. In the inner problem, the cost was mini-
mized subject to satisfaction of the equilibrium equations.
The displacement field was specified and the design vari-
ables were the independent variables. In the outer problem,
the displacements were determined to minimize the cost
function subject to the stress and displacement constraints.
That work has also been extended to nonlinear problems
(Missoum et al. 2002a,b).

Optimality criteria (OC) methods have also been classi-
fied as a kind of alternative formulation by some researchers
(Kirsch and Rozvany 1994), because the solution space in-
cludes both the design variables and the Lagrange multi-
pliers. Starting from the Karush–Kuhn–Tucker (KKT) con-
ditions, iterative update relations are derived for the vari-
ables. The optimality conditions are treated as additional
constraints, and satisfied at the optimal point (Khot et al.
1979). Such procedures are not reviewed in the current pa-
per.

It turns out that the SAND-type formulations have also
been discussed in other fields since the 1970s. These are
known as mathematical programs with equilibrium con-
straints (MPECs). An MPEC is an optimization problem
having primary constraints that are expressed as a para-
metric variational inequality or a complementarity system.
The MPECs can also be viewed as a generalization of the
so-called bilevel programs, also known as mathematical
programs with optimization constraints. The basic idea of
MPEC was introduced in the operations research literature
in the early 1970s by Bracken and McGill (1973, 1974a,b,c).
These ideas can also be traced back the economic problem
of the Stackelberg game (Stackelberg 1952). The MPEC has
evolved as a major research field in recent years and has
been put on a firm mathematical foundation (Lou et al. 1996;
Outrata et al. 1998). The MPEC formulation covers many
diverse applications, such as economics, chemical engin-
eering, and many more. As a particular example, structural
analysis and design problems in unilateral frictional contact
have been discussed with the MPEC formulation (Hilding
et al. 1999).

Other developments of optimization formulations and
their solutions strategies have also taken place recently.
These are known as partial differential equations (PDE)-
constrained optimization problems (Biegler et al. 2003).
Most simulation problems in engineering fields involve so-
lutions of partial differential equations. Therefore, following
the SAND concept, the simulation variables can also be
treated as optimization variables and the PDEs as equality
constraints. Often the PDEs are obtained as a result of some
variational principle to model an equilibrium phenomenon.
Therefore, PDE-constrained optimization can be viewed as
a special case of the MPEC.

3 Conventional formulation

The most common approach for structural optimization has
been that in which only the design variables are treated as
optimization variables. All other response quantities, such
as displacements, stresses, strains and internal forces are
treated as implicit functions of the design variables. In this
section, some technical details of the conventional NAND
approach for optimization of structural and mechanical sys-
tems are presented. This is done by considering a linear
analysis problem (small displacements and linearly elastic
material model) in the discretized form. The approach can
also be described for nonlinear analysis, using a continuum
form of the analysis equations that is more general because it
is not tied to any particular discretization (Arora 1995; Haug
et al. 1986). However, this will not be done here to keep the
presentation of the basic ideas clearer and straightforward.

3.1 Formulation

To describe the current approach, let us define the following
notation:

b = a k-dimensional vector of design variables that de-
scribes the design of the system,

z = an n-dimensional vector of generalized displacements.

For linear small displacement analysis, the governing
equilibrium equation for the system is discretized as follows:

K(b)z = F(b) (1)

where

K(b) = a nonsingular n ×n stiffness matrix that depends on
the design of the system,

F(b) = an n-dimensional vector of equivalent external loads
applied at the nodes of the discretized model for the
system.

For a given design b and boundary conditions, (1) is as-
sembled using contributions from each finite element, and
solved for the state variable vector z. Using the vector z,
strains and stresses at all points of the structure can be evalu-
ated. Equation (1) has been implemented in many computer
programs to analyse various structural systems. These pro-
grams are now widely used in practice. It is important to
note that when the system is nonlinear (large displacements,
elastoplastic material), (1) becomes nonlinear because K(b)
and F(b) start to depend on the state variables z for the sys-
tem. This complicates the solution process for (1) because
it requires incremental and iterative procedures, such as the
Newton–Raphson approach.

The optimal design problem is defined as follows:
Find the design variable vector b to minimize a cost

function,

f = f(b, z) (2)

subject to the inequality constraints

g(b, z) ≤ 0 (3)
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Equality constraints, if present in the formulation, can be
treated quite routinely. Note that, in the above formulation,
the variables b and z are not independent; they are related
by the equilibrium condition in (1). It is obvious that the de-
sign variables b can be treated as independent optimization
variables, while z are treated as dependent variables. There-
fore, it is natural to set up a nested analysis and optimization
process, using an analysis code, to calculate z using given
b. This is the central idea of the conventional formulation,
i.e., to treat b as the only optimization variable and treat z as
a function of b, z = z(b). In the MPEC literature, this proced-
ure is called the implicit programming approach. Since the
displacement-based FEM is a powerful analysis method and
readily available, the conventional formulation has been the
usual approach to solve optimization problems. Another rea-
son for the popularity of the conventional formulation is that
the widely used approximate resizing rules can be obtained
based on optimality criteria (Haftka 1985). Other analysis
methods are also available for the conventional formula-
tion of optimal design, such as the force method (Sedaghati
and Esmailzadeh 2003), boundary element method or mesh-
free method (Kim et al. 2003). Equation (1) therefore needs
to be consistent with the corresponding analysis method.
Structural analysis techniques based on conjugate gradient
minimization of the energy functional have also been used
for design optimization (Barthelemy et al. 1991).

3.2 Gradient evaluation

Numerical values for z can be obtained from the state equa-
tion (1) once b is specified. However, an explicit func-
tional form for z in terms of b cannot be obtained. In other
words, z cannot be eliminated from the optimization prob-
lem by substitution. In the gradient-based optimization pro-
cess, derivatives of the cost function f(b, z) and the con-
straint functions g(b, z) with respect to b are needed. The
explicit expressions for these derivatives in terms of b can-
not be obtained since z is an implicit function of b. There-
fore, usually the finite difference methods have been used
to calculate the gradients since they are easy to implement
and explicit expressions for the cost and constraint functions
are not needed. However, the finite difference methods have
accuracy problems, i.e., the so-called “step-size” dilemma
(Haftka and Gürdal 1992). Another drawback is that they are
slow because they require a repeated solution of the state
equation (1).

To derive analytical expressions for gradients of the
functions, implicit differentiation procedures need to be
used, which is called design sensitivity analysis. To explain
this process, the calculation of derivatives of one of the func-
tions, say f(b, z), is briefly explained. Other functions can
be treated similarly. Taking total derivative of f(b, z) with
respect to b, we get

d f(b, z (b))

db

∣
∣
∣
∣
k×1

= ∂ f(b, z)
∂b

∣
∣
∣
∣
k×1

+ dz(b)

db

∣
∣
∣
∣
k×n

∂ f(b, z)
∂z

∣
∣
∣
∣
n×1

(4)

Calculation of the partial derivatives of f(b, z) with respect
to b and z presents no particular difficulty because explicit
dependence of the function on b and z is known. However,
calculation of dz

db in (4) needs further analysis and explana-
tion. To calculate this k×n matrix, we take a total derivative
of the state equation (1) with respect to the design vari-
ables b and rearrange the resulting equation to obtain:

KZ = S (5)

where

Z|n×k = dz (b)

db

T

; S|n×k = ∂

∂b
(F (b)−K (b) z)T (6)

Equation (5) looks deceptively simple and similar to the
state equation (1). However, its solution variable Z is not
a vector but a matrix of dimension n × k (just for one load-
ing condition). The right-hand side S is also a matrix of the
same dimension. Once the right-hand side has been calcu-
lated, (5) can be solved using the same process that was used
for solving (1). The decomposed matrix K needs to be saved
for reuse with (5), requiring a certain amount of data manip-
ulation and storage. If iterative methods are used to solve the
state equation (1), then the decomposed K is not available.
Then (5) must also be solved using the iterative solution pro-
cess, which can be more time-consuming compared to the
foregoing procedure where the decomposed K is available.

The calculation of the matrix S in (6) requires partial dif-
ferentiation of the equilibrium equation for each finite elem-
ent with respect to the design variables b and then assembly
of the matrix S using these data. This process requires addi-
tional programming to extend the analysis code in order to
implement the design sensitivity analysis. In addition, if new
finite elements are added or the current ones are updated, the
code for the design sensitivity analysis needs to be modified
accordingly. Further, implementation of design sensitivity
analysis for nonlinear and multi-physics problems becomes
more complex and computationally more expensive because
K and F depend on the state of the system as well. This is
one of the stumbling blocks for engineering applications of
optimization.

The above procedure for design sensitivity analysis is
called the direct differentiation method. There is an alternate
approach of design sensitivity analysis called the adjoint
variable method. To derive that method, (5) is substituted
into (4) as Z = K−1S, and an adjoint problem is defined with
adjoint load of ∂ f/∂z. The adjoint displacement vector is
substituted into (4) to obtain an expression for the design
gradient. Under certain circumstances, this method is more
efficient than the direct differentiation method. However, the
method is even more difficult to implement into analysis
codes, especially for nonlinear and transient dynamic prob-
lems. Substantial literature is available that describes theor-
etical as well as implementation aspects of the design sen-
sitivity analysis approaches (Haug et al. 1986; Arora 1995;
and many other references).

Conventional optimization formulations and solution
methods for structural and mechanical systems can be diffi-
cult to use for design of practical structural and mechanical
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systems due to two main reasons: (i) many practical appli-
cations are complex requiring interaction between several
disciplines, i.e., they require the use of different analysis
software that are discipline-specific. Since they are indepen-
dent programs, it is difficult to integrate them into the con-
ventional design optimization formulations and algorithms;
and (ii) the conventional formulation requires design sensi-
tivity analysis which is difficult to implement and maintain
with existing analysis software.

To alleviate some of the difficulties noted above, sev-
eral different research avenues have been explored in the
literature. First, efficient structural reanalysis methods for
analyzing a modified structure have been developed (Kirsch
2000, 2002; Kirsch and Papalambros 2001; Kirsch et al.
2002, 2004). These methods can be useful for efficient an-
alysis of updated designs and for calculation of the design
derivatives during the optimization process. Second, vari-
ous methods to develop approximate models, the so-called
meta-models, such as response surface approximations, have
been proposed and evaluated for optimization of complex
structural and mechanical systems (Myers and Montgomery
2002; Krishnamurthy 2003). Third, some alternative formu-
lations have also been proposed and evaluated for optimiza-
tion of structural and mechanical systems since the early
1960s. We will focus on a review of the literature on this
third approach to solving the problem and discuss their ad-
vantages and disadvantages.

