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Robust shape optimization of notches for fatigue-life extension

M. McDonald and M. Heller

Abstract An iterative 2D finite-element-based opti-
mization procedure has been developed which incorpo-
rates robust design philosophies. This has been used to
determine precise free-form shapes for a hole in a plate ex-
ample, with the aim of maximizing its fatigue-life when
exposed to varying load orientations. Past methods have
typically considered only a single nominal load orienta-
tion, with empirical approaches to deal with the orien-
tation variability, thus resulting in suboptimal solutions.
Here a robust stress method is developed that produces
a notch shape that minimizes the peak stress and ren-
ders it constant for a range of load orientations. Further-
more, a more sophisticated robust fatigue-damage opti-
mization method is then developed to minimize the peak
fatigue damage for a given stochastic distribution of load
orientations. Fatigue calculations for an example problem
with significant load orientation variation show that the
robust optimization methods provide fatigue-life exten-
sions 2 to 8 times better than past methods. It is antici-
pated that the implementation of robust optimal shapes
in metallic components would result in greater fatigue-life
extension.

Key words fatigue life enhancement, shape optimiza-
tion, stress concentration

1
Introduction

A significant aspect of economic management of aging
aircraft is fatigue-life evaluation and fatigue-life extension
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of metallic structures containing stress-concentrating fea-
tures. An example of particular relevance to the Royal
Australian Air Force is the internal fuel flow vent hole in
the F-111 airframe (Fig. 1(a)), which is prone to fatigue
cracking. Sometimes just a few of these stress concentra-
tors, termed herein as notches, can govern the economic
life of the airframe. Hence the development of fatigue-
optimal shapes for such notches can realize significant
gains: firstly by extending the life of the air vehicle, and
secondly by reducing the cost of monitoring and repairing
locations where fatigue cracking occurs.
A very important aspect to consider when determin-

ing optimal shapes is their robustness to varying condi-

Fig. 1 Inside view of the F-111 wing pivot fitting showing
fuel flow vent hole features where fatigue cracking typically
occurs, showing (a) the original geometry, and (b) typical op-
timal shapes (Heller et al. 2001)
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tions. Conditions that can vary include: magnitude and
orientation of in-service loads; manufacture tolerances;
build quality; and numerical modelling approximations
and errors. Consider a typical scenario where a shape is
optimized to give maximum fatigue-life using an idealized
set of nominal conditions. It can reasonably be expected
that any perturbation from these nominal conditions is
likely to result in suboptimal performance.
For example, this concern has recently been demon-

strated in prior work on managing fatigue cracking at the
fuel flow vent holes in the F-111. Optimal shapes were
determined for these holes as shown in Fig. 1(b) (Heller
et al. 2001). The shapes were optimized to reduce the
stress concentration factor (Kt) for a single dominant
loading condition (compare Fig. 2(a) and (b)). A sensi-
tivity study revealed that when worst-case loading varia-

Fig. 2 Stress contours about a typical fuel flow vent hole in
the F-111 wing pivot fitting structure with (a) the original
shape, (b) a typical optimized shape under nominal condi-
tions (Heller et al. 2001), and (c) the same optimized shape
under conditions varied away from nominal (McDonald et al.
2001)

tions and manufacture tolerances were modelled, the Kt
would increase by as much as 15% (see Fig. 2(c), Mc-
Donald et al. 2001). In order to limit this stress increase
within an acceptable level, very tight position tolerances
were imposed on the optimal shapes. This placed a sig-
nificant obligation on the manufacturers to improve the
accuracy of the machining process, thus increasing imple-
mentation costs. Clearly it would have been preferable to
modify the optimal shape instead, in order to decrease the
sensitivity to load orientation, so that the machining tol-
erances could have been more relaxed.
This raises the question, can the shape of a notch be

optimized to give a long fatigue-life for a range of con-
ditions, rather than just a single nominal condition. In
the context of managing a fleet of airframes, this could
realize significant benefits such as: reduced machining
costs; a common robust optimal notch shape for several
airframe variants; improved reliability of residual life as-
sessments; and longer fatigue-life extension. Although the
context of this work is the life extension of existing struc-
tures, it is also completely applicable to the design of new
structures.

2
Robust optimal shapes for fatigue

2.1
Prior work

There are three disciplines of interest here: robust opti-
mization methods for a continuous range of loading sce-
narios, fatigue and probabilistic considerations.
To the authors’ knowledge, no published works are

available where the peak stresses around a notch bound-
ary segment are rendered completely constant for a con-
tinuous range of loading scenarios. However there are
some works that produce notch shapes where the same
peak stress is achieved for a number of distinct load cases
(Kristensen and Madsen 1976; Xie and Steven 1992; and
Herskovits et al. 1996). While these multiple load case
shapes have relevance to the present work, they do not
specifically address a continuous range of loading condi-
tions, and they do not address fatigue or stochastic issues.
Optimization of notches for fatigue has been studied

