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Parameter optimization of the sheet metal forming process
using an iterative parallel Kriging algorithm

J. Jakumeit, M. Herdy and M. Nitsche

Abstract Different numerical optimization strategies
were used to find an optimized parameter setting for
the sheet metal forming process. A parameterization of
a time-dependent blank-holder force was used to control
the deep-drawing simulation. Besides the already well-
established gradient and direct search algorithms and the
response surface method the novel Kriging approach was
used as an optimization strategy. Results for two analyti-
cal and two sheet metal forming test problems reveal that
the new Kriging approach leads to a fast and stable con-
vergence of the optimization process. Parallel simulation
is perfectly supported by this method.

Key words Kriging, parallel simulation, process param-
eter optimization, sheet metal forming

1
Introduction

Nowadays simulation programs are widely used in the car
industry to optimize production processes or test the be-
havior of the car before a prototype is built or real-life
tests are performed. The sheet metal forming process is
one example, where simulation is used in an early stage
of the car’s development to test difficult geometries and
to optimize the process parameters to ensure safe and
correct production. For such an optimization of process
parameters an engineer has to run many simulations with
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different parameter constellations and the results have to
be analyzed. Since such an optimization ‘by hand’ rarely
follows a clear strategy, it remains uncertain whether the
optimal process parameters and tool geometries have ac-
tually been identified. In such a situation the use of a nu-
merical optimization program, which tests the different
parameter constellations of an optimization strategy, can
provide significant support for the engineer and lead to
better results.
This work applies parameter optimization to the sheet

metal forming process. Figure 1 shows the active surfaces
of the deep-drawing tools for a sheet metal forming. These
tools consist of a die, a blank-holder and a punch. The
actual tools in the deep-drawing press are massive metal
blocks. The shape of the active surfaces is defined by the
part geometry and the so-called addendum. At the start
of the deep-drawing process the blank is fixed to the die
by the blank-holder. The blank-holder force required de-
pends on the process. During the forming process the
punch forces the blank into the die. In this plastic process
the blank takes on the shape of the die or the punch. The
formed part will usually be processed to the final part in
further steps.
The first results for a numerical optimization of the

sheet metal forming process have been published in Hill-
mann and Kubli (1999), Ghounati et al. (1998, 1999),
Scott-Murphy et al. (1999). This paper focuses on a new
optimization strategy, Kriging, and investigates the fea-
sibility of the parallel simulation of sheet metal forming
processes with different parameter settings in order to
gain shorter computation times.

2
The optimization problem

For the numerical optimization of a sheet metal forming
process the whole process has to be mapped into a math-
ematical optimization problem. The goal of the optimiza-
tion is to find process parameters which lead to a metal
sheet with the desired geometry that is without cracks or
wrinkles. In order to achieve this goal, the optimization
algorithm uses the sheet metal forming simulation pro-
gram INDEED to calculate the influence of design param-
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Fig. 1 Toolset for the deep drawing part “S-rail”

eters on the forming process result. After the simulation
the results of the simulation are evaluated by an objective
function in order to measure the quality of the simulation
result. A series of test simulations was used to identify
design parameters. These control the final form and the
crack and wrinkle tendency of the simulation result. In
the following chapters the three parts of the optimiza-
tion problem are described in detail: sheet metal forming
using INDEED, the evaluation of the results by a multi-
criteria objective function and the identification of design
parameters.