4 Simultaneous analysis and design (SAND)

In this approach, the state and design variables are treated
simultaneously as optimization variables. The equilibrium
equation becomes an equality constraint in terms of the vari-
ables. SAND basically formulates the optimization problem
in a mixed space of design and state variables to imbed
the analysis equations in one, single optimization problem;
therefore no explicit structural analysis or design sensitivity
analysis is needed. Note that there are in fact a lot of inter-
esting formulations derived from SAND, especially in shape
and topology optimization of structures, which are presented
in Sect. 7. The SAND formulation in the current section fol-
lows the most common presentation in the literature.

4.1 Formulation

In the SAND approach, the formulation of the problem is
modified by treating the state and design variables z and b
as independent optimization variables. To describe the ap-
proach, let us define a composite vector of optimization
variables as

x =
[

b
z

]

(7)

Note that, if the structure is subjected to multiple loading
conditions, the vector x will include multiple z vectors, one
for each loading condition. In terms of the vector x, the op-
timization problem is now defined as follows:

Find x to minimize the cost function

f = f(x) (8)

subject to the constraints

h(x) = K(b)z−F(b) = 0 (9)

g(x) ≤ 0 (10)

Although a linear FEM-based analysis equation (9) is
considered here, the concept of SAND is quite broad and
other analysis methods can be used. Various state vari-
ables can be included as optimization variables (Fuchs 1982;
Kirsch and Rozvany 1994; Achtziger 1996, 1999a,b, 2000;
Tin-Loi 1999a, 2000; and others). The governing equations
for general nonlinear or eigensolution problems can be used
as equality constraints similar to (9). Note that SAND for-
mulations based on the force method and mixed analy-
sis methods have also been presented (Kirsch 1981, 1993;
Kirsch and Rozvany 1994).

4.2 Gradient evaluation

The alternate formulation in (8) to (10) looks like a standard
optimization problem. In the optimization process, partial
derivatives of the functions with respect to x are needed, i.e.,
with respect to b and z. Partial derivatives of f and g with
respect to b and z can be easily calculated, as noted before.
Partial derivative of h with respect to z gives the stiffness
matrix K and the partial derivative of h with respect to b
gives the matrix S defined in (6). However, dz

db is not needed
and no system of equations needs to be solved in the numer-
ical solution process.

Note that the SAND formulation does not require
h(x) = 0 be satisfied exactly at each iteration of the opti-
mization process, i.e., the equilibrium equation need not be
satisfied at every iteration, which can be advantageous for
nonlinear problems. It needs to be satisfied only at the final
solution point. This actually implies that the vector h(x) = 0
never needs to be solved for z because z is treated as an
independent variable. The element-level equilibrium equa-
tions can be used in the solution process. Thus the alternate
formulation is ideally suited for implementation on a par-
allel computer where each finite element can be assigned
to one processor. All processors can be used to generate
the element-level quantities and thus speed up the optimiza-
tion process considerably (Haftka 1985; Haftka and Kamat
1989).

Also, as noted before, the equilibrium equation (9) need
not be the displacement-based FEM equation, even though it
is the most commonly used one. Most work in the literature
has used displacements as the optimization variables. How-
ever, similarly to the conventional formulation, the force
method or the mixed method can also be combined with the
SAND formulations. The SAND can also be combined with
the optimality criteria methods (Kirsch and Rozvany 1994).
A more recent analysis model, the cellular automata (CA),
has been imbedded into SAND formulations as equality con-
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straints (Canyurt and Hajela 2004). Besides displacements,
other state quantities, such as forces and stresses can also
be used as optimization variables (Fuchs 1982; Kirsch and
Rozvany 1994; Muralidhar et al. 1996; Muralidhar and Rao
1997; Achtziger 1999a,b; Tin-Loi 1999a, 2000; Stope and
Svanberg 2003; Wang and Arora 2004).

4.3 Literature for linear problems

In the paper by Saka (1980a), a method was presented for
the optimum shape design of trusses. The method obtained
the optimum locations of the joints, employing the concept
of a ground structure. In the formulation, the displacements
of the joints were treated as optimization variables in add-
ition to member areas and joint coordinates. For the solu-
tion of the nonlinear design problem, a linear approximation
scheme was adopted. The proposed design procedure did not
require the structural analysis equations to be solved during
the iterative process. Saka proposed an alternate formulation
for minimum-weight design of rigid frames, subject to both
stress and displacement constraints (Saka 1980b). Optimiza-
tion variables included not only the areas of the members,
but also the displacements of the joints. The displacement
method was used in the formulation. Element stiffness equa-
tions were imposed as equality constraints. The nonlinear
optimization problem was transformed to a linear program-
ming problem and the simplex method was used to solve
the problem after the move limits were specified. The author
pointed out that the number of iterations to search the op-
timum solutions was smaller than that for the conventional
formulation.

Fuchs presented an explicit optimum design method for
linear elastic trusses of given geometry and material prop-
erties (Fuchs 1982, 1983). Three techniques were presented,
according to the three classical analysis methods: force, dis-
placement and hybrid (or mixed) methods. The formulation
was in a mixed space of design and state variables. Explicit
expressions for the objective function and the constraints
in terms of the variables could be obtained. The structures
were optimized using sequential unconstrained minimiza-
tion techniques (SUMT) with a conjugate directions algo-
rithm. In the case of a single loading condition without
variables linking, the proposed method was very efficient.
In other cases, for variable linking and multiple load cases,
efficiency of the method depended on the specific problem.

The penalty function method was used to solve the sim-
ultaneous analysis and design problem by Haftka (1985).
The preconditioned conjugate-gradient method and the
Newton method were used to minimize the penalty function.
The element-by-element formulation and a preconditioner
were used to treat the equilibrium equation in the penalty
function. A 72-bar truss subjected to stress constraints and
a wing box structure subjected to nonlinear collapse con-
straints were optimized. SAND formulation showed sub-
stantial computational savings compared to the conventional
nested approach.

Ringertz (1986) presented a branch and bound algorithm
for topology design of truss structures, subject to stress
and displacement constraints. The central idea was to use

a ground structure to select a minimum-weight truss. A se-
quence of sub-trusses called candidate trusses were gener-
ated and analyzed. Both cross-sectional areas and displace-
ments were treated as independent variables; therefore it
was possible for member cross-sectional areas to reach zero.
Several criteria were used to discard nonoptimal configura-
tions rapidly. Three different optimization methods, includ-
ing sequential quadratic programming (SQP), were used to
solve the nonlinear problem. SQP generally solved the prob-
lems quite rapidly.

Bendsøe et al. (1991), and Ben-Tal and Bendsøe (1993)
proposed two alternative approaches for topology design of
trusses for maximum stiffness with a prescribed volume.
The ground structure was used, and the problem was for-
mulated in terms of cross-sectional areas and nodal dis-
placements. The optimization problem could be solved by
a SAND approach. Alternatively, this large, nonconvex for-
mulation was transformed to an equivalent, unconstrained
and convex problem in terms of nodal displacements only.
This new formulation was mathematically proven to be
equivalent to the original problem, and solved by a nons-
mooth steepest-descent algorithm. In both the methods, ex-
plicit solution of the equilibrium equations was avoided. It
was noted that this algorithm was attractive computation-
ally.

Topology optimization of trusses for minimum weight
using the SAND formulation was presented by Sankara-
narayanan et al. (1994). The ground structure approach was
used, and the design considered stress and displacement
constraints. An extended interior penalty function formula-
tion of SAND was compared with an augmented Lagrangian
formulation. The SAND formulation was also compared
with the minimum compliance formulation. Several ex-
ample problems of truss topology design were solved. The
augmented Lagrangian approach worked better than the
penalty function approach. It was also concluded that the
minimum-compliance method might not obtain the true op-
timal design.

Kirsch and Rozvany (1994) focused on presentation
of several alternative but equivalent formulations for the
structural optimization problem. The formulations discussed
were different with respect to the independent variables, the
analysis methods and the form of the resulting constraints.
The analysis methods included the displacement, force and
the mixed methods. The problem formulations considered
included the design variable space formulation, SAND for-
mulation, and some formulations based on optimality crite-
ria. Details of the formulations were discussed for truss-type
structures. Some simplified SAND formulations that could
be solved using linear programming were also described.
Note that the SAND formulations based on the force method
were also presented in the monographs by Kirsch (1981,
1993). The basic idea was to treat the redundant forces as
optimization variables in addition to the design variables,
and the compatibility conditions are treated as equality con-
straints. This has advantages in some cases, such as when the
number of redundant forces is small. However, sometimes
it is tedious to identify a determinate system for complex
structures.
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Other optimization methods were employed in the
SAND formulations of truss design, such as the augmented
Lagrangian (AL) method with duality (Larsson and Rön-
nqvist 1995). The displacements and design variables were
optimized simultaneously. The formulation was based on
a linear objective function, stress constraints and explicit
bounds on the variables. Two techniques were used for the
Lagrangian subproblems. Numerical experiments were per-
formed for different values of the penalty parameter and the
rate at which it was increased. It was concluded that the
SAND approach using the AL was promising for further
research.

A SAND approach based on cellular automata (CA) and
cellular genetic algorithm (CGA) for analysis and optimiza-
tion was presented by Canyurt and Hajela (2004). The struc-
tural analysis model was based on CA, a relatively new alter-
native computational model (Kita and Toyoda 2000; Hajela
and Kim 2001; Abdalla and Gürdal 2004). The optimiza-
tion was performed by the CGA. Therefore, the analysis
and optimization evolved simultaneously in a unified cel-
lular computational framework. Three SAND formulations
were developed and compared. It was concluded that SAND
formulations were far more efficient than the conventional
formulation. The SAND formulation with CA-based analy-
sis was even more efficient than that combined with the FEM
analysis. The approach was applied to discrete structural
systems for sizing and shape design. Parallelization potential
for the CGA-based SAND was noted as another advantage
of the approach.