extensively. For example, Fanni et al. (1994) developed
optimal shapes for notches in machine components based
on minimization of the fatigue notch factor (Kf). Fur-
ther work by Grunwald and Schnack (1997) approached
similar problems using a continuum damage mechanics
model. More recent work by Chaperon et al. (2000) ap-
proaches the optimization problem using fracture me-
chanics criteria. However, none of these works address the
issue of robustness, i.e. they are all developed for a single
loading condition only.
The design of general structures (typically layouts)

with probabilistic consideration of uncertainties is well
established (Phadke 1989; Taguchi et al. 1989). More re-
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cently, the issue of uncertainties has been merged into
general structural optimization procedures and is com-
monly referred to as either: stochastic or probabilistic
optimization, reliability optimization, or more simply,
robust optimization (Rao 1979; Parkinson et al. 1993;
Chandu and Grandhi 1995; Melchers 2001). Although
there are already a large number of papers dealing with
this issue, it appears that these techniques have not yet
been applied to the area of precise free-form shape opti-
mization of notches, nor have they been combined with
fatigue models.
Hence the most pertinent technology gap in all of the

above works is not the lack of expertise in any one par-
ticular area. It is the incomplete amalgamation of these
technologies to create a simple but comprehensive robust
shape optimization procedure for fatigue-life extension of
notches. Hence in this paper, the issues of robustness,
fatigue-life and stochastic effects are brought together
with precise free-form shape optimization in an attempt
to close this technology gap.

2.2
Outline of present work

Firstly, a straightforward stress-based shape optimiza-
tion method for single load cases is briefly described in
Sect. 3, since it is the baseline procedure for further de-
velopment. In Sect. 4.1, this procedure is extended to deal
with a continuous range of load cases, with the aim of
determining a notch shape such that the peak stress is
not only minimized, but is also rendered completely con-
stant over the range of cases. The goal of maximizing the
fatigue-life is then addressed in Sect. 4.2, through incor-
poration of a typical fatigue model into the procedure.
Here the aim is to minimize the peak fatigue-damage ac-
cumulated at the notch boundary, while also accounting
for probabilistic loading effects.
An example problem definition consisting of a hole

in a large plate is described in Sect. 5, which is used to
benchmark the baseline procedure in Sect. 6. Then, the
example problem is used to illustrate the effectiveness of
each development of the robust optimization procedure,
which are given in Sects. 7, 8 and 9. These contain re-
sults of the example problem for: the baseline non-robust
stress method; the robust stress method; and the robust
fatigue-damage method respectively. There are no pub-
lished solutions that the authors are aware of to compare
the robust fatigue method results, however it will be illus-
trated by numerical example that the desired outcomes
are achieved.

3
Basic stress optimization procedure for a single fixed
loading condition

The basic stress optimization approach used here for sub-
sequent further development is a gradient-less approach.

It is used here since it is simple to implement, readily
amenable to extension, and has been shown to achieve
very good solutions for stress minimization, for realis-
tic geometrically constrained problems under single load
conditions. The typical quality of the solutions is dis-
cussed further in Sect. 6, which includes a sample bench-
mark problem. Further details can be found in Kaye and
Heller (1997), and Waldman et al. (2001, 2002). Here we
give an outline for completeness.
The present approach is based on the aim of achiev-

ing a minimum stress peak by directly attempting to
make the stresses uniform along the longest segment of
a boundary. This idea is well known, and some typical
numerical approaches include those of Schnack (1979),
Mattheck and Burkhardt (1990), and Kaye and Heller
(1997). Analytical approaches using this aim include
those of Baud (1934), Neuber (1969), and Vigdergauz
and Cherkayev (1986). Experimental approaches include
Heywood (1945). The different numerical algorithms are
all useful and have various advantages and disadvantages
in their implementation.
The present gradient-less shape optimization method

involves iterative finite-element (FE) solutions to alter
the local geometry to achieve a constant boundary stress.
The general approach is to add material to regions of
high stress and remove from regions of low stress. Con-
sider a free boundary Γ on which there are a number
of nodes i= 1 . . . k, under an arbitrary remote loading,
see Fig. 3(a). For an arbitrary (non-optimal) boundary
shape, the tangential stress will generally vary along the
boundary, as shown schematically in Fig. 3(b).

Fig. 3 Schematic to explain the gradient-less shape-opti-
mization method for an arbitrary boundary segment: (a) geo-
metric shape defined by k nodes on contour Γ ; (b) tangential
stress distribution along the boundary segment