2.1
Forming simulations with INDEED

The deep-drawing simulations were performed using
INDEED, a special purpose program for sheet metal
forming processes. It is based on the incremental Fi-
nite Element Method (FEM). In each incremental load
step the balance between inner and outer loads is calcu-

Fig. 2 The element types of INDEED

lated. Developed in close cooperation with well-known
German automobile companies (Volkswagen AG, Daim-
lerChrysler, ThyssenKrupp Automotive) INDEED has
become a highly effective simulation software for car body
parts. Naturally, other sheet metal parts can also be simu-
lated. The correct treatment for the springback effect is
still being developed. However, general tendencies are
correctly simulated and can be used for the optimization
process.
Two types of simulation are available with INDEED

(Fig. 2). A membrane element is used for very quick ana-
lyses. It is used in the very early stage of the design
process of a car body. For highly accurate results and
a simulation of the springback behavior a shell element
is included. This element has been developed especially
for the deep-drawing process. In addition to excellent
bending and membrane characteristics, the element for-
mulation includes the change of thickness as an indepen-
dent degree of freedom. In contrast to classic shell elem-
ents, this allows an efficient description of the contact on
both sides. In addition, friction is included. The mate-
rial models are another feature of INDEED. For success-
ful numerical simulations a good approximation of the
characteristics of the real material is needed. The general
strain hardening which occurs during the forming process
has been validated experimentally by extensive biaxial
tests for many materials. The INDEED software provides
the conditions for a realistic evaluation of springback.

2.2
Multicriteria objective function

The definition of an objective function, which evaluates
a simulation result with all its different properties with
one single value, can be very difficult for technical appli-
cations. The quality of the function definition may have
a significant influence on the time needed to solve the
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problem. In the case of a sheet metal forming process, four
goals have to be met:

G1. the final sheet should not have cracks
G2. the final sheet should not have wrinkles
G3. the sheet should be stretched enough to gain a stable

form, but thinning should not be excessive.
G4. after the opening of the tools, the sheet is likely to

change its form slightly due to internal forces, the so-
called springback effect. The final form after spring-
back should be the desired one.

The first three requirements can be interpreted as con-
straints. But for a conservative design of the sheet metal
forming process it is not enough to avoid cracks or wrin-
kles in the simulation result. Process parameters have to
be found which reduce the crack and wrinkle tendency
as much as possible. Therefore, all four requirements are
handled as goals of the optimization process and are part
of the objective function. For each goal an individual ob-
jective function is defined. The total objective function
is calculated by a weighted sum of the four individual
functions.
The forming limit diagram (FLD) is analyzed (Hill-

mann and Kubli 1999; Hora et al. 1996) for the first two
objectives G1 = Gcrack and G2 = Gwrinkles. In the FLD
for each element of the FE-sheet representation the major
strain (hmajor) is plotted against the minor strain(hminor)
(see Fig. 3). If an element comes close to or lies above the
form limiting curve (FLC) a crack has to be expected in
this area of the sheet. Similarly, a risk of wrinkles can
be assumed if an element lies below the thickening line
hmajor =−hminor, i.e. if there is more pressure then ten-
sion in a certain area. G1 is just the number of elements

Fig. 3 Schematic FLD-diagram with critical regions for
crack, risk of crack, risk of wrinkles and wrinkles

Fig. 4 Points used to measure the distance between the de-
sired geometry and the simulation result in the SRAIL test
case

which lie inside the crack region, i.e. which have values of
hmajor and hminor which lead to cracks or indicate a crack
tendency.
A tendency to wrinkle is assumed if the element lies

below the line hmajor =−2×hminor. Similarly to G1, G2
is given by the number of elements in the wrinkle region
of Fig. 3 with values of hmajor and hminor that indicate
a wrinkle tendency.
The third criteria, G3 = Gthinning , can be directly

taken from the thinning data, given by the sheet form-
ing simulation with INDEED. The thinning is used as the
value for G3.
For the fourth goal, G4 = Gspringback, the difference

between the desired geometry and the one simulated by
the design parameter set is measured at several points on
the sheet. Figure 4 shows the nine points used to evaluate
the shape of the SRAIL test case (see Example 2 below).
G4 is given by the difference between the desired and re-
alized position in the direction of the punch movement,
given in mm.
The total objective function is then given by the

weighted sum of the individual objective functions:

Gtotal = wcrackGcrack+wwrinkleGwrinkle +

wthinning Gthinning+wspringbackGspringback (1)