4.4 Literature for nonlinear problems

A major difference between SAND and the conventional
approaches is that the implicit dependence between the an-
alysis and design variables becomes explicit. In the con-
ventional formulation, nonlinear analysis equations must be
solved for any design update. However, the SAND approach
does not require repeated solution of the nonlinear analysis
equations, since they need to be satisfied only at the optimal
solution. The equations of equilibrium become nonlinear
that are imposed as equality constraints. Therefore, SAND
has additional advantages for nonlinear problems. For such
problems, (9) can be written as

h(x) = P(b, z)−F(b) = 0 (11)

where P(b, z) is the internal force vector. The evaluation of
h in (11) is quite straightforward, as no matrix decompos-
ition is needed. Suppose F is not a function of z, then the
derivatives of (11) are given as

∂h(x)

∂b
= ∂P(b, z)

∂b
− ∂F(b)

∂b
(12)

∂h(x)

∂z
= ∂P(b, z)

∂z
= KT (b, z) (13)

where KT (b, z) is the tangent stiffness matrix, and ∂P(b,z)
∂b

in (12) can be calculated in an element-by-element manner.
If the equilibrium equation in (11) is derived from the min-

imum potential energy, the tangent stiffness matrix in (12)
can also be obtained as the Hessian of the strain energy U as
∇T ∇U(x) (Ringertz 1992, 1995).

Schmit and Fox (1965, 1966) included state variables
in the structural optimization problem in what was called
“an integrated approach to structural synthesis”. The ma-
terial nonlinearity was considered in the stress–strain re-
lationship. The basic idea was to transfer an inequality-
constrained minimization problem in design variable space
into an unconstrained problem in a space of mixed de-
sign and state variables. The penalty function technique
and a steepest-descent-type procedure were used. The cross-
sectional areas, stresses of bar elements, free nodal displace-
ments and the position of the attachment point were treated
as variables, and the equilibrium equations were taken as
equality constraints. The results in the papers indicated that
the integrated approach offered the prospect of making sub-
stantial improvements in the efficiency of the structural syn-
thesis process, particularly when linearization of the struc-
tural analysis problem was inappropriate.

Smaoui and Schmit (1988) presented an integrated ap-
proach to the minimum-weight design of geometrically
nonlinear static truss structures with geometric imperfec-
tions. The design considered constraints on displacements,
stresses, local buckling and cross-sectional areas. The in-
dependent variables included design and response quanti-
ties simultaneously. The FEM equilibrium equations were
treated as equality constraints. A generalized reduced gra-
dient (GRG) algorithm was used to solve the integrated
problem. It was also concluded that the simultaneous formu-
lation could detect elastic instabilities efficiently.

Simultaneous and nested approaches were compared for
three truss optimization problems by Haftka and Kamat
(1989). Geometrically nonlinear analysis of the truss struc-
ture was included in the formulation. The SAND formula-
tion was solved using the penalty method and the projected
Lagrangian method. The nested formulation was solved
either by the projected Lagrangian method or the GRG
method. For the penalty method, an element-by-element
conjugate gradient approach with a preconditioner was used.
It was concluded that the simultaneous approach was com-
petitive with the conventional nested approach, and that it
was more efficient for large-scale problems.

Ringertz (1989) formulated the minimum-weight design
of structures with geometrically nonlinear behavior in two
different ways. In the first, the design variables and displace-
ments were treated together as independent variables. All
the equilibrium equations were treated as constraints. In the
second, the displacements were transformed such that only
a few of the equilibrium equations needed to be treated as
constraints. The design variables and only the transformed
displacements were treated as independent variables. The
optimization problems associated with both formulations
were solved using an SQP method. It turned out that the first
formulation led to a larger problem; however, the functions
and gradients were relatively easy to evaluate.

Ringertz (1992) presented a method for the optimal de-
sign of geometrically nonlinear shell structures subject to
conservative external loads. Shell thicknesses and cross-
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sectional dimensions of beam stiffeners were used as design
variables. The nonlinear optimization problem was solved
using a Newton barrier method. In a later paper, an algorithm
for optimal design of nonlinear stiffened shell structures was
presented (Ringertz 1995). The algorithm used numerical
optimization techniques to find a minimum-weight structure
subjected to equilibrium, stability and displacement con-
straints. An SQP method was used to solve the resulting
nonlinear optimization problem. System stability constraints
were considered in the formulation. Matrix sparsity in the
Jacobian of constraints was exploited for numerical effi-
ciency.

The truss optimization problem was formulated as
a SAND problem by Orozco and Ghattas (1997). Geometri-
cally nonlinear behavior of the structure was included in the
formulation. A reduced SQP method was presented to solve
the problem. In that approach, a QP subproblem was defined
in the entire optimization variable space for the search di-
rection. Then it was desired to utilize the structure of the
problem functions so that the existing finite element analysis
programs might be utilized. Orthogonal or coordinate ba-
sis decomposition of the Jacobian of the equality constraints
was performed. Using the decomposition, the search direc-
tion determination QP subproblem was obtained only in
terms of the reduced variables (i.e., the same as the number
design variables). It was concluded that the reduced SAND
formulation required fewer structural analyses but the same
amount of storage as NAND. SAND formulation was large
but sparse. To render it tractable, sparse matrix approaches
must be used (Orozco and Ghattas 1991).

Tin-Loi (2000) discussed optimum shakedown design
of discretized elastoplastic structures subjected to variable
repeated loads and residual displacement constraints. The
problem was formulated according to the classical lower-
bound theorem of shakedown, considering appropriate con-
straints on deflections from existing bounding results. The
resulting SAND formulation was directly solved as an NLP
by using an available modeling system.

4.5 Optimization techniques for SAND

The SAND formulations have been solved successfully
by various methods in the literature. New solution tech-
niques have been developed in recent years. SUMT based
on the penalty function techniques were used by Schmit
and Fox (1965), Fuchs (1983), Haftka (1985), Haftka
and Kamat (1989), and Ringertz (1992). Augmented La-
grangian methods were considered by Sankaranarayanan
et al. (1994), and Larsson and Rönnqvist (1995). Saka
(1980a,b) and Achtziger (1999a,b) used the sequential lin-
ear programming (SLP) approach. A generalized reduced
gradient (GRG) algorithm was used to solve the inte-
grated problem by Smaoui and Schmit (1988), and Tin-Loi
(1999a,b, 2000). Haftka and Kamat (1989), and Orozco
and Ghattas (1991) used the projected Lagrangian algo-
rithm. Various SQP methods were used by Ringertz (1986,
1989, 1995), Orozco and Ghattas (1991, 1997), Schulz
and Bock (1997), Dreyer et al. (2000), Stolpe and Svan-
berg (2003), Schulz (2004), and Wang and Arora (2004).

Ben-Tal and Nemirovski (1993), Ben-Tal and Roth (1996),
Jarre et al. (1998), Maar and Schulz (2000), Herskovits
et al. (2001), Hoppe et al. (2002), Herskovits (2004), and
Hoppe and Petrova (2004) used newly developed interior-
point algorithms to solve SAND formulations. Multigrid
methods combined with SQP or interior-point method have
been successfully applied to SAND formulations by Dreyer
et al. (2000), and Maar and Schulz (2000). A genetic algo-
rithm has also been recently applied to SAND formulation
(Canyurt and Hajela 2004).

5 Displacement-based two-phase formulation

5.1 Formulation

The displacement-based approach was introduced by Mc-
Keown (1977) for optimization of composite structures. Al-
though there are variations in the method used by different
researchers, the central ideas are the same: the design prob-
lem is divided into a two-level optimization problem, where
only the design variables are treated as optimization vari-
ables in the inner problem, and only the displacements are
treated as variables in the outer problem.

The inner optimization problem is defined as follows: for
given displacements z, find the design variable vector b to
minimize a cost function,

f = f(b) (14)

subject to the side constraints on b, as well as the governing
equilibrium constraints:

h(b) = K(b)z−F(b) = 0 (15)

The solution of the inner problem in (14) and (15) pro-
vides only a temporary optimal solution corresponding to
the given displacement field z. In order to find the true op-
timal solution for the original problem, the displacements z
need to be treated as optimization variables and updated.
Thus the outer problem is to find the displacement vector z
to minimize the cost function in (14) (expressed in terms
of z):

f = f(z) (16)

subject to the constraints

g(z) ≤ 0 (17)

Constraints in (17) may include stress or displacement re-
quirements. Nonlinear analyses can be similarly considered
if the governing equilibrium equation in (15) is replaced by
the corresponding nonlinear equation.

5.2 Gradient evaluation

Equation (15) is much like (9) in the SAND formulation,
except that the state variable z is known. In the numerical so-
lution process, partial derivative of h with respect to z, and
dz
db are not needed; therefore, no sensitivity analyses or solu-
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tions of the equilibrium equations are needed. Note also that,
in the displacement-based formulation, h(b) = 0 is not re-
quired to be satisfied exactly at each iteration of the solution
process for the inner problem; it needs to be satisfied only at
the final solution of the inner problem.

For the outer problem, where z is treated as the optimiza-
tion variable, the derivative of f in (16) with respect to z
is needed. However, an explicit expression for f in terms
of z is not known. Therefore an implicit differentiation pro-
cedure must be used. Using such a procedure an explicit
expression for the derivative of (16) with respect to the dis-
placements can be obtained (McKeown 1989; Missoum and
Gürdal 2002).

5.3 Literature overview

The displacement-based method was introduced for optimal
design of multilaminar, fiber-reinforced continua (McKe-
own 1977). The structures of maximum stiffness were con-
sidered. It was shown that the proposed algorithm based
on the functional LP was convenient to solve the nonlinear
mixed-integer programming problem. In a later paper, the
author analyzed his two-phase algorithm and applied it to
optimize trusses (McKeown 1989). The outer problem was
solved using either sequential linear programming (SLP) or
another NLP algorithm. The displacement field for the struc-
ture was specified for the inner problem. The inner prob-
lem is similar to those in Wang et al. (1984), and Ringertz
(1985). McKeown (1998) expanded the two-phase optimiza-
tion procedure to geometry and layout design of trusses.
Instead of using a complex ground structure, the author
considered growing least-volume trusses, starting from the
simplest possible layout. The outer problem included only
the displacements and position variables, while the inner
problem included the cross-sectional areas of the bars. That
approach for the optimal-layout problem was shown to be
well suited to deflection-space methods of solution, which
allowed the geometry and layout to be optimized simultan-
eously. General features of the proposed method were dis-
cussed and it was concluded that the method could greatly
reduce the problem size and was feasible for practical appli-
cations.