58

The amount of material to be added or removed at any
point on the boundary is taken in direct proportion to the
differencebetween the local tangential stress andasuitable
reference value. This process is repeated iteratively until
the boundary stress is constant, or near constant to within
a prescribed tolerance. For each iteration, the amount of
movement (in the direction of the outward normal) for
any given position i on the boundary is given by

di =

(
σi

σth
−1

)
s (1)

where di is the outward normal boundary movement, σi
is the hoop stress at position i, σth is a non-zero threshold
stress that is updated each iteration, and s is a step-
size scaling factor (Kaye and Heller 1997). Each iteration
material is added or removed at each position i depending
onthechosenthresholdstress. Ifthemagnitudeofthestress
at position i is less than the magnitude of the threshold
stress, thenmaterial is removedatthisposition.Otherwise,
if it is greater, then material is added. Unlike some other
gradient-less approaches, the presentmethod is free-form,
in the sense that the coordinates of neighbouring nodes on
Γ arenotdefinedbyaprescribedfunction.Thiscontributes
to achieving precise, minimal stress solutions.
If desired, a minimum-radius constraint can be imple-

mented by constraining the allowablemovement of a node
so that the radius of a three-point arc fitted through
the node and its immediate neighbours is no less than
a minimum value ρ (Waldman et al. 2002). This feature
is typically only invoked at very localized regions on the
notch boundary. A benchmark problem is solved using the
basic stressmethod later in Sect. 6, following a description
of the typical FE model.

4
Robust gradient-less optimization procedure
for multiple loading conditions or load perturbations

4.1
Robust stress minimization method

Theaimhere is todetermineanotch shape that renders the
peak stress constant andminimal for a continuous range of
load orientations. To explain how this might be achieved
numerically, consider Fig. 4. This shows an arbitrary hole
in a plate subject to a single remote uniaxial load, where
the angular orientation α of that load can occur anywhere
within a prescribed range. The range of load angles, which
is considered to be continuous in practice, is discretized
here into an appropriate number of individual load cases
l = 1 . . .m, where l is the load case identifier andm is the
total number of cases. For an arbitrary initial hole shape,
the stress distribution σi[l] around the hole will usually
be different for each load angle, as shown in Fig. 5. It can
be seen that both the magnitude and position of the peak
stress is typically different for each load case. Figure 5
also shows in bold the locus of the maximum peak stress

Fig. 4 Geometry and notation of an arbitrary hole in a plate
under a remote uniaxial load with varying orientation α,
showing the discretized load cases representing the continuous
variation

Fig. 5 Typical stress distributions about part of an arbitrary
hole shape for different load condition cases, showing the locus
of the maximum-stress distribution

distributionmax(σ[l=1...m])i of all the load cases.We want
to make all stress peaks the same magnitude for all load
cases, to achieve a locus ofmaximumstress that is uniform.
To implementthisaimnumerically,wecancalculatethe

node movements in a similar fashion to the basic method
(1) except here the stress term σi is replaced with the
locus of maximum stress term max(σ[l])i. Hence in each
iteration the boundary node movements for the robust
stress method are given by

di =

(
max(σ[l])i

σth
−1

)
s (2)

where di is the node movement at position i, max(σ[l])i is
the locus of maximum stress for all load cases at position i
for load cases l = 1 . . .m, σth is the non-zero threshold
stress, and s is a step-size scale factor. The effectiveness
of this procedure is demonstrated later in Sect. 8 by an
illustrative example.

4.2
Robust fatigue-damage minimization method
including probabilistic effects

We can now extend the approach given in the previous
section to determine a notch shape that maximizes the
fatigue-life, by rendering the accumulated fatigue-damage
constant along the optimized notch boundary. Firstly
though, the probabilistic effect of load angle occurrences is
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discussed. It is considered that each time a load cycle is ap-
plied, the load orientationα occurswith some uncertainty,
as shown schematically in Fig. 6. A normal distribution
function was arbitrarily chosen in this work to describe
the uncertainty, however any statistical distribution could
be readily used.
As per the robust stress-minimization method de-

scribed in the previous section, it is necessary to discretize
this variation into a number of individual load cases
l = 1 . . .m. Then, the number of occurrences of each load
case is calculated, which is then used later for fatigue-
life calculations. The load case occurrences for a normal
distribution function are given by the following,

n[l] = ntotal


 1
√
2παstdev

e
−

(
(α[l]−αavg)

2

2α2
stdev

)
 (3)

where αavg and αstdev are the average and standard de-
viation of the load-orientation distribution respectively,
α[l] is the discretized value of the orientation for each
load case l= 1 . . .m, and ntotal is the total number of load
cyclesappliedto the structure.This function is represented
schematically in Fig. 7, which shows the idealized contin-

Fig. 6 Arbitrary hole in a plate under remote uniaxial
constant-amplitude load cycles, where its angular orientation
α varies each cycle in accordance with a normal distribution