In general this weighting (1) of the individual objec-
tive functions is useful if the values of the functions have
significant differences (i.e. G1 is on average 100 times
larger than G2) or if the optimization should focus on one
specific objective. For the two application cases presented
here all weights were 1 and the total objective function
was just the sum of the individual values. An optimiza-
tion algorithm that can detect Pareto-optimal solutions
for the four criteria was not applied.
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Fig. 5 Blank-holder force as a function of the drawing depth
described by seven parameters (three forces and four step
lengths. The length of the third step is given by the total
drawing depth)

2.3
Design parameters

The simulation of the sheet metal forming process is con-
trolled by many parameters. In this paper we focus on the
optimization of process parameters such as the strength
of a draw-beat and the time-dependent blank-holder force
and not on the optimization of an optimal geometry
for the forming tools. Hillmann and Kubli (1999) used
a time-dependent variation of the blank-holder force to
control the simulation. A parameter study performed on
the hat-shaped profile (see Sect. 4.1) verified that a pa-
rameterization of the time dependence by three plateaus
with constant force and two ramps between the plateaus
is sufficient to control crack and wrinkle tendency as well
as the final form of the sheet. Since the total length of the
drawing process is given, seven parameters are necessary
to describe the course (three forces and four step lengths).

3
Comparison of different optimization strategies

3.1
Optimization strategies

There exists a wide literature on optimization strategies
that are able to solve the nonlinear optimization problem
defined in the previous section (Press et al. 1999; Nocedal
and Wright 1999; Gill et al. 1981; Torczon 2000; Lewis
and Torczon 2000; Myers and Montgomery 1995; Simp-
son 1998; Watraon 1984; Welch and Sacks 1991; Tang
1993). The most popular strategies are conjugated gra-
dient, Quasi Newton and sequential quadratic program-
ming methods, which use information from the first or
second derivative to move through the parameter space
towards an optimal solution (Press et al. 1999; Nocedal

and Wright 1999; Gill et al. 1981). If the derivatives are
not directly accessible and must be numerically calcu-
lated, direct-search algorithms are often more robust and
quicker. They use only a direct comparison between the
objective values to determine a parameter set for the next
iteration. Examples of these algorithms are the downhill-
simplex algorithms, Powell’s method of conjugated di-
rections and pattern search methods (Press et al. 1999;
Torczon 2000; Lewis and Torczon 2000).
An important characteristic of the optimization of the

sheet metal forming process is that a single simulation
needs a computation time in the order of hours or even
days on a modern workstation. Therefore, the number
of simulations should be small and parallel simulation of
the forming process for different parameter sets should be
used. Optimization strategies based on surrogate models
are especially suitable for optimization under such condi-
tions. Figure 6 shows a flowchart of such an optimization
strategy using surrogate models. In a first step, Design
of Experiment (DoE) methods are used to determine pa-
rameter sets X, for which a simulation has to be per-
formed. In the second step, objective values f(X) at these
points are used to establish a surrogate model s as an ap-
proximation to the actual objective function f . The third
step is the search for the optimum of the surrogate model.
Since this model is an analytic function this optimization
can be solved very fast by the computer. If the new op-
timum found is close to the last optimum (convergence)
and the estimation of the surrogate model is close to the
result obtained by a complete simulation, the algorithm
is stopped. Otherwise the surrogate model is improved in
a further iteration by adding additional simulation results
at new points and reducing the modeled region.
In the response surface methodology (RSM), s is given

by polynomials, which are fitted to the simulation re-
sults using a least squares fit (Myers and Montgomery
1995; Simpson 1998). In Kriging, the surrogate model
consists of a sum of many local carrier functions (very
often Gauss functions) and one global function, which
might be a polynomial as in RSM but generally is simply
a constant. For each simulated point x fromX a local car-