Wang et al. (1984) also presented a two-stage LP proced-
ure for the minimum-weight design of trusses. In the first
stage, the so-called behavior stage, the joint displacements
were chosen as the basic variables and their optimum values
were found by using an optimality criterion method: the
maximum total strain energy criterion using LP. In the sec-
ond stage, the structural stage, the design variables, i.e., the
cross-sections were chosen as variables and the minimum-
weight design was obtained, again using the LP. The authors
pointed out that the method could avoid the need for re-
peated iterations and structural reanalyses. It was effective
for the minimum-weight design of truss-type structures with
stress, displacement and geometric constraints.

Striz and Sobieszczanski-Sobieski (1996) proposed
a displacement-based multilevel approach for structural op-
timization. At the system level, the unbalanced loads in the
global equilibrium equations were minimized subject to dis-

placement constraints. The optimization variables were the
coefficients of the assumed global displacement functions.
In the subsystem level, structural weight was minimized
subject to the stress constraints. The sizing variables were
treated as independent variables. The method was in fact
a two-phase method. Since the subsystem-level optimiza-
tions were independent of each other, they could be per-
formed in parallel (Plunkett et al. 2001). In a recent paper
by Subramaniyam et al. (2004), the system-level FE analy-
sis and optimization was parallelized as well by using the
domain decomposition and the super-element formulation.
Several large-scale trusses were optimized using a dense
SQP solver.

In a paper by Missoum and Gürdal (2002), the two-phase
optimization procedure of McKeown (1977, 1989) was pre-
sented and applied to optimum design of static and dynamic
trusses. In the inner loop, the problem was shown to be lin-
ear, and so LP was used to solve the problem. In the outer
loop, the sequential linear programming (SLP) algorithm
was used. Since the weight was an implicit function of the
displacements, a procedure was presented to calculate the
derivatives of the weight with respect to the displacements.
Two truss examples were optimized to show that the proced-
ure was more efficient than the conventional approach.

Gu et al. (2002) extended the displacement-based opti-
mization approach to design trusses with nonlinear material
behavior. Path-independent material models were used. It
was noted that sometimes the inner problem could be infea-
sible because there might not be a structure that could satisfy
the specified displacement field. Therefore slack variables
were added to the equilibrium equation to define a relaxed
problem that had feasible solutions. Several truss problems
were solved with linear and nonlinear (elastic-perfectly-
plastic, elastoplastic with hardening) behavior to demon-
strate the methodology and compare the solutions where
they were available. The displacement variables were nor-
malized using the minimum and maximum allowable values.

Geometric and material nonlinearities were included in
the formulation by Missoum et al. (2002a). It was shown
that the displacement-based approach was quite efficient
compared to the conventional NAND approach. Missoum
et al. (2002b) also extended their work to the optimiza-
tion of geometrically nonlinear frames. If the cross-sectional
areas and the second moment of the areas were taken as
unknown variables, the inner problem turned out to be an
LP problem even for nonlinear equilibrium equations. Two-
dimensional frame examples were solved and it was shown
that the displacement-based approach could obtain similar
results to the conventional NAND approach. However, the
displacement-based approach required much more compu-
tational time, indicating that there were some convergence
difficulties.

6 Comparison of conventional, SAND
and displacement-based formulations

Table 1 lists the sizes of all the three formulations discussed
earlier. The following symbols are used: k = dimension of
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design variables vector b; n = dimension of state variables
(e.g., displacement) vector z; m = number of inequality con-
straints in g ≤ 0 (e.g., stress constraints, excluding bounds
on variables). Assume that there are 2k bound constraints on
the design variable vector b, and 2n bound constraints on the
state variable vector z. For the displacement-based formula-
tion, the numbers in the brackets are for the inner problem,
and those outside the brackets are for the outer problem.
When the slack variables are introduced, the numbers of
variables and constraints may change in the displacement-
based formulation. Table 2 lists the comparison of the three
formulations: the conventional, SAND and displacement
based. The advantages and disadvantages of each formula-
tion are discussed.

In both the alternative formulations, displacements are
chosen as optimization variables by most researchers, and
the analysis equations are treated as equality constraints.
The inclusion of displacements as variables simplifies the
constraint expressions and computer implementations. The

Table 1 Number of variables and constraints for different formulations

Conventional SAND Displacement-based
formulation formulation formulation

No. of variables k k +n n[k or k +2n∗]
No. of equality constraints 0 n 0[n]

No. of inequality constraints m +2n m m[0]

No. of simple bounds 2k 2k +2n 2n[2k or 2k +2n∗]

∗ When slack variables are considered.

Table 2 Advantages and disadvantages of three formulations

Formulation Advantages Disadvantages

1. Least number of optimization variables. 1. Equilibrium equation must be solved at each
2. Equilibrium equation is satisfied at each iteration, which can be expensive.

iteration. 2. Constraints are implicit functions of the
Conventional 3. Intermediate solutions may be usable. variables; their evaluation requires analysis.

3. Design sensitivity analysis must be performed.
4. Implementation is tedious.
5. Dense Jacobian and Hessian matrices; difficult

to treat large-scale problems.

1. Formulations are explicit in terms of variables. 1. Numbers of variables and constraints are large.
2. Equilibrium equation is not solved at each 2. Intermediate solutions may not be usable.

iteration. 3. Optimization algorithms for large-scale
3. Some constraints may become linear in variables. problems must be used.
4. Jacobians and Hessian are sparse. 4. For efficiency, advantage of sparsity of the

SAND 5. Design sensitivity analysis is not needed. Jacobians and Hessians must be utilized.
6. Implementation is relatively straightforward. 5. Optimization variables need to be normalized.
7. Multi-physics problems are easier to optimize.
8. Lagrange multipliers for more constraints

become available, which may give further
insights for practical applications.

1. Two smaller sub-problems are solved. 1. The outer problem may be nondifferentiable.
Displacement- 2. Equilibrium equation is not solved at each 2. The inner problem may have no solution.
based iteration. 3. Displacement variables need to be normalized.

3. The inner problem is linear or quadratic.
4. Design sensitivity analysis is not needed.

reason is that they lead to a simpler form for the constraints
that the optimization algorithm can treat more efficiently.
Also, the alternative formulations avoid repeated analysis of
the structure; therefore, they are more efficient. This is also
the case for nonlinear structures where the conventional for-
mulations need to solve the equilibrium equations at each
iteration, which is expensive.

In the SAND formulations, the optimization problem
is very large because there are more variables in a single
optimization process. It can easily exceed the capacity of
current optimization codes and computers. However, SAND
formulations simplify the forms of constraints and their Ja-
cobians, which is advantageous for numerical algorithms
and implementations. The displacement-based formulation
basically decomposes the original problem into two smaller
subproblems, which can be solved more efficiently. How-
ever the application of the displacement-based formulation
is not as straightforward as the SAND formulation. The
decomposition to some extent complicates the problem, and
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some aspects of it are still not fully understood (Missoum
et al. 2002b). The cost function in terms of the state vari-
ables is not defined everywhere in the displacement space,
which may make the outer problem nondifferentiable. An-
other difficulty is that the inner problem may have no so-
lution. Therefore, slack variables need to be introduced to
relax the equilibrium equations. Beside these, variable and
constraint scaling are needed in both the formulations to re-
duce numerical difficulties, since they include variables and
constraints of different orders of magnitude.

7 Configuration and topology design

Many interesting formulations for configuration and top-
ology design optimization have been presented in the lit-
erature. These include the ground structure approach for
discrete element structures and a more general continuum
topology optimization formulation. Mijar et al. (1998) have
used a continuum topology optimization approach to design
bracing systems for framed structures. The literature on the
subject of topology optimization is vast and many good ref-
erences are available that describe various formulations and
solution algorithms (Bendsøe and Kikuchi 1988; Bendsøe
and Mota Soares 1993; Jog et al. 1994; Ohsaki 1995; Roz-
vany et al. 1995; Bendsøe 1995; Swan and Kosaka 1997a,b;
Eschenauer and Olhoff 2001; Bendsøe and Sigmund 2003;
and others). In this paper, we will focus on describing only
some recent work relating to the SAND formulation and the
corresponding computational algorithms for topology op-
timization. It turns out that the SAND formulation is an
important foundation for these design problems. A typical
approach for topology optimization is to minimize the ex-
ternal work (compliance), where design variables together
with the displacements are the optimization variables (Beck-
ers and Fleury 1997). These problems are not convex when
the equilibrium equations are included in the formulation.
However, they may be reformulated as convex problems in
different ways. Bendsøe et al. (1994), Bendsøe (1995), and
Bendsøe and Sigmund (2003) reviewed different formula-
tions for minimizing the compliance for the truss geometry
and topology design. They noted that the compliance could
be expressed in a number of equivalent potential or comple-
mentary energy formulations using the member forces, dis-
placements and bar areas. Using the duality principles and
nonsmooth analysis it was shown how displacement-only
and stress-only formulations could be obtained. The equilib-
rium equations were part of these formulations even though
they might be in the dual problem or other simplified forms.
Topology optimization has also been reformulated into some
alternative formulations, such as semidefinate programming
(SDP) (Ben-Tal and Nemirovski 1997; Kočvara et al. 2000;
Ben-Tal et al. 2000; Kočvara 2002), and linear programming
(LP) problems (Achtziger et al. 1992; Muralidhar and Rao
1997). Some detailed SAND formulations and references to
the convex reformulations mentioned above can be found in
the monographs by Bendsøe and Mota Soares (1993), Bend-
søe (1995), and Bendsøe and Sigmund (2003).

The most common way to formulate a structural top-
ology optimization is the minimization of compliance, de-
fined as:

1

2
FT z (18)

subject to the state equations (1), and the constraints on the
total volume and each element volume:
∑

v = Vtotal (19)

vL ≤ v ≤ vU (20)

where F and z are the same as defined in (1). v is the vec-
tor of element volumes and vL and vU are the corresponding
lower and upper bounds. Vtotal is the total given volume
of the structure. Although the problem of compliance min-
imization can be solved by the SAND approach (Bendsøe
et al. 1991; Ben-Tal and Bendsøe 1993), direct minimization
of the weight for truss topology design by the SAND ap-
proach is also possible. This was studied by Ringertz (1986),
Sankaranarayanan et al. (1994), Achtziger (1996, 1999a,b),
Petersson (2001), Stolpe and Svanberg (2003a,b), and many
others. Oberndorfer et al. (1996) discussed the advantages
and disadvantages of these two formulations. They showed
that, for the condition where the allowable stresses for ten-
sion and compression members of trusses were identical, the
two formulations became equivalent.