Fig. 7 Schematic of a load-occurrence normal distribution,
showing the idealized continuous function and a typical
discretized load-case distribution

uous load-occurrence distribution, along with a typical
discretized distribution.
This discretized distribution of load-case occurrence

forms the basis for the fatigue-life calculations. It is im-
portant to consider that each position about the optimal
boundary will experience a unique variable-amplitude
stress history due to the various load-angle occurrences,
hence an appropriate fatigue-damage rule needs to be
selected that accounts for this.
In this paper a simple fatigue-lifemodel is implemented

known as the nominal stress (Kt) approach. It considers
the free-boundary stress solutionat eachpositionalong the
notchboundary,andthuscanbereadilyimplementedinthe
existing gradient-less procedure with minimal program-
ming effort. The fatigue life is calculated using the linear
cumulative-damage rule, otherwise commonly known as
the Miner rule (Miner 1945). It is a reasonable rule that
still retains widespread use in most industries due to
computational efficacy. The criterion for this rule states
that fatigue failure will occur when

f =
c∑
j=1

nj

Nfj
≥ 1 (4)

where f is the accumulated fatigue-damage, nj is the
number of cycles corresponding to the jth stress amplitude
of ∆σj , and Nfj is the number of cycles to failure for
a constant amplitude of∆σj . The nominal stress approach
isappliedto thecumulative-damageruleviaa simple linear
log-log stress-life (S–N) relationship given as

log10(∆σj) = a. log10(Nfj)+ b (5)

where a and b are experimentally determined constants,
and ∆σj is greater than an endurance stress limit σe. By
rearranging (5), the number of cycles to failure for any
given ∆σj can be calculated using the following

Nfj =


10

[
log10(∆σj)−b

a

]
if ∆σj ≥ σe

∞ otherwise

(6)

For the FE implementation the boundary movement at
eachnodeposition iaboutthenotchboundary iscalculated
the same way as the earlier stress-minimization method
given in (1) or (2), except here the stress terms are replaced
with fatigue-damageterms.For thenon-robust (single load
case) scenario, the boundary movement is given by the
following formula

di =

(
fi

fth
−1

)
s (7)

where fi is the accumulated fatigue-damage at position i
calculated in accordance with (4), and fth is a non-zero
threshold fatigue-damage value which is applied in the
samemanner as the stress-minimizationmethoddescribed
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earlier. For the robust (multiple load case) scenario, the
boundary movement is given by

di =

(
max

(
f[l]
)
i

fth
−1

)
s (8)

where max(f[l])i is the maximum fatigue damage at pos-
ition i for all loadcases l= 1 . . .m.Thenormaldistribution
of themultiple loadcases is readily implementedwithin the
fatigue-damage calculation by replacing the nj term in (4)
with n[l] as defined by (3). A numerical demonstration of
the robust fatigue-damage minimization method is given
later in Sect. 9.

4.3
General numerical implementation

The gradient-less method is highly suitable for implemen-
tation with any FE software that has a programming
capability. Figure 8 shows a graphical flowchart of
the simple iterative FE procedure. A fully automated
procedure was implemented here using the pre- and
post-processing software MSC.PatranTM, and the FE
solver MSC.NastranTM. It utilizes the MSC.PatranTM

command language (PCL), which can readily automate
the iterative process. PCL can also perform some complex
geometric and FE modelling functions (e.g. finding the
intersection of complex curves and auto-free meshing),
which are useful for ease of implementation.
The user starts with an FE model ready for analysis

with all of the load cases l = 1 . . .m set up (typically in
this work,m= 1 to 41 depending on the specific analysis
case). A region of FEmesh about the optimized boundary
is created (or recorded) parametrically using PCL. This
mesh creation procedure is used later during the iterative
process to create new boundary shapes automatically.
The iteration process begins by solving all individual

load cases. Then, stress results are extracted along the
optimal boundary for each case. If a robust fatigue-life
optimization is being performed, then fatigue-damage
quantities are calculated. Next, the convergence of the
optimization is assessed. A useful parameter to monitor
the convergence is the normalized range along the optimal
boundary, as given by the equation

Ψσ =
max

(
max

(
σ[l]
)
i

)
−min

(
max

(
σ[l]
)
i

)
avg
(
max

(
σ[l]
)
i

) (9a)

for the stress-minimization method, and

Ψf =
max

(
max

(
f[l]
)
i

)
−min

(
max

(
f[l]
)
i

)
avg
(
max

(
f[l]
)
i

) (9b)

for the fatigue-damage-minimization method, where the
max, min and avg notations refer to the maximum, mini-
mum and average of the optimized quantities respectively
along the optimal boundary (excluding minimum-radius
regions and constraint edges). Clearly, as Ψ approaches

Fig. 8 Typical flow chart of the iterative finite-element im-
plementation of the gradient-less shape-optimization method

zero, the stress or fatigue-damage distribution becomes
more uniform along the boundary and the optimal shape
is approached. Typically, a parameter of less than 0.002
(0.2%) was achieved in this work.
If the optimization has not converged, a boundary

movement is then performed. Node movements are calcu-
latedforallnodesalongtheoptimalboundary.Eitherofthe
optimization methods can be implemented at this point,
i.e. basic or robust stress minimization ((1) or (2)), or
basic or robust fatigue-damage minimization ((7) or (8)).
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Then the FE mesh region about the boundary is
recreated using the mesh-creation PCL procedure noted
above. Finally, all of the individual load cases are analysed
again, and hence the process repeats until convergence is
achieved.Theprocedurereadilyallowstheadditionand/or
subtraction of material along the moving boundary. This
is a 2D implementation, which may be readily transferred
to 21/2D.