Fig. 6 Flowchart of an optimization strategy using surrogate
models
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rier function is used to bridge the difference between the
global function and the simulation results. The width of
the local carrier functions is tailored to get the most likely
surrogate model to the simulation points. A more de-
tailed description of the Kriging algorithm can be found
in Simpson (1998), Watraon (1984), Welch and Sacks
(1991). An advantage of the Kriging method compared
to RSM is that Kriging can use any number of simula-
tion points to create a surrogate model, while in RSM the
number of necessary simulations is given by the number of
unknowns in the polynomial. This number can be rather
high in a high-dimensional search space, i.e. for a higher
number of design parameters d. A principle difference be-
tween RSM and Kriging is that RSM is a global model
while Kriging is local. Here, global means that each simu-
lated point used to define the polynomial influences the
complete surrogate model even at remote points in search
space. In contrast, due to the use of local carrier func-
tions in Kriging, simulated points influence the surrogate
model only in a nearby region, making Kriging a local
model.

3.2
Analytical test

Different analytical test problems were used to compare
the various optimization strategies, influence of differ-
ent DoE designs, RSM or Kriging surrogate models be-
fore they were applied to the computation-time-expensive
sheet forming simulation. Since the CPU time of a sheet
metal forming simulation is much higher than the time
needed by the optimization strategy, the CPU time for
the whole optimization will be determined by the number
of simulations. Therefore, this number is used to moni-
tor the convergence. For this engineering application it is
not the number of simulations needed to reach the opti-
mum that is a measure of the quality of the algorithm,
but rather the ability to reach an acceptable improvement

Fig. 7 Rosenbrock and Fletcher–Powell functions in two dimensions

with as few simulations (i.e. objective function evalua-
tions) as possible.
It is not possible to describe all these tests and re-

sults in this publication, which focuses on industrial ap-
plication. Below four different optimization strategies are
compared for the Rosenbrock and the Fletcher–Powell
function as analytical test problems. Similar tests gave
the following findings for different surrogate models:

• The fastest convergence could be found using Latin hy-
percube sampling (Tang 1993). This design seems to
give a rather good sampling of the design space with
a low number of points compared to standard DoE
designs as partial or full factorial design or d-optimal
design.
• For the RSM base surrogate model a quadratic poly-
nomial outperformed a linear approximation. Higher
order polynomials were not tested since the number
of necessary simulations to build one surrogate model
would make such a model computational very expen-
sive. An iterative improvement of the surrogate model
would be impossible with a reasonable amount of com-
putation time
• For the Kriging surrogate model Gauss functions were
used as local carrier functions. Our investigations
showed that the optimization was more robust if the
width of the Gauss function was the same for all di-
rections of the search space and not optimized for each
direction separately.

The Rosenbrock function

f(x) =
n−1∑

i=1

100 (xi+1−x
2
i )
2 + (xi−1)

2 (2)

is characterized by one long curved valley, where many
gradient methods show a very slow convergence
(see Fig. 7(a)). The Fletcher–Powell function has many
randomly distributed minima (see Fig. 7(b)):
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f(x) =
n∑

i=1

(Ai−Bi)
2 , Ai =

n∑

i=1

(aij sinαj+bij cosαj) ,

Bi =
n∑

i=1

(aij sinxj+bij cosxj) , −π ≤ xi ≤ π , (3)

aij ,bij ∈ [−100, 100], αj ∈ [−π, π] can be chosen ran-
domly, but are taken from Tang (1993).
Both functions are defined for any number of pa-

rameters d, i.e. the dimension d of the problem can be
scaled. In this comparison we took the conjugated gra-
dient method (CG) for a gradient algorithm, downhill
simplex (DS) for a direct method, RSM with a quadratic
polynomial as a surrogate model and Kriging with Gauss
functions and a constant as a global function. CG and DS
were taken from Numerical Recipes (Press et al. 1999).
Figure 8 compares the convergence of the four strate-
gies for both objective functions in an eight-dimensional
search space. Kriging shows the fastest convergence for
both problems. DS is slightly slower. The CG approach
has problems with the multi-minima Fletcher–Powell