The beauty of the SAND and displacement-based for-
mulations for topology design is that both cross-sectional
areas and displacements are treated as independent vari-
ables; therefore it is possible for member cross-sectional
areas to reach zero value without causing singularity or non-
differentiability. If the ground structure method is used in
topology design, there are a very large number of cross-
sectional areas and a relatively small number of displace-
ment variables; therefore, the SAND formulation has an
advantage, since the size of the problem is not substan-
tially increased. The use of various SAND formulations for
configuration and topology design can be found in Saka
(1980a), Ringertz (1986), Bendsøe et al. (1991), Achtziger
et al. (1992), Grossmann et al. (1992), Bendsøe and Mota
Soares (1993), Ben-Tal and Bendsøe (1993), Bendsøe et al.
(1994), Sankaranarayanan et al. (1994), Bendsøe (1995),
Muralidhar et al. (1996), Ben-Tal and Roth (1996), Ben-
Tal and Zibulevsky (1997), Muralidhar and Rao (1997),
Jarre et al. (1998), Hilding et al. (1999), Achtziger (1999a,b,
2000), Kočvara et al. (2000), Ben-Tal et al. (2000), Maar and
Schulz (2000), Petersson (1999, 2001), Hoppe et al. (2002),
Stope and Svanberg (2003a,b, 2004), and Bendsøe and Sig-
mund (2003). Displacement-based two-phase approaches
for configuration and topology design have also been used
by Wang et al. (1984), McKeown (1989, 1998), Gu et al.
(2002), and Missoum and Gürdal (2002).

Achtziger (1996, 1999a,b, 2000) studied truss topology
optimization using SAND formulations, with the nodal dis-
placements or the internal forces also treated as optimization
variables. Truss topology optimization including different
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bar properties for tension and compression members was
presented by Achtziger (1996). It was found that the bar
properties had a large influence on the optimal design. In
later papers (Achtziger 1999a,b), optimal truss topology de-
sign subject to stress, slenderness, and local buckling con-
straints was studied. It was proven that the inclusion of
slenderness constraints could guarantee a solution, which
could not be done otherwise with the inclusion of only the
classical equilibrium, stress, and local buckling constraints.
After eliminating the discontinuity of constraints and apply-
ing a linearization concept, the final formulation was solved
using the SLP method. Achtziger (2000) discussed the same
design problem by a technique that minimizes a continuous
function on a finite set of continuous constraints. A method
was proposed to approximate the original problem by a stan-
dard NLP problem that depended on a parameter. It was
proven that each solution to the approximating problem was
a solution to the original one, provided that the parameter
was large enough.

Muralidhar and Rao (1997) presented new models for
optimal truss topology design for limit states based on
a unified elastic/plastic analysis. Several equivalent formu-
lations to maximize the load-carrying capacity were pre-
sented for a prescribed volume subject to complementary
energy and stresses constraints. The original convex but
high-dimensional nonlinearly constrained formulation was
transferred to several simpler but nonsmooth equivalent
models, using the duality principles. These simpler design
models greatly reduced the problem size, since they did
not contain element volumes as variables. Furthermore, the
strictly plastic and elastic limit design models were reduced
to LP problems, and were shown to be equivalent to the
widely studied model for minimum-compliance topology
design of elastic trusses.

Ben-Tal and Roth (1996) described a path-following
interior-point algorithm, which employed a truncated log-
arithmic barrier function for large-scale constrained con-
vex programming and min–max problems. Ben-Tal and
Zibulevsky (1997) later studied nonquadratic augmented La-
grangians for which the penalty parameters were functions
of the multipliers for solving convex programs. More im-
portantly, a new type of penalty/barrier function was in-
troduced and used to construct an efficient algorithm. The
algorithms were applied to large-scale convex quadrati-
cally constrained truss topology models transformed from
the original compliance-minimization model. Jarre et al.
(1998) studied optimal truss topology design problem using
the same formulation; however, they used a primal-dual
predictor–corrector interior-point method, which showed ef-
ficiency for large-scale problems.

Kočvara (1997) presented a bilevel programming ap-
proach for topology optimization of trusses to minimize
compliance with displacement constraints. The upper-level
problem was to minimize the gap between the actual and
prescribed displacements. The lower-level problem was to
minimize the compliance to find the stiffest structure satis-
fying the displacement constraints. At the lower level a stan-
dard truss topology problem was formulated in a way to be
solved by the efficient interior-point algorithms. The overall

bilevel problem was solved by the so-called implicit pro-
gramming approach, which was nonsmooth. In the implicit
programming approach, the state variables were implicitly
eliminated from the problem.

Petersson (1999) studied some convergence results in
perimeter-controlled topology optimization of elastic con-
tinuum structures. The approach was claimed to be attractive
because it could predict “black–white” topologies without
the use of homogenization techniques. It showed that a new
perimeter which measured lengths of structural edges after
projection onto the coordinate axes was appropriate to ap-
proximate the intended original problem. Petersson (2001)
also studied the continuity of the design-to-state mappings
for stress-constrained minimum-weight design of trusses
with variable topology. The goal was to investigate conti-
nuity of the changes of the forces and nodal displacements
present in equilibrium equations with respect to modifica-
tion of the cross-sectional areas. In these papers, the simul-
taneous and nested formulations were discussed in parallel.

Kočvara et al. (2000) and Ben-Tal et al. (2000) presented
solutions of the free material design problem via semidef-
inite programming (SDP). In the first paper, so-called
cascading—an approach to robust material optimization—
was developed. The design variables were the material
properties at each point of the structure. In the second paper,
multiple loading cases with contact conditions were consid-
ered. The stiffest structure with respect to one or more given
loads was designed where both the distribution of the mate-
rial and the material properties could vary freely. After some
transformation steps and a suitable discretization, the prob-
lem was transferred to a formulation for which the solution
was shown to exist. The resulting large-scale SDP problems
were solved by an interior-point method.

Maar and Schulz (2000) developed a new simultaneous
interior-point multigrid method for topology optimization
based on homogenization. The linear-quadratic subproblems
in the interior-point method were solved efficiently by the
multigrid methods. As discussed by the authors, the ap-
plication of multigrid methods to structural optimization
problems enhanced the state of the art of this important
research area. In another paper, Dreyer et al. (2000) com-
bined a multigrid solution technique in the framework of
SQP to solve topology optimization problems. The focus
was on two formulations: one was the simultaneous multi-
grid method for solution of the QP subproblems, and the
other was a reduced SQP with multigrid solution of the
linearized mode equation. The multigrid methods for saddle-
point problems were also discussed.

Hoppe et al. (2002) presented a primal-dual Newton-
type interior-point method for topology optimization of
a conductive electromagnetic medium with a fixed geometry
and bound constraints for the conductivity. The objective
was to minimize the energy dissipation, and the elliptic dif-
ferential equation for the electric potential was treated as
an equality constraint. The PDE-constrained problem was
discretized by finite elements and formulated as a SAND
problem. A condensed primal-dual system was obtained
from the KKT optimality conditions and was solved by
transforming iterations to determine the search directions.
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In a later paper by Hoppe and Petrova (2004), the same
interior-point algorithm was applied to the optimal shape de-
sign of microstructured materials based on homogenization
and adaptivity. The paper focused on the shape optimization
of new biomorphic microcellular silicon carbide ceramics
produced from natural wood by biotemplating. The best
combination of materials and shapes in order to achieve the
optimal prespecified performance of the composite material
was pursued.

Kočvara (2002) studied the modeling and solution of the
truss design problem with global stability constraints. The
stability constraint was based on the linear buckling formu-
lation. The problem was formulated as a nonconvex SDP
problem and solved by an interior-point algorithm. Although
the general problem could be formulated as a SAND prob-
lem, the final solution technique was not based on SAND.

Stolpe and Svanberg (2003a) presented a simultaneous
formulation for stress-constrained truss topology optimiza-
tion. The element forces were also treated as optimization
variables besides sizing variables and nodal displacements
in the SAND formulation. A general-purpose optimization
method and code were used. They discussed that the method
might also find “singular optima” without using perturbation
techniques. In a later paper, (Stolpe and Svanberg 2004),
a stress-constrained truss topology and material selection
problem that could be solved by linear programming was
presented. The cost of the structure was minimized subject
to stress constraints under a single load condition. They con-
cluded that the global optimum could be obtained, and the
optimal design always contained at most two different mate-
rials.

Schulz (2004) studied efficient simultaneous solution ap-
proaches for practical large optimization problems that in-
clude PDE models. The two applications included a param-
eter identification problem of Bingham flow and topology
design in electromagnetics. Reduced SQP methods and sim-
ultaneous QP iterations were discussed. It was concluded
that the algorithms had considerably less overall computa-
tional complexity compared to a black-box approach.

The SAND formulation is also a key component when
formulating structural design problems with integer design
variables. Grossmann et al. (1992) studied some mixed-
integer linear programming (MILP) reformulations for some
nonlinear discrete design optimization problems. It turned
out that the MILP model could be solved to yield a global
optimum solution. One application considered was top-
ology design of trusses. Bollapragada et al. (2001) presented
a logic-based branch-and-cut method for truss design prob-
lems. The proposed method was able to solve substantially
larger problems than MILP, even though the nonlineari-
ties disappeared in the mixed-integer model. Stolpe and
Svanberg (2003b) presented topology optimization of dis-
cretized continuum structures as linear mixed 0–1 programs.
It was shown that a large class of nonlinear 0–1 topology
optimization problems could equivalently be modeled as
linear mixed 0–1 programs. These included the common
minimum-weight design problems subject to stress and dis-
placement constraints. It was shown that the global optimum
solutions could be obtained.

8 PDE-constrained optimization

Recently, a general class of formulations known as PDE
(partial differential equations)-constrained optimization has
been presented and discussed. In this formulation, the equi-
librium equations are kept in the continuum form instead of
the discretized form given in (1). Use of the continuum form
offers flexibility in terms of the range of applications of the
optimization to many different fields including multidisci-
plinary applications. Also, many PDE solution algorithms
and solvers, including the finite element method, can be used
to perform optimization of complex systems. The design or
the control variables may also be described in the distributed
parameter form and discretized for numerical calculations.
In the PDE-constrained optimization literature, the term “de-
cision variables” is used to represent design or control vari-
ables, or both of them. Problems of optimal design, optimal
control, and parameter estimation of systems from many di-
verse application areas can be formulated in this way.