5
Geometry and load definition of the example
problem

Theexampleproblemused in thisworkwasahole ina large
plate, where the hole was geometrically constrained to
have a prescribed height-to-length ratio ofH : L as shown
in Fig. 9. The remote uniaxial stress σnom is nominally
oriented at an inclination angle of α= 0◦. It is considered
that this inclination angle may vary over a continuous
range.
The finite-element model of the problem (Fig. 10)

consists of rectangular 8-noded iso-parametric 2D plate
elementswith anarbitrary thickness of 1.A total of 46 cor-
ner nodes were modelled along each quarter of the hole
boundary.Afullmodelwascreatedbecause theorientation
of the uniaxial remote stress varies, even though the final
optimal shape is expected to be symmetrical. The remote
plate boundary is circular with radius Rb = 10L, which
allowed the remote uniaxial stress to be easily applied at
any desired inclination angle. This stress was applied via
forces on the remote boundary nodes as shown in Fig. 10
for the nominal case.
The nodal forces that give a uniform remote stress can

be derived from first principles based on the projected
stress component on each element edge about the remote
boundary. This is then distributed to the nodes keeping
in mind that midside nodes require double the amount of
force as corner nodes in order to maintain a uniform stress
distribution.These equations are givenbelow, showing the
corner and midside nodal force magnitudes (x and y di-
rections) respectively to give a uniform stress distribution
of magnitude σnom for any uniaxial inclination angle α,

Fig. 9 Example problem of a size-constrained hole in a large
plate under a remote uniaxial load

Fig. 10 Example view of the FE mesh for the hole-in-a-plate
example problem, showing the remote uniaxial stress applied
at the nominal inclination angle of α= 0◦

Fx(corner)i =
2

3
σnom2Rb sin

(
β

4

)
cos(α−φi) cos(α)

(10a)

Fy(corner)i =
2

3
σnom2Rb sin

(
β

4

)
cos(α−φi) sin(α)

(10b)

Fx(midside)i =
4

3
σnom2Rb sin

(
β

4

)
cos(α−φi) cos(α)

(11a)

Fy(midside)i =
4

3
σnom2Rb sin

(
β

4

)
cos(α−φi) sin(α)

(11b)

where β is the angular spacing between the remote bound-
ary corner nodes (β = 2◦ for this example) and φi is the
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angular position of the remote boundary node. A number
of separate load caseswere applied to the remote boundary
to cover the range of load inclination angles of interest,
typically discretized into 1◦ increments. For all cases an
arbitrary remote stress of σnom = 1 was applied.
Boundarynodemovementswere only calculated for the

upper-right quadrant of the model as indicated in Fig. 10,
because the optimal shape solution is known to be sym-
metrical about the x and y axes for all of the analysed
cases. The shape of the remaining three quadrants was
maintained as mirror images of the first.
The size of the optimal shape was constrained to have

a length of L and a height of H where L= 2H (except
for the benchmark case where L=H). Without these
size constraints, the optimization would produce trivial
solutions of either ‘no hole’, or an ‘infinite slit’, depending
on whether material removal or addition was allowed.
Choosing different aspect ratios will result in different
unique optimal solutions as expected. An additional con-
straintpointC(x= 0, y= 1/2H)wasalsoappliedtoprevent
free-body movement. The stress threshold σth was always
chosen to be equal to the stress at the constraint point C,
and was updated each iteration. Material addition and
subtraction were both allowed. Finally, the minimum-
radius constraint ρ=Rmin/L was applied by restricting
the movement of any given node such that the radius of
a three-point arc passing through it and its twoneighbours
did not fall below a minimum radius Rmin.

6
Benchmark case using the basic stress-minimization
method

It is useful to demonstrate the effectiveness of the basic
stress-optimization algorithm as used here; since it is the
basis for further extension for robustness as described in
Sect. 4. A typical hole benchmark is a constrained optimal
hole in a plate subjected to a uniform uniaxial stress field
(i.e. α= 0◦). Here the hole is constrained to have a 1 : 1
aspect ratio (H = L). A detailed analysis of this geometric
case (amongst many others) was conducted by Burchill
and Heller (2004b). Their analysis produced the lowest
peak Kt, with Kt = 2.18 as compared to a number of
other works including Durelli et al . (1979) with Kt = 2.51,
Dhir (1981) withKt = 2.47, and Schnack and Sporl (1986)
with Kt = 2.30. Similar benefits of the present method for
other benchmark problems, such as constrained shoulder
fillets andplateswith surface notches have beenpreviously
shown,seerespectively,Waldmanet al.(2003)andBurchill
and Heller (2004a).
To be consistent with the Burchill and Heller (2004b)

benchmark, the starting shape was a rhombus as shown
in Fig. 11(a) and a minimum-radius constraint of ρ= 0.15
was used. The resulting optimal shape and stress distribu-
tionsaregivenin Fig. 11(a)and(b)respectively,alongwith
the Burchill and Heller (2004b) solution for comparison
(usingquarter symmetry).The shapeof theoptimalhole of