Fig. 8 Convergence of conjugated gradient (CG), downhill simplex (DS), response surface method (RSM) and Kriging for (a)
Rosenbrock function and (b) Fletcher–Powell function

Fig. 9 Convergence of conjugated gradient (CG), downhill simplex (DS), response surface method (RSM) and Kriging for the
(a) Rosenbrock function and (b) Fletcher–Powell function running on a parallel machine with eight nodes

problem and RSM shows problems with the Rosenbrock
function.
As mentioned above, due to the large computation

time needed for a simulation, a parallel simulation of dif-
ferent parameter settings should be used in the optimiza-
tion strategies as often as possible. In the case of the DS
algorithm only the first simplex with d+1 points can be
simulated in parallel, but during the iteration the algo-
rithm needs only one new simulation result in each itera-
tion. In the CG method the numerical approximation of
the gradient can use d simulation results in parallel. The
line search by Brent’s Method again cannot use a paral-
lel simulation. For the methods with a surrogate model
the simulation of the points determined by design of ex-
periment methods can be done in parallel. The best speed
up is achieved when the number of points is equal to the
number of nodes times an integer. Since the number of
points in Kriging is free an ideal speed up can always be
achieved with this strategy. Figure 9 shows the conver-
gence for the four algorithms using eight nodes in parallel.
Here, Kriging is the fastest algorithm since DS cannot
make use of the eight nodes. The CG approach remains as
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Fig. 10 Convergence of conjugated gradient (CG), downhill simplex (DS), response surface method (RSM) and Kriging for the
(a) Rosenbrock function and (b) Fletcher–Powell function with 10% degree of random noise on eight nodes

fast as Kriging for the Rosenbrock function but has diffi-
culties with the Fletcher–Powell function.
Another important aspect of the optimization of en-

gineering problems such as sheet metal forming is that
the objective function can be quite noisy. In the case of
the sheet metal forming small changes in the parame-
ter can yield a wrinkle and thereby change a good result
to a rather bad one. To check the robustness of the al-
gorithms a 10% degree of random noise was added to
the analytical test functions by multiplying f(x) with
0.1× rnd(), where rnd() gives a random number between
0 and 1. Figure 10 shows the convergence of the four
strategies for an optimization of the noise problems on
eight nodes. The CG algorithmdoes not converge because
the random noise leads to the calculation of incorrect gra-
dients. A comparison with Fig. 7 reveals that the other
three methods are not affected by the noise in the objec-
tive function.

4
Two examples

The four optimization strategies: CG and DS taken from
Press et al. (1999), the RSM with quadratic polynomial
as surrogatemodel and Latin hypercube sampling as DoE
design and the Kriging approach with Gauss functions of
equal width in each dimension as local carries and Latin
hypercube sampling as DoE design were tested with the
two sheet metal forming test cases from the Numisheet 93
(BenchmarkProblems:B3)andNumisheet96(Benchmark
Problems and results: B-2) conference: the hat-shaped
profile and theSRAIL.The sheetmetal forming simulation
was done by INDEED on a PC cluster with 16 nodes. The
optimization algorithmruns ona separatePCand controls
the simulations simply using Network Filesystem (NFS).
Since the data exchange is limited to the change of the
input file, the start of the simulation and the collection of
the results, the use of a parallel environment like Message
Passing Interface (MPI) was not necessary.