It is clear that the PDE-constrained optimization for-
mulation is a generalization of the discretized optimization
formulations discussed in the previous sections. Therefore
it is important to note that the conventional NAND and
SAND approaches discussed previously are directly applica-
ble to the PDE-constrained optimization formulations. Thus
all the advantages and disadvantages discussed previously
for NAND and SAND approaches apply to this formulation
as well.

A recent workshop, the First Sandia Workshop on Large-
Scale PDE-Constrained Optimization, was held to focus on
issues relating to this topic. The basic idea was to bring
researchers in the fields of PDE and optimization together
to foster greater synergy and collaboration between these
communities. The proceedings of this workshop is an ex-
cellent source of references that describe the state of the art
on this subject (Biegler et al. 2003). The major topics dis-
cussed at the workshop included: large-scale computational
fluid dynamics (CFD) applications, multifidelity models and
inexactness of simulations, sensitivities for PDE-based opti-
mization, NLP algorithms and inequality constraints, time-
dependent problems, and software frameworks for PDE-
constrained optimization. Several papers on these topics are
included in the proceedings. Seven challenging issues need-
ing further research and collaboration between the PDE
and optimization communities were identified. We present
a brief overview of these interesting research problems in the
following paragraphs based on Biegler et al. (2003).

8.1 Problem size in PDE-constrained optimization

When the optimization problem, formulated in terms of con-
tinuous state and decision variables, is discretized, it can
easily lead to millions of variables and equations. For some
industrial applications, simulations are nearing gigascale di-
mensions and terascale memory requirements. The number
of decision variables can vary from a few to the same order
as the number of state variables, e.g., problems of topology
design of structures, and optimal control of dynamic sys-
tems. Solution of such large-scale optimization problems
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requires robust and efficient methods. Such algorithms have
also been under development based on the Newton method
to solve KKT optimality conditions for the problems, lead-
ing to sequential quadratic programming (SQP) algorithms.
A variation of SQP is the reduced space algorithm, called
rSQP, as discussed previously in Sect. 4.4. In addition, al-
gorithms based the interior-point concept have been de-
veloped for large-scale problems. Some of these programs
are known as SNOPT, SOCS, KNITRO, and LOQO (Biegler
et al. 2003).

8.2 Integration of NLP and PDE-solvers

For practical applications of optimization, a major challenge
is to somehow integrate an existing well-tested PDE solver
with an NLP algorithm. Four types of such integrations are
presented and discussed. These integrations depend heav-
ily on the simulation procedures used in the PDE solvers.
Therefore, before discussing the integration approaches, an
overview of the simulation procedures is given.

All simulation procedures are based on some discretiza-
tion of the state variables and the use of Newton-type al-
gorithms to solve nonlinear system of equations. The basic
idea of the simulation algorithms is to derive the residual
in the state equations to zero. The residual can be inter-
preted as the error in the solution estimate from the true
discretized solution. For a linear system, the residual vector
r is defined using (1) as r(z) = Kz−F. Note that for linear
systems the residual r(z) is a linear function of the state vari-
ables z; however, in general it is a nonlinear function of z.
To derive the residual to zero during the iterative solution
process, the Jacobian of the residual is needed. This Jaco-
bian is the matrix K for the above residual equation which
is a constant matrix. However, for nonlinear problems, the
Jacobian changes at every iteration of the iterative solution
process, as seen in (13), which can require massive compu-
tational effort. Therefore many PDE solvers evaluate only an
approximate Jacobian while still guaranteeing global con-
vergence to the solution. In addition, many PDE solvers use
an iterative procedure to solve the linear system of equations
which does not require an explicit exact or approximate Ja-
cobian; only a matrix–vector product is needed. All these
procedure have implications in terms of integration of NLP
and PDE solvers for optimization of systems. This is dis-
cussed further in the following paragraphs.

The first approach to integration of a PDE solver with an
NLP solver is based on the NAND formulation where only
the decision variables are treated as optimization variables.
Here, the PDE solver can be used easily as a black box if
finite difference gradient evaluation is used. Only a small
number of decision variables can be treated since the PDE
solver must be called repeatedly to simulate the system for
a change in each decision variable. This finite difference
gradient evaluation may also have accuracy problems. If an-
alytical gradients must be evaluated, then the integration of
NLP and PDE solvers becomes more involved, requiring ad-
ditional programming. In the structural optimization litera-
ture, this procedure has been demonstrated for many classes
of problems using direct and adjoint variable methods of

design sensitivity analysis (Arora 1995; and many other ref-
erences).

The second approach is based on the SAND idea where
state and decision variables are treated simultaneously as
optimization variables. This approach requires at least the
Jacobians of the constraint functions and the residual of state
equations, which is usually not a part of the PDE solver out-
put. Therefore these matrices need to be generated outside
the PDE solver, which requires additional programming.
The problem, however, is quite sparse and good sparse NLP
solvers must be used to solve the optimization problem. The
problem of implementation of the SAND approach with the
existing finite element analysis programs for structural opti-
mization has been recently studied (Wang and Arora 2004).

The other two possible intermediate implementations be-
tween NAND and SAND are related to the rSQP approach
discussed earlier in Sect. 4.4. In these approaches, the state
variable portion of the search direction vector is eliminated
from the search direction determination subproblem by the
use of the PDE solver. The direct differentiation or the ad-
joint approach can be used here. Thus a reduced QP sub-
problem is obtained to determine the search direction. The
advantage of these approaches compared to the NAND ap-
proach is that the equilibrium equation need not be solved
or satisfied at each iteration. The disadvantages are that the
right-hand side of the linear system must be formed and the
PDE solver must be called to solve the linear system with
many different right-hand sides. This is equivalent to one it-
eration of the Newton method to solve a nonlinear system
of equations. The process becomes complicated for non-
linear and time-dependent problems, especially when the
adjoint method is used. In any case, these approaches are im-
provements over the NAND approach. More details of these
approaches can be found in Orozco and Ghattas (1997) and
Biegler et al. (2003).

8.3 Physics-based globalizations and inexact solution

For nonlinear and poorly conditioned problems a number
of strategies are used to achieve convergence of the PDE
solver. These are called PDE physics-based globalization:
mesh sequencing, continuation methods on nonlinear pa-
rameters, low-fidelity precursor models that provide good
initial points for discretized PDEs, and approximate Jaco-
bians that are known to enlarge the region of attraction of
the Newton method. Also, large-scale PDE solvers are of-
ten inexact because they are iterative. Often a reduction in
the residual by several orders of magnitudes is acceptable,
i.e., an inexact solution is adequate. The challenge here is to
integrate these globalizations and inexactness into the NLP
algorithms.

8.4 Approximate Jacobians

One of the sources of inexactness in PDE solvers is that they
do not construct the exact Jacobians of the PDE residuals.
In terms of structural and mechanical simulation problems,
this means that they do not construct the exact stiffness
matrices during the solution process. For convergence and
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numerical performance of the algorithms, exact Jacobians
are not needed. However, the exact PDE Jacobian is needed
to compute the gradient of the Lagrangian for search direc-
tion calculation and termination of the algorithm. Also many
modern Krylov-based PDE solvers approximate the matrix–
vector products directly through directional differencing of
the residual. Use of approximate Jacobians has implications
for PDE-based optimization strategies and algorithms. Ex-
act Jacobians are essential for the SAND approach but not
necessary for the NAND. Approximate Jacobians also affect
the two intermediate rSQP methods in different ways. The
direct rSQP approach can use the same matrix-free approach
to evaluate the reduced gradients in the decision variable
space. However, for the adjoint rSQP approach, which is
needed for problems with a large number of decision vari-
ables, the matrix-free approach cannot be used without the
ability to evaluate matrix–vector products with the transpose
of the Jacobian. Therefore exact Jacobians are needed here.

8.5 Implicitly defined and nonsmooth PDE residuals

For many complex problems, the PDE residual is only im-
plicitly defined, e.g., use of moving meshes to treat dynamic
interfaces, multiscale models, complex constitutive models,
contact problems, and plasticity yield conditions. Some of
these problems involve internal computations that are not
apparent in the PDE residuals. An additional difficulty is
that the residual may not smoothly depend on the state vari-
ables. In some cases, the nonsmoothness is inherent to the
problem formulation. In other cases, the nonsmoothness is
introduced into the residual calculation due to the use of
advanced computational devices, e.g., due to adaptive mesh-
ing, time stepping or moving mesh schemes. In some cases,
the nonsmoothness can be mitigated through reformulation
of the problem, e.g., some contact analysis problems. In
other cases, fixed meshes or fixed-order methods may need
to be used.

8.6 Treatment of inequalities

Most optimal design or control problems have bounds on
decision and state variables, called pointwise constraints.
When these variables are discretized, the bounds on them
lead to a large number of inequality constraints. In the
SAND approach, the evaluation of gradients of these con-
straints is relatively straightforward. However, with the
NAND approach, linear systems need to be solved with both
direct and adjoint methods of sensitivity analysis. If interior-
point methods are used, all the constraints are collapsed into
a barrier function; therefore the gradient of only one func-
tion is needed. In cases where this is applicable, the adjoint
method of sensitivity analysis may be used for efficiency of
calculations.

8.7 Time-dependent problems

All the computational issues discussed for steady-state PDE
optimization are valid and amplified for dynamic PDE op-
timization. For such problems, the numbers of decision and

state variables become a definite issue. For SAND methods,
the entire history of the state variables must be stored, which
can pose challenge for the storage and manipulation of large
amount of data. For NAND-type approaches, the number of
decision variables determines whether to use the direct or
the adjoint method of sensitivity analysis. Accuracy of the
gradients also becomes an issue.

9 Mathematical programs with equilibrium constraints
(MPEC)

Mathematical programming with equilibrium constraints
(MPEC) is a general class of optimization problems in
which some of the constraints are defined by a paramet-
ric variational inequality or the so-called complementarity
system (Lou et al. 1996). The variational equality or inequal-
ity constraints model the equilibrium requirements. The
MPEC formulation is an extension of the so-called bilevel
programs, also known as the mathematical programs with
optimization constraints. The complementarity system of
equations mentioned above is a result of the optimality con-
ditions for the optimization constraints. It turns out that the
SAND formulations discussed in the literature on structural
and mechanical system optimization can be viewed as a spe-
cial case of the MPEC.