the present implementation is virtually indistinguishable
from the Burchill and Heller (2004b) solution, and both
results produce the same peak Kt of 2.18, for Ψσ < 0.1%.
This is as desired, noting that both results were achieved
using the same gradient-less stress-minimization method,
with only some minor differences in implementation, but
using two different FE codes.
Figure 12 shows the typical convergence of the present

approach, for both the initial rhombus shape as well as for
an initial circular shape. For example, 11 iterations were
needed to achieve Ψσ < 1.0%, when the starting shape
was a circle and 44 iterations when it was a rhombus.
For a similar convergence level the previous procedure of
Burchill andHeller (2004b)requiredmanymore iterations,
approximately 250, when starting from the rhombus. The
reasons for this are that the prior method was restricted
to material removal only, and thus required a small fixed
step-size factor (s= 0.007) to avoid overshooting the op-

Fig. 11 Basic stress minimization results for the benchmark
1 : 1 shape-constrained optimal hole in a uniaxial stress field
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Fig. 12 Convergence of the peak Kt for the benchmark case,
as a function of iteration number; two starting shapes are
considered

timum boundary shape. Whereas the present numerical
approach allowed material addition and subtraction, and
usedavariableseveryiteration.Thevariable-s formulation
was implementedbymonitoringtheconvergencerateevery
iteration and is as yet unpublished, but it is not presented
here as it is of no importance to the quality of the final
stress results in this or subsequent sections.
As expected and shown in Fig. 12, the total number of

iterations in the present method depends highly on the
initial starting shape and the convergence tolerance. It
would also depend to some extent on the specific element
type used, but investigation of this issue is beyond the
scope of the present paper.

7
Illustrative example for the non-robust
stress-minimization method

Optimal shapes for the example 2 : 1 aspect ratio problem
were determined using the basic gradient-less stress-
minimization method, and are presented here in order
to give baseline results for subsequent comparison. They

Table 1 Summary of peak Kt results from the basic and robust stress-minimization methods for a 2 : 1 hole aspect ratio

Optimization Load-angle Minimum-radius Convergence Peak stress-concentration factor Kt for various α
method design range constraint ρ parameter Ψσ (bold values represent optimal results)

α= 0◦ α=±5◦

Basic stress α= 0◦ 0.0 0.08% 1.71 3.23
minimization α= 0◦ 0.15 0.05% 1.78 2.20

Robust stress −5◦ ≤ α≤+5◦ 0.15 0.02% 1.91 1.91
minimization

Fig. 13 Basic stress-minimization results with and without
a minimum-radius constraint, showing (a) optimal hole shapes
and (b) stress distributions about the hole boundaries when
the load angle is at the nominal orientation of α= 0◦

were optimized for the nominal load angle of α= 0◦ only.
Two shapes were determined, one without a minimum-
radius constraint (ρ = 0) and one with a constraint of
ρ= 0.15. Table 1 contains a summary of all results, in-
cluding the convergence parameter Ψσ, which shows that
all of the optimization cases converged to within 0.1%.
Typically, each solution required 50 to 100 iterations to
converge, where the starting shape was a L×0.5L rect-
angle with rounded corners equal to the minimum-radius
constraint.
The case with no minimum-radius constraint (ρ= 0)

resulted in a shape containing sharp corners as shown
in Fig. 13(a), as compared to the ρ= 0.15 case which has
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a smooth transition from the optimal part of the boundary
to the constraint edge. Figure 13(b) compares the stress
distributions about the holes at the nominal load angle
α= 0◦. As expected, the sharp corner (ρ= 0) case achieves
the minimum peak Kt possible for the given example. The
minimum-radius constraint causes a slight shortening of
the length of the optimal part of the boundary, which has
a slightly adverse affect on the minimum peak Kt that can
be achieved.
It is useful now to demonstrate the effect that rotating

the load angleα inclination has on the peak stress for these
shapes. Figure 14 shows the stress distributions about
the hole boundaries when the load is orientated at an
α= 5◦ perturbation. The ρ= 0 case is most affected, with
a significant increase in stress at the sharp corner, as
expected.

Fig. 14 Stress distributions about the basic stress-
minimization optimal hole boundaries with and without
a minimum-radius constraint, showing results when the load
angle is perturbed −5◦ away from the nominal orientation

Fig. 15 Kt sensitivity curves for thebasic stress-minimization
optimal hole shapes with and without a minimum-radius
constraint

The effect that the load angle has on the peak Kt
is conveniently represented by the Kt-sensitivity curves
shown in Fig. 15. As expected, the peak Kt is a minimum
when α= 0◦, and linearly increases rapidly as the load
angle varies away from this nominal value. It can be seen
that when a minimum-radius constraint is applied, the
Kt-sensitivity is decreased, however there clearly exists
scope and benefit to reduce the sensitivity even further.