4.1
Hat-shaped test case

The hat-shaped profile (see Fig. 11) is a rather small test
case originally employed at the Numisheet 93 (Bench-
mark Problems: B3) conference to compare different
simulation algorithms. A flat stripe of metal is formed
to a hat-shaped profile bar. Only a quarter of the bar is
simulated because of symmetry conditions. The test case
has 2500 elements and needs about 1 hour CPU time on
a HP A9000 workstation. This test case shows a strong
springback effect and is therefore ideal to test the pos-
sibility of controlling this effect during the optimization
with adequate parameters (see Sect. 2.3). To find these
control parameters, first simulation studies have been
done with different constant blank-holder forces to verify
earlier results from the literature Ghouati et al. (1998).
The influence of the blank-holder force on the springback
was clearly demonstrated.
The next studies were done with different profile

curves for the blank-holder load. The curves were pa-

Fig. 11 Toolset for the hat-shaped test case



505

rameterized by three plateaus with constant force and
two ramps between the plateaus as described in Sect. 2.3.
Since the total length of the drawing process is given,
seven parameters are necessary to describe a curve (three
forces, two plateau lengths and two ramp lengths). Fig-
ure 12 shows the typical results from a parameter study.

Fig. 12 Springback results and thinning results for the hat-shaped profile

Fig. 13 Convergence of CG, DS and Kriging for the test case. Only Kriging found (within 35 simulations) a solution with a good
shape and not too much thinning

The tests demonstrated that the optimization goals, men-
tioned above, can be controlled by such a time-dependent
variation of the blank-holder force.
The result using different optimization strategies

shows that the seven design parameter (four lengths and
three forces) are able to control the forming so that the re-
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sult is a bar without cracks or wrinkles and with the right
shape.
Figure 13 shows the convergence history for CG, DS

and Kriging. Within a reasonable amount of simulations
(< 100) only Kriging was able to find a solution with
a perfect geometry and acceptable thinning at the side
of the bar. The small figures within Fig. 13 show the
optimization process. Starting from a rather poor bar
with an incorrect geometry due to a strong springback
effect, Kriging quickly found a solution with a good geom-
etry but needed about 20 simulations to optimize the
thinning.

Fig. 14 Convergence behavior of Kriging, RSM, CG and DS for the SRAIL test case for serial and parallel simulation

Fig. 15 Convergence behavior of the Kriging strategy for the SRAIL test case

4.2
SRAIL test case

The SRAIL is a much more realistic test case (see Fig. 1)
which shows all the difficulties typically found in car part
geometries (Benchmark Problems and results: B-2). The
test case starts with 700 elements, ends with 6000 elem-
ents and needs about 27min CPU time on a HP A9000
workstation. The springback effect is not as pronounced
as in the hat-shaped test case, while cracks and wrinkles
play a more important role. Figure 14 shows the conver-
gence for Kriging, RSM, CG and DS for serial and parallel
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simulations on 16 nodes. For the parallel simulation all
simulations started in parallel are counted as one paral-
lel run, since they can be executed within the same time
period as one serial simulation.
On a serial machine, all four optimization strategies

show a similar convergence behavior but Kriging and DS
are slightly faster than the others. On the parallel ma-
chine, RSM and Kriging hold the advantage compared to
DS and CG due to their better speed up. Kriging is again
the fastest strategy.
Figure 15 shows the convergence behavior during the

Kriging optimization. At first, the SRAIL has an incor-
rect geometry as indicated by the three circles on top of
the model. After about 15 simulations, design parameters
are found which lead to a significantly improved geom-
etry. But a thickening occurs at the side of the SRAIL.
After 30 simulations the geometry is ideal and the thick-
ening is reduced. A further improvement could not be
realized with the seven design parameters.

5
Conclusion

Numerical optimization strategies are used to find an
optimal parameter setting for the sheet metal forming
process. In this first application the sheet metal form-
ing simulation is controlled by a parameterization of the
time-dependent blank-holder force. The objective is to
form a sheet without cracks or wrinkles, with an accept-
able thinning and the desired form of the sheet after
opening the tools (springback effect). Results for two an-
alytical problems and two realistic test cases show that
optimization using surrogate models is superior com-
pared to standard strategies like gradient or direct-search
methods. Kriging in particular was found to show stable
and fast convergence and a very good speed up on parallel
machines.
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