The general MPEC is a nonconvex and nondifferen-
tiable optimization problem which is computationally dif-
ficult to solve (Lou et al. 1996). Various formulations of
MPEC have been studied by Lou et al. (1996), Outrata et al.
(1998), and others. Existence of optimal solutions has been
discussed. Exact penalty functions for the complementarity
system have been employed to obtain the first-order optimal-
ity conditions for the MPEC. Numerical algorithms for solv-
ing MPEC problems have also been presented. Examples of
MPEC problems discussed in the monograph by Lou et al.
(1996) are: the Bracken–McGill bilevel programs, Stackel-
berg game, misclassification minimization, motion planning
of robot hands, residual minimization of complementarity
systems, the parametric feasibility problem, the continu-
ous network design problem, origin–destination demand-
adjustment problem, a discrete transit-planning problem,
a facility location and production problem, optimal design
problem in mechanical structures, and optimal prestress of
cracked structures. Ferris and Pang (1997) have provided
a detailed review of engineering and economic applications
of complementarity problems. They have presented an ex-
tensive documentation of applications of finite-dimensional
nonlinear complementarity problems in engineering and
equilibrium modeling.

In engineering applications, the MPEC problems can be
formulated in a continuum form where a variational princi-
ple governs the equilibrium state of the system, such as the
principle of minimum potential energy or Hamilton’s prin-
ciple. An advantage of the continuum formulation is that the
solution procedure is not tied to any particular numerical ap-
proach. Thus it offers more flexibility for numerical solution
of the problem. However, to keep the presentation of the ba-
sic ideas clearer, we stay with the discretized models of the
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system. To present and discuss an MPEC problem, consider
an elastic body that comes into contact with a rigid smooth
object. The problem is to design the body such that an objec-
tive function is minimized subject to equilibrium and other
requirements, such as nonpenetration of bodies, stress and
displacement constraints. Using the notations used earlier,
the problem is defined as follows:

minimize
b

f(b, z) (21)

subject to

minimize
z

V(b, z) (22)

g(b, z) ≤ 0 (23)

and

c(b) ≤ 0 (24)

In the outer problem, f(b, z) is the overall objective func-
tion to be minimized over the design variables b. In the inner
problem, the total potential energy function V(b, z) is min-
imized over the state variable z. Some of the constraints
in (23) may be imposed in the inner optimization prob-
lem while others may be imposed in the outer problem. For
example, contact and nonpenetration constraints may be im-
posed while solving the inner problem while the stress and
displacement constraints may be imposed in the outer prob-
lem. Also some of these constraints may be equalities. The
constraints in (24) that depend only on the design variables
are imposed in the outer problem. The foregoing formula-
tion is an instance of the bilevel optimization problems.

With the assumption of linearly elastic behavior under
small displacements, the total potential energy function is
given by

V(b, z) = 1

2
zT K(b)z− zT F(b) (25)

where K(b) is the structural stiffness matrix, and F(b) is
the equivalent external force vector. Often, the constraints in
(23) can be written as a linear function of z:

g(b, z) = A(b)z− z0 ≤ 0 (26)

where A(b) is a matrix of appropriate dimension and z0 is
a specified vector. Now, writing the KKT optimality condi-
tions for the inner problem, (22) and (23) in the formulation
can be replaced by the following conditions:

K(b)z−F(b)+A(b)T p = 0 (27)

p ≥ 0 ; g(b, z) = A(b)z− z0 ≤ 0 ; pT g(b, z) = 0 (28)

where p is the Lagrange multiplier vector for the constraints
in (26). p is interpreted as the forces required to impose the
constraints, e.g., if the constraints in (26) represent the non-
penetration contact conditions then p represents the vector
of contact forces. For the frictionless contact case, it rep-
resents the normal contact forces between the deformable

body and the rigid object. The conditions in (28) represent
the complementarity problem.

Hilding et al. (1999) presented a detailed review of op-
timization of structures in unilateral mechanical contact.
Emphasis was put on linear elastic structures in frictionless
contact. In particular, for optimization problems where an
energy objective was used, a unified framework was pre-
sented in the continuum as well as the discretized forms.
Papers relating to friction problems, optimal design involv-
ing variational inequalities, and pure sensitivity analysis
were also briefly discussed. They explained that, in general,
structural optimization problems involving contact could not
be treated by classical smooth optimization theory; instead,
modern fields such as nonsmooth optimization and MPECs
needed to be used.

Various formulations and algorithms for contact analy-
sis problems have also been studied by Mijar and Arora
(2000a,b). Variational equality and inequality formulations
were studied for frictionless and frictional contact prob-
lems. Simple example problems were solved to study behav-
ior of the numerical algorithms. Solutions with some algo-
rithms were shown to be dependent on the penalty parameter
value and the load step size. Although the contact analy-
sis problems can be formulated and solved using standard
optimization algorithms, they can also be formulated using
MPEC formulation. Such formulations are nondifferentiable
and the generalized Newton method must be used to solve
them (Mijar and Arora 2000b). Recently, Mijar and Arora
(2004a,b) have also presented an augmented Lagrangian al-
gorithm for frictional contact problems where the solution
does not depend on the user-specified penalty parameter or
the load step size.

Ferris and Tin-Loi (1998, 1999) presented an NLP ap-
proach for the identification of elastic limits and hardening
moduli using the displacement information. They also dis-
cussed a minimum-weight elastoplastic problem involving
displacement and complementarity constraints. The research
dealt with discretized structures, holonomic plasticity (re-
versible and path-independent), and constraints on displace-
ments. They investigated numerically the application of two
simple algorithms, both based on use of the general-purpose
NLP codes. One was a parametric method, and the other was
a penalty method.

Tin-Loi (1999a) proposed a method for the minimum-
weight design of path-independent plastic structures. An
MPEC formulation with member areas, stresses, nodal dis-
placements, and plastic multipliers as optimization vari-
ables was developed for trusses. After applying a smoothing
scheme, the problem was transferred to a standard NLP and
solved by a generalized reduced gradient method. Tin-Loi
(1999b) also presented the numerical solution of a class
of unilateral contact structural optimization problems. The
weight of a structure was minimized subject to friction-
less unilateral contact conditions and constraints on the
magnitudes of contact forces, displacements, stresses and
cross-sectional areas. The problem was formulated as an
MPEC. The nonsmooth problem was solved using two stan-
dard NLP algorithms: a penalty method, and a smoothing
method.
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Pang and Tin-Loi (2001) presented a penalty interior-
point algorithm for a parameter identification problem in
elastoplasticity. Identification of the yield limits and hard-
ening moduli from the knowledge of the displacement re-
sponse of the structure under a given set of proportional
loads was studied. Under the assumptions of piecewise lin-
ear holonomic plasticity and a suitably discretized struc-
ture, the inverse problem could be formulated as an MPEC.
A penalty interior-point algorithm (PIPA) was proposed for
solving the identification problem.

Ferris and Tin-Loi (2001) formulated the limit analysis
of frictional block assemblies as an MPEC. The computation
of collapse loads of discrete rigid block systems, charac-
terized by frictional and tensionless contact interfaces, was
formulated and solved by introducing appropriate relaxation
of the complementarity conditions.

Tin-Loi and Que (2001, 2002a,b) and Que and Tin-Loi
(2002a,b) studied NLP approaches for an inverse problem in
quasi-brittle fracture and they evaluated the cohesive frac-
ture parameters from a wedge-splitting test. This was an
indirect parameter identification of cohesive crack proper-
ties. Based on the availability of load-deflection data, ob-
tained from such standard tests as the three-point bending
and wedge splitting, the parameter identification problem
was formulated as an MPEC. A number of numerical al-
gorithms that were based on the standard NLP formulation
and evolutionary search techniques were investigated. Com-
putational results, using the actual experimental data, were
presented to compare the proposed schemes.

Evgrafov and Patriksson (2003) studied stochastic struc-
tural topology optimization based on discretization and the
penalty function approach. Unilateral constraints were con-
sidered. The resulting nonsmooth stochastic optimization
problem was an instance of stochastic MPEC, or stochastic
bilevel programs. A solution scheme based on approximat-
ing the topology optimization problem by a sequence of
sizing optimization problems, and approximating the proba-
bility measure was proposed.

Although many researchers have aimed simply to trans-
form an MPEC into a standard NLP problem and solve
it by various parametric, smoothing, relaxation or penalty
methods, substantial attention has also been devoted to
further understanding and development of theories and
efficient algorithms to solve MPECs. A penalty interior-
point algorithm (PIPA), an implicit programming algo-
rithm and a piecewise SQP were presented by Lou et al.
(1996). Patriksson and Wynter (1999) studied stochas-
tic MPECs. Some basic parallel iterative algorithms for
discretely distributed stochastic MPEC were discussed.
Scholtes and Stöhr (1999) studied theoretical and com-
putational aspects of an exact penalization approach to
MPECs. A globally convergent trust-region method was
developed. Complementarity constraint qualifications and
simplified B-stationarity conditions (Bouligand first-order
optimality conditions) for MPECs were studied by Pang and
Fukushima (1999). With the aid of some novel complemen-
tarity constraint qualifications, some simplified primal-dual
characterizations of a B-stationary point were derived. An-
dreani and Martinez (2001) proved that stationary points of

the sum of squares of the constraints were feasible points
for the MPEC under reasonable sufficiency conditions. They
showed the requirements for NLP algorithms to be success-
ful when applied to the MPECs. Wan (2002) presented some
further investigation on feasibility conditions of MPECs.
It was demonstrated that these feasibility conditions were
also sufficient for quadratic programming subproblems aris-
ing from the penalty interior-point algorithm (PIPA) and
the smooth SQP algorithm for solving MPECs. Birbil et al.
(2004) presented an entropic regularization approach for the
MPECs. A new smoothing approach based on entropic reg-
ularization was proposed. A three-dimensional null-space
approach for the MPECs with steps related to nonlinear in-
equality constraints, the complementarity conditions and the
objective function was proposed by Nie (2004).