8
Illustrative example for the robust
stress-minimization method

The aim here is to determine a robust stress-optimal hole
shape thatgivesminimumKtwhentheangularorientation
of the remote load is expected to occur anywhere within
a prescribed range. Here the analysis is demonstrated for
the design range of −5◦ ≤ α≤+5◦. The total load-angle
range was discretized into 1◦ increments from −10◦ to
+10◦, and applied to the FE model as separate load cases,
i.e.m= 21. During the optimization, the nodemovements

Fig. 16 Robust stress minimization results showing (a) op-
timal hole shapes and (b) stress distributions about the hole
boundaries when the load angle is at the nominal orientation
of α= 0◦
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Fig. 17 Typical stress distribution about the robust stress-
minimization optimal hole boundary for the −5◦ ≤ α≤+5◦

load range case, at increments of 1◦

Fig. 18 Kt sensitivity curves for the robust and non-robust
stress-minimization optimal hole shapes

for each position along the boundary were calculated in
accordance with (2), with a minimum-radius constraint
of ρ= 0.15.
The resulting shape is shown in Fig. 16(a), which also

includes for comparison the basic optimal shape result for
the nominal load angle of α= 0◦. Figure 16(b) compares
the stress distributions about these holes at the nominal
load angle, and Table 1 summarizes peak Kt results.
Figure 17 reveals the stress distributions about the

robust optimal hole for the −5◦ ≤ α≤+5◦ design-range
case, showing typical results at 1◦ load-angle increments.
It canbe seenhere that themagnitude of the peak stress for
each loadcasewithin the±5◦ range is the same irrespective
of the load angle, however the location of the peak stress
varies with load angle.
The corresponding peak Kt sensitivity curve is given

in Fig. 18. It can be seen that the initial optimization
objective, toobtainpeak-stressuniformity foracontinuous

load-angle range has been accomplished. To the authors’
knowledge, this is a unique characteristic of a local stress-
concentrating detail that has not been achieved before.
As expected, the minimum peak Kt achieved at α= 0

◦ is
slightly higher than the non-robust shape, indicating that
there is a trade-off between robustness and the minimum
stress attainable. For load angles outside the ±5◦ design
range, peak Ktincreases as expected.

9
Illustrative examples for the non-robust and robust
fatigue-damage-minimization methods

The aim here is to determine a robust optimal hole shape
that gives minimum peak fatigue damage, and also com-
pare it to the relative fatigue performance of the basic and
robust stress-minimization shapes. Here the load-angle
occurrence (α–N) distribution is the key input, since the
peak fatigue damage accumulated is expected to vary
depending on the how the orientation of the loading varies
each cycle. Three α–N distributions are investigated here:
(1) the non-robust baseline case where the α is fixed at
a single orientation (α = 0◦); (2) a robust case where
α–N is uniformly distributed such that α has a equal
probability of occurring anywhere between a given range
of−5◦ ≤ α≤+5◦, as shownin Fig. 19;and(3)arobustcase
where α–N is normally distributed with a given average
of αavg = 0

◦ and standard deviation of αstdev = 5
◦.

A stress-life (S–N) relationship typical of structural
steel is specified, such that stress amplitudes of 0.9σu
and 0.5σu result in fatigue failure at 1000 and 1000000
cycles respectively, where σu is the ultimate strength of
the material (this was set equal to 3 times the applied
remote stress range, i.e. σu = 3∆σnom). Hence, the S–N
constants in (5) and (6)area=−0.0851and b= 2.687.The
endurance stress limit was set as σe = 0.5σu. The fatigue
damage at each position about the boundary was then
calculated in accordance with (3)–(6). The total number
of load cycles was arbitrarily chosen to bentotal = 100000.

Fig. 19 Graph of normalized frequency for the uniform and
normal α–N distributions that were investigated
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9.1
Fatigue damage results for α fixed
at a single load angle

Here it is assumed that the cyclic loading is always orien-
tated precisely at α= 0◦ for all load cycles. The fatigue
damage distribution about the basic stress minimization
shape (α= 0◦, ρ= 0.15) from Sect. 7, is calculated here
in accordance with (4)–(6). The resulting fatigue damage
distribution (see Fig. 20) is uniform along the optimal
boundary (Ψf = 0.55%), and hence minimum. This is an
expected result given that the simple fatigue model used
herein only considers the free-boundary stress. Therefore,
for the given fatigue model, the basic stress-minimization
shape is also optimal for fatigue damage when the load
angle is fixed at the same single orientation.

9.2
Fatigue damage results for a uniform α–N
distribution

An optimal shape was determined here using the robust
fatigue-damage gradient-less method ((3)–(6) and (8)) to
optimize the shape for minimum peak fatigue damage.
The load angle each cycle is assumed to occur uniformly
over the range−5◦ to+5◦, notated asU(−5◦, +5◦). Hence
the load case array was selected to consist of discretized
load angles of α =−5◦, −4◦ . . .+5◦ (m= 11), as shown
in Fig. 21.Thenumber of cycles applied to each load case is
givenbynj = ntotal/mwhichisreadilysubstitutedinto (4).
The robust fatigue-damage distribution is given

in Fig. 22, and the optimal shape is shown later in Fig. 24.
Also, a summary of the peak fatigue-damage results is
given in Table 2. It can be seen that the distribution is
uniform (Ψf = 0.11%), and hence minimum.
For comparison, the fatigue-damage distributions

about a basic (α= 0◦) and robust (−5◦ ≤ α≤+5◦) stress-
minimization shape, under the same uniform α–N load
distribution, is also given in Fig. 22. It can be seen that the

Fig. 20 Fatigue-damage distribution about the basic stress-
minimization shape, when the α–N distribution is fixed at the
nominal design angle (α= 0◦)

Fig. 21 Discretized load occurrences for the uniform and
normal α–N distributions that were investigated

Fig. 22 Cumulative fatigue-damage results for a uniform
α–NdistributionU(−5◦,+5◦), for the robust fatigue-optimized
solution, as compared to the basic and robust stress-minimized
shapes

optimal fatigue-damage solution provides a clear benefit
compared to both the basic and robust stress-minimized
hole shapes.

9.3
Fatigue damage results for a normal α–N distribution

Here it is assumed that α–N is normally distributed about
an average value of αavg = 0

◦ with a standard deviation
of αstdev = 5

◦, notated here as N(0◦, 5◦). The load case
arrays were selected to consist of discretized load angles
of α=−20◦, −19◦ . . .+20◦ (m= 41) which is considered
to represent the normal distribution faithfully (Fig. 21).
The resulting optimal hole shape is shown in Fig. 24.

The fatigue-damage distribution (Fig. 23) is uniform, and
hence minimum. This indicates that the initial stated
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Table 2 Summary of peak fatigue-damage results for the robust fatigue-damage minimization optimal shapes for a 2 : 1 hole
aspect ratio with a minimum-radius constraint of ρ= 0.15, as compared to the basic and robust stress-minimized shapes

Optimisation method Load-angle occurrence (α–N) Convergence Peak fatigue-damage f
distribution parameter Ψf (bold values represent optimal results)

Robust fatigue-damage Uniform, U(−5◦, +5◦) 0.11% 0.97
minimization Normal, N(0◦, 5◦) 0.08% 1.20

Basic stress minimization Fixed at α= 0◦ 0.55% 0.76
(α= 0◦) Uniform, U(−5◦, +5◦) 2.08

Normal, N(0◦, 5◦) 7.89

Robust stress minimization Uniform, U(−5◦, +5◦) 1.66
(−5◦ ≤ α≤+5◦) Normal, N(0◦, 5◦) 1.52

Fig. 23 Cumulative fatigue-damage results for a normal α–
N distribution N(0◦, 5◦), for the robust fatigue-optimized
solution, as compared to the basic and robust stress-minimized
shapes

Fig. 24 Optimalholeshapesdeterminedbytherobust fatigue-
damage-minimizationmethod forwhenα–N is eitheruniformly
or normally distributed, as compared to the basic and robust
stress-minimized shapes

aim of the numerical algorithm has been achieved. By
comparison, the shape from the basic stress optimiza-
tion performs very poorly under this α–N distribution,
with a very high peak fatigue damage. Conversely, the
robust stress method shape performed reasonably well,
with a peak fatigue-damage 27% higher than the optimal
result.
The illustrative examples have clearly shownthat there

are very significant fatigue-life benefits to be gained by
employing robust-fatigue shape optimization methods for
notches with variable load conditions, as compared to the
basic (non-robust) stress approaches that have historically
been used in prior work.

10
Conclusion

An iterative 2Dfinite-element-based optimizationproced-
ure has been developed for notches, which incorporates
robust design philosophies. Firstly, a robust stressmethod
is developed that produces a notch shape that results in
a minimum peak stress that remains constant for a con-
tinuous range of load orientations. Secondly, a robust
fatigue-damagemethod isdevelopedthatproducesanotch
shape withminimum peak fatigue-damage for cyclic loads
where the orientation of each load occurrence has a prob-
abilistic distribution. Numerical examples are then given
to demonstrate the method. These consider geometrically
constrained holes in plates, where load alignment variabil-
ity is present. For the conditions investigated it is shown
that the robust optimizationmethods provide fatigue lives
2 to 8 times longer as compared to non-robust methods.
Further improvements may be made to the procedure

by incorporating a more representative fatigue-damage
model than the linear cumulative damage rule used in
this paper. However, it is clearly shown in this work that
accounting for variability in load orientations (or multiple
load cases) can offer a large fatigue-life extension; thismay
be greater than that yielded by refining the fatigue-life
model. Extension of the present numerical approach to 3D
along with fatigue testing of the robust optimal shapes is
planned to guide further development.
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It is anticipated that the implementation of robust
optimal notch shapes in metallic structures would result
in reduced life-of-component costs through one or more
of the following: more relaxed manufacturing tolerances;
a common robust optimal notch shape that may be used
in several structural variants; improved reliability of life
assessments; and longer fatigue-life extension.
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