10 Optimal control

The SAND-type approaches have also been used to solve
open-loop optimal control problems for trajectory design in
aerospace engineering (Enright and Conway 1991; Schulz
et al. 1998; Betts 2000), robotic or human motion planning
(Kaplan and Heegaard 2001, 2002; Lo et al. 2002; Bottasso
and Croce 2004), and chemical or biotechnological process
engineering (Cuthrell and Biegler 1986; Biegler 1988, 1998;
von Schwerin et al. 2000; Riascos and Pinto 2004). These
problems involve the solution of differential algebraic equa-
tions (DAEs), or just differential equations (DEs). The stan-
dard optimal control problem is to find the control history
u (t) that minimizes the performance index in the time inter-
val [t0, t f ], as (Hull 2003):

f = φ
(

t f , y f
)+

t f∫

t0

L (t, y, u)dt (29)

subject to the system dynamics equations

ẏ = � (t, y, u) (30)

the prescribed initial conditions

t0 = t0s ; y0 = y0s (31)

and the prescribed final conditions

ϕ
(

t f , y f
) = 0 (32)

The basic idea of the SAND approach is to discretize the
system of first-order differential equations (30), and define
a finite-dimensional approximations or parametric represen-
tation for the state and control variables. The discretized
state equations are treated as equality constraints in the op-
timization process, converting the optimal control problem
into an NLP problem, which is solved numerically. Several
viable approaches are available. If the design variables to-
gether with the state variables and control variables are all
treated as optimization variables, the approach is called the
direct collocation/transcription method. If the control vari-
ables are eliminated from the system (i.e., only the design
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variables and the state variables are treated as optimization
variables), it is called the differential inclusion method (Hull
1997, 2003). Another possibility is the so-called multiple
shooting technique (Betts and Huffman 1991; Leineweber
et al. 2003).

Different discretization techniques for the state equa-
tions have been studied in the literature. In general there
are two classes of methods to transfer the DAEs or DEs
to an algebraic system of equations. One is to use some
polynomial interpolation between the time grid points, and
the other is to use a series expansion in terms of orth-
ogonal polynomials, such as Legendre or Chebyshev poly-
nomials (Vlassenbroeck 1988; Fahroo and Ross 2002). For
the former case, the most common ways are the trape-
zoidal or Simpson’s quadrature schemes based on piece-
wise quadratic or cubic polynomials (Hargraves and Paris
1987; Betts 1990; Enright and Conway 1991, 1992; von
Stryk and Bulirsch 1992). Explicit or implicit Runge–Kutta
methods were used to discretize the state equations by Al-
buquerque and Biegler (1997), Biehn et al. (2000), and Betts
et al. (2000, 2002a,b). Higher-degree polynomials for direct
collocation were studied by Herman and Conway (1995),
and Hu et al. (2002). If a very smooth trajectory is required,
B-spline curves can also be used to parameterize the dy-
namic equations (Neuman and Sen 1973; Lo et al. 2002).
Seywald (1994), Coverstone-Carroll and Williams (1994),
and Kumar and Seywald (1996a,b) discussed a technique to
eliminate the controls while solving optimal control prob-
lems via direct methods. Conway and Larson (1998) pre-
sented a comparison of collocation and differential inclusion
methods in direct trajectory optimization.

Different optimization algorithms have been used for
direct collocation or multiple shooting, among which the
SQP and interior-point algorithm are the popular choices.
Hargraves and Paris (1987), Tanartkit and Biegler (1996),
Schulz and Bock (1997), von Schwerin et al. (2000), Betts
(2000), Cervantes and Biegler (2000), and Itle et al. (2004)
used SQP. The interior-point algorithm was employed by
Cervantes et al. (2000, 2002). Since the resulting NLP
is large and sparse, sparse NLPs were extensively dis-
cussed (Betts and Huffman 1992, 1993, 1999; Cervantes and
Biegler 1998; Cervantes et al. 2002). Parallel computation
was considered by Betts and Huffman (1991). A detailed
survey of the numerical methods for simultaneous optimiza-
tion and control can also be found in Betts (1998).

11 Multidisciplinary design optimization (MDO)

The SAND formulation is also called the infeasible path (IP)
approach for aerodynamic design, which was pioneered by
Rizk (1983). Later, more research was done on this problem
(Frank and Shubin 1992; Shubin 1995; Orozco and Ghattas
1992, 1996). Other applications of the SAND formulation
can be found in heat transfer; e.g., Hrymak et al. (1985) pre-
sented optimization of extended heat transfer surfaces.

The SAND formulation has also been demonstrated
in many multidisciplinary design optimization (MDO) pa-
pers and has been called the all-at-once (AAO) formula-

tion (Haftka et al. 1992; Cramer et al. 1994; Shubin 1995;
Balling and Sobieszczanski-Sobieski 1996; Balling and
Wilkinson 1997). Haftka et al. (1992) discussed the inter-
disciplinary optimization of engineering systems from the
standpoint of the computational alternatives available to the
designers. Optimization of the system could be formulated
in several ways, i.e., NAND or SAND formulations. Cramer
et al. (1994) presented three MDO formulations, namely
multidisciplinary feasible (MDF), AAO, and individual dis-
cipline feasible (IDF) formulations. In AAO formulation,
the optimization problems were very large and residuals
were evaluated in all disciplines. No existing analysis codes
were necessary. Though AAO was computationally least ex-
pensive, it required a higher degree of software integration.
Balling and Wilkinson (1997) studied available multidis-
ciplinary design optimization approaches on common test
problems. It turned out that the AAO formulation proved it-
self the most efficiency among all the approaches for the test
problems. Detailed reviews of various MDO formulations
can be found in the literature (Balling and Sobieszczanski-
Sobieski 1996).

12 Concluding remarks

Alternative formulations for optimization of structural and
mechanical systems, including configuration and topology
design, are reviewed. Features of various formulations are
discussed and their advantages and disadvantages are de-
lineated. These include simultaneous analysis and design
(SAND), displacement-based two-phase approach, math-
ematical programs with equilibrium constraints (MPEC),
and partial differential equations (PDE) constrained for-
mulations. If design variables and some state variables
are combined together in a single and large optimization
problem, then the SAND formulation is obtained. In the
displacement-based formulation, two separate optimization
problems are defined and solved in a sequence: the inner
problem where the displacements are kept fixed and the de-
sign variables are updated, and the outer problem where the
design is kept fixed and the displacements are updated.

MPEC is a more general formulation where the equi-
librium constraints are defined by variational equalities or
inequalities, such as that for the contact analysis problem. In
addition, the formulation has a complementarity system of
equations that make the problem nondifferentiable. MPEC
can also be considered as a special case of the so-called
bilevel optimization problems where some of the constraints
involve optimization. It is noted that the equilibrium equa-
tion (1) is obtained as a necessary condition for minimiza-
tion of the total potential energy of the structure. Thus the
SAND formulation can also be considered as a special case
of the MPEC. This formulation has been studied recently
and mathematical foundations for its solution have been pre-
sented. First- and second-order optimality conditions for the
formulation have been developed and computational algo-
rithms for its numerical solution have been presented and
demonstrated. Some MPEC problems can be reformulated
and solved by the standard NLP algorithms.
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Another recent formulation is the PDE-constrained op-
timization of systems. This formulation is similar to the
SAND approach except that the equilibrium equations are
written as PDEs, i.e., in the distributed parameter form. The
formulation offers more flexibility for numerical calcula-
tions because any discretization scheme can be used to solve
the PDEs.

In addition to the foregoing literature, SAND-type for-
mulations for the optimal control problem and multidisci-
plinary optimization problems are briefly reviewed.

Based on this review of the literature, the current status
and future opportunities for research on alternative formula-
tions for optimization of structural and mechanical systems
are as follows:

1. Most of the formulations in the structural optimization
literature have been discussed for truss structures; they
need to be extended to other complex structures.

2. Most of the formulations have focused on the use of
displacement-based FEM. Other analysis methods need
to be considered, such as the force methods, mixed
methods, meshless methods, boundary element methods,
and others.

3. Aspects of implementation with existing analysis pro-
grams have not been adequately discussed; this import-
ant issue needs to be addressed (Wang and Arora 2004).

4. Sparse matrix approaches must be used to solve the prob-
lem with the SAND formulation since the optimization
problem is large but sparsely populated.

5. Parallel processing must be considered to solve very
large-scale problems.

6. Transformation of the optimization variables needs to be
considered, since various variables can be of different
orders of magnitude.
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Larsson T, Rönnqvist M (1995) Simultaneous structural analysis and
design based on augmented Lagrangian duality. Struct Multidisc
Optim 9:1–11

Leineweber DB, Bauer I, Bock HG, Schloder JP (2003) An efficient
multiple shooting based reduced SQP strategy for large-scale dy-
namic process optimization. Part 1: theoretical aspects. Comput
Chem Eng 27(2):157–166

Lo J, Huang G, Metaxas D (2002) Human motion planning based
on recursive dynamics and optimal control techniques. Multibody
Syst Dyn 8(4):433–458

Luo Z-Q, Pang J-S, Ralph D (1996) Mathematical Programs with
Equilibrium Constraints. Cambridge University Press, Cam-
bridge

Maar B, Schulz V (2000) Interior point multigrid methods for top-
ology optimization. Struct Multidisc Optim 19(3):214–224

McKeown JJ (1977) Optimal composite structures by deflec-
tion variable programming. Comput Methods Appl Mech Eng
12:155–179

McKeown JJ (1989) The design of optimal trusses via sequence of
optimal fixed displacement structures. Eng Optim 14:159–178

McKeown JJ (1998) Growing optimal pin-jointed frames. Struct Mul-
tidisc Optim 15:92–100

Mijar AR, Swan CC, Arora JS, Kosaka I (1998) Continuum topology
optimization for concept design of frame bracing systems. J Struct
Eng 124:541–550

Mijar AR, Arora JS (2000a) A study of formulations for elasto-
static frictional contact problems. Arch Comput Methods Eng
7:387–449

Mijar AR, Arora JS (2000b) Review of formulations for elastostatic
frictional contact problems. Struct Multidisc Optim 20:167–189

Mijar AR, Arora JS (2004a) An augmented Lagrangian optimization
method for contact analysis problems, 1: formulation and algo-
rithm. Struct Multidisc Optim 28: 99–112

Mijar AR, Arora JS (2004b) An augmented Lagrangian optimiza-
tion method for contact analysis problems. Struct Multidisc Optim
28:113–126